CONTENTS

Acknowledgements	d
Abstract in Thai	e
Abstract in English	g
List of Tables	1
List of Figures	m
List of Abbreviations	u
Statement of Originality in Thai	W
Statement of Originality in English	X
Chapter 1 Introduction	1
1.1 Introduction and overview	1
1.2 Research objectives	6
1.3 Usefulness of the research	6
Chapter 2 Theory background and literature review	7
2.1 Ferroic materials	7
2.1.1 Ferroelectric materials and applications	9
2.1.2 Piezoelectricity and electrostriction	13
2.1.3 Temperature dependent behavior	18
2.1.4 Magnetoelectricity	22
2.2 Michelson interferometer	25
Chapter 3 Experimental procedure	29
3.1 Modified Michelson interferometer for induced-strain	29
measurement system	

3.2 Investigation of electrostrictive properties using modified	31
Michelson interferometer	
3.2.1 Frequency dependence in induced-strain measurement	31
for PMN-PZT	
3.2.2 Aging behavior in induced-strain measurement	32
for 9/70/30 and 9/65/35 PLZT	
3.2.3 Heat loading in induced-strain measurement system	33
for PMN-PZT, PMN-PT and PLZT ceramics	
3.3 Investigation of magnetostrictive properties using modified	35
Michelson interferometer	
3.4 Operating principle	39
Chapter 4 Results and discussion	47
4.1 Electrostrictive properties using modified Michelson interferometer	47
4.1.1 Frequency dependence in induced-strain PMN-PZT	47
4.1.2 Aging behavior in induced-strain of 9/70/30 and 9/65/35 PLZT	63
4.1.3 Temperature dependence in induced-strain PLZT, PMN-PZT	90
and PMN-PT	
4.2 Effect of magnetic field to piezoelectric and electrostrictive properties	107
Chapter 5 Conclusions	131
5.1 Conclusions	131
5.2 Suggestions for further work	134
References Copyright by Chiang Mai University	135
List of publications	143
Curriculum Vitae	144

LIST OF TABLES

Table 1.1	Various basic and cross-coupled properties of materials	1
Table 1.2	Classification of primary and secondary ferroics	3
Table 1.3	Important events in ferroelectricity	4
Table 4.1	The electrostrictive coefficient Q of PLZT (9/70/30) and PLZT (9/65/35)	88
	coercive fields E_c (kV/cm), remnant polarizations P_r (μ C/cm ²)	
	and strains $s_r(\%)$ of PLZT at different sintering temperatures	
Table 4.2	The electrostrictive coefficient Q ($(cm^2/\mu C)^2$) for ceramics sintered	89
	at different temperatures	
Table 4.3	The magnetic field effect and frequency dependence of induced strain 1	30
	and polarization for PLZT, PMN-PZT and PMN-PT	
	IGI NEL Z	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University AII rights reserved

LIST OF FIGURES

Figure 2.1	Schematic of the ferroic orders, conjugated fields and	8
	corresponding symmetry operations	
Figure 2.2	Typical hysteresis loops for ferroelectrics P(E), ferromagnetics M(H)	8
	and $e_{ij}(\sigma)$ ferroelastics	
Figure 2.3	Periodic table of the elements highlighting the elements generating	9
	magnetic and ferroelectric behavior	
Figure 2.4	Ferroelectric hysteresis loop; spontaneous polarization (Ps), remanent	10
	polarization (Pr), coercive field (Ec)	
Figure 2.5	Ferroelectric is the subclasses of functional dielectrics	11
Figure 2.6	The perovskite type structure and (b) closed-packed layer of	12
	perovskite type structure	
Figure 2.7	Perovskite structure (a) above (b) below Curie temperature of $BaTiO_3$	12
Figure 2.8	P-E and s-E graph of (a) Piezoelectric materials, (b) Electrostriction	14
	materials, (c) PLZT, BST and PMN-PT	
Figure 2.9	The relation of spontaneous polarization and induced strain of	16
	ferroelectric materials	
Figure 2.10	(a) Tetragonal of PT structure and (b) 180° and	17
Q	(c) 90° domain reorientation in ferroelectric phase	
Figure 2.11	The 180° domain reversal and 90° domain reorientation as	17
A	function of electric field	
Figure 2.12	The 180° domain reversal of Pb(Ni _{1/3} Sb _{2/3})O ₃ -PbTiO ₃ -PbZrO ₃	18
Figure 2.13	The 90° domain reorientation of PMN-PT	18
Figure 2.14	Phase transition with temperature of BaTiO ₃	19
Figure 2.15	Lattice parameters expansion with temperature of $BaTiO_3$	19
Figure 2.16	(a) polarization, (b) induced strain as a function of electric field and	20
	(c) induced strain as a function of polarization at different temperatures	

