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ข้อความแห่งการริเร่ิม 

1. ไมเคิลสันอินเตอร์เฟอร์โรมิเตอร์ได้ถูกพัฒนาเพื่อใช้สังเกตพฤติกรรมของความเครียด                   
เพื่อศึกษาความรู้เร่ืองคุณสมบติัของสารเฟร์โรอิกในพฤติกรรมการเส่ือมตามอายุ กลไกการ
สูญเสีย การข้ึนกบัปัจจยัของอุณหภูมิ และผลของแมกนีโตอิเล็กทริก ท่ีสามารถวดัไดโ้ดยระบบ
ไมเคิลสันอินเตอร์เฟอร์โรมิเตอร์ท่ีไดรั้บการปรับปรุง (เขา้กบัท่ีจบัตวัอยา่ง แบบให้ความร้อน 
หรือสนามแม่เหล็ก) 

2. การสังเกตลักษณะเฉพาะของความเครียดท่ีถูกกระตุ้นท่ีสัมพันธ์กับสนามต่างๆ เช่น 
สนามไฟฟ้า สนามแม่เหล็ก และ ความร้อน ในการน าไปสู่การพฒันาสู่การประยุกตใ์ช้ในทาง
เซ็นเซอร์ และ ตวัขบัเร้า 
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STATEMENTS OF ORIGINALITY 

1. Michelson interferometer was developed to investigate field induced strain 

behavior. The new knowledge of ferroic material properties in term of aging 

behavior, loss mechanism, temperature dependence and magnetoelectric effect 

could also be obtained by the use of interferometry combined with modified 

system (i.e. heat load sample holder and solenoid coil).  

2. The investigation of induced-strain characteristic relations with external fields 

such as electric field, magnetic field and heat in order to find their characteristic in 

order to develop multifunctional applications such as sensors/actuators. 

 

 

 

 