Figure 2.15	The induced strain and polarization as function of electric field	21
	at various temperatures	
Figure 2.16	The induced strain as function of polarization at various temperature	21
Figure 2.17	Temperature dependence of bipolar S-E hysteresis loop in	22
	(1-x)BNKT-xSKN ceramics where x=0, 0.02 and 0.05	
Figure 2.18	Multiferroic and magnetoelectric materials. (a) Relationship between	23
	multiferroic and magnetoelectric materials. (b) Schematic diagram	
	illustrating different types of coupling present in materials	
Figure 2.19	P-E hysteresis loops in magnetic fields of 0, 1, 5, and 9 T at	23
	(a) different temperatures (b) at 220 K	
Figure 2.20	Relative elongation $\Delta l/l_0$ on simultaneous changes of electric field E	24
	and magnetic field B compared the elongation sum (dashed line)	
	caused by separated changes of E and B of magnetorheological	
	composite samples	
Figure 2.21	Michelson interferometer	26
Figure 2.22	Formation of fringe in Michelson interferometer (a) a circular fringe	26
	and (b) localized fringe	
Figure 3.1	Schematic diagram of Modified Michelson interferometer for	30
	induced-strain measurement system	
Figure 3.2	The sample holder	31
Figure 3.3	Schematic of heat load setup with modified Michelson interferometer	34
¢.	for induced-strain measurement system	
Figure 3.4	The heat load sample holder	34
Figure 3.5	Schematic of solenoid coil setup with modified Michelson	36
	interferometer for induced-strain measurement system	
Figure 3.6	The solenoid coil	36
Figure 3.7	Modified Michelson interferometer with heat and magnetic field	37
	load for induced-strain measurement system	
Figure 3.8	The (electronic) instrumental system for induced-strain measurement	38
Figure 3.9	The heat load sample holder	38
Figure 3.10	The sample holder inside a solenoid coil	38

Figure 3.11	The circular fringe pattern when the light passes through	39
	Michelson interferometer	
Figure 3.12	The interference intensity (red) and ratio of high voltage (blue)	39
Figure 3.13	The displacement in the direction of applied electric field	42
Figure 3.14	The Sawyer-Tower circuit	42
Figure 3.15	The Sawyer-Tower circuit signals (red) and ratio of high voltage (blue)	43
Figure 3.16	The voltage measured signals of ferroic materials	44
Figure 3.17	The polarization (blue line), induced-strain (red line) and electric field	45
	(black line) of ferroic materials	
Figure 3.18	The polarization (blue line) and induced-strain (red line) as	45
	a function of electric field of ferroic materials	
Figure 3.19	The induced-strain plotted as a function of polarization	46
Figure 4.1	The temperature dependences of the dielectric constant (ε_r) of	49
	(a) PMN and x PMN–(1- x)PZT samples where (b) x =0.9, (c) x =0.7,	
	(d) $x = 0.5$, (e) $x = 0.3$ and (f) temperature dependence at the	
	temperature range of -150°C to 400°C from Yimnirun et al.	
Figure 4.2	The frequency dependence of electric field induced strain and	51
	polarization of PMN	
Figure 4.3	The frequency dependence of electric field induced strain and	51
	polarization of 0.9PMN-0.1PZT	
Figure 4.4	The frequency dependence of induced strain as a function of	52
9	polarization of PMN	
Figure 4.5	The frequency dependence of induced strain as a function of	52
A	polarization of 0.9PMN-0.1PZT	
Figure 4.6	The frequency dependence of electric field induced strain and	54
	polarization of 0.7PMN-0.3PZT	
Figure 4.7	The frequency dependence of electric field induced strain and	55
	polarization of 0.5PMN-0.5PZT	
Figure 4.8	The frequency dependence of electric field induced strain and	55
	polarization of 0.3PMN-0.7PZT	

Figure 4.9	The frequency dependence of induced strain as a function of	56
	polarization of 0.7PMN-0.3PZT	
Figure 4.10	The frequency dependence of induced strain as a function of	57
	polarization of 0.5PMN-0.5PZT	
Figure 4.11	The frequency dependence of induced strain as a function of	57
	polarization of 0.3PMN-0.7PZT	
Figure 4.12	The field induced-strain (s-E) of PMN at various frequencies	59
Figure 4.13	The induced-strain as a function of polarization (s-P) curve of	59
	PMN at various frequencies	
Figure 4.14	The field induced-strain (s-E) of 0.7PMN-0.3PZT at various	60
	frequencies	
Figure 4.15	The induced-strain as a function of polarization (s-P) curve of	60
	0.7PMN-0.3PZT at various frequencies	
Figure 4.16	Induced strain and polarization of 0.7PMN–0.3PZT at 30°C, 40°C,	61
	and 50°C (a) before and (b) after the polarization correction	
Figure 4.17	The electrical loss (sub P) of 0.7PMN–0.3PZT	62
	at 30°C, 40°C, and 50°C	
Figure 4.18	The changed of maximum induced strain and polarization of	62
	0.7PMN–0.3PZT at 30°C, 40°C, and 50°C	
Figure 4.19	(a) X-ray diffraction pattern of PLZT (9/70/30) (gray line) and	64
	PLZT (9/65/35) (black line) (b) diffraction pattern between 42.5	
a	and 46.9° SUM12N818818801MU	
Figure 4.20	The dielectric constant peaks of (a) PLZT (9/70/30) and	65
	(b) PLZT (9/65/35)	
Figure 4.21	The induced-strain and polarization of PLZT (9/70/30) sintered	67
	at 1200°C	
Figure 4.22	The induced-strain and polarization of PLZT (9/70/30) sintered	68
	at 1225°C	
Figure 4.23	The induced-strain and polarization of PLZT (9/70/30) sintered	69
	at 1250°C	

Figure 4.24	The induced-strain and polarization of PLZT (9/70/30) sintered	70
	at 1275°C	
Figure 4.25	The induced-strain as a function of polarization of	71
	PLZT (9/70/30) sintered at 1200°C	
Figure 4.26	The induced-strain as a function of polarization of PLZT (9/70/30)	72
	sintered at 1225°C	
Figure 4.27	The induced-strain as a function of polarization of PLZT (9/70/30)	73
	sintered at 1250°C	
Figure 4.28	The induced-strain as a function of polarization of PLZT (9/70/30)	74
	sintered at 1275°C	
Figure 4.29	The induced-strain and polarization of PLZT (9/65/35) sintered	76
	at 1200°C	
Figure 4.30	The induced-strain and polarization of PLZT (9/65/35) sintered	77
	at 1225°C	
Figure 4.31	The induced-strain and polarization of PLZT (9/65/35) sintered	78
	at 1250°C	
Figure 4.32	The induced-strain and polarization of PLZT (9/65/35) sintered	79
	at 1275°C	
Figure 4.33	The induced-strain as a function of polarization of PLZT (9/65/35)	80
	sintered at 1200°C	
Figure 4.34	The induced-strain as a function of polarization of PLZT (9/65/35)	81
a	sintered at 1225°C	
Figure 4.35	The induced-strain as a function of polarization of PLZT (9/65/35)	82
Λ	sintered at 1250°C	
Figure 4.36	The induced-strain as a function of polarization of PLZT (9/65/35)	83
	sintered at 1275°C	
Figure 4.37	The induced-strain and polarization of PLZT (9/70/30)	84
Figure 4.38	The induced strain as function of quadratic polarization (s-P ²) of	85
	(a) PLZT (9/70/30) and (b) PLZT (9/65/35)	
Figure 4.39	The induced-strain and polarization of PLZT (9/65/35)	86
Figure 4.40	The strain asymmetry of PLZT (9/70/30)	87

Figure 4.41	The sample temperature profile of PLZT $(9/65/35)$ at (a) 28.4°C	91
	(b) $37.4^{\circ}C$ (c) $48.9^{\circ}C$ (d) $60.1^{\circ}C$ and (e) $70^{\circ}C$	
Figure 4.42	The dielectric constant and dielectric loss as a function of temperature	92
	of PLZT (9/65/35)	
Figure 4.43	The electric field induced strain and polarization of PLZT (9/65/35)	93
	at various temperatures	
Figure 4.44	The induced strain as a function of polarization of PLZT (9/65/35)	93
	at various temperatures	
Figure 4.45	The dielectric constant and dielectric loss as a function of temperature	94
	of <i>x</i> PMN–(<i>1-x</i>)PZT samples where $x = 0.9, 0.7$ and 0.5	
Figure 4.46	The electric field induced strain and polarization of 0.9PMN-0.1PZT	96
	at various temperatures	
Figure 4.47	The electric field induced strain and polarization of 0.7PMN-0.3PZT	96
	at various temperatures	
Figure 4.48	The electric field induced strain and polarization of 0.5PMN-0.5PZT	97
	at various temperatures	
Figure 4.49	The induced strain as a function of polarization of 0.9PMN-0.1PZT	97
	at various temperatures	
Figure 4.50	The induced strain as a function of polarization of 0.7PMN-0.3PZT	98
	at various temperatures	
Figure 4.51	The induced strain as a function of polarization of 0.5PMN-0.5PZT	98
ଗ	at various temperatures	
Figure 4.52	The dielectric constant and dielectric loss as a function of	99
Δ	temperature <i>x</i> PMN–(<i>1-x</i>)PT samples where $x = 0.9$, 0.8 and 0.7	
Figure 4.53	The electric field induced strain and polarization of 0.9PMN-0.1PT	101
	at various temperatures	
Figure 4.54	The electric field induced strain and polarization of 0.8PMN-0.2PZT	102
	at various temperatures	
Figure 4.55	The electric field induced strain and polarization of 0.7PMN-0.3PZT	103
	at various temperatures	

Figure 4.56	The induced strain as a function of polarization of 0.9PMN-0.1PT	103
	at various temperatures	
Figure 4.57	The induced strain as a function of polarization of 0.8PMN-0.2PT	104
	at various temperatures	
Figure 4.58	The induced strain as a function of polarization of 0.7PMN-0.3PT	104
	at various temperatures	
Figure 4.59	The integrated area of polarization and induced strain of	105
	xPMN–(1- x)PZT samples where $x = 0.9, 0.7$ and 0.5	
Figure 4.60	The integrated area of polarization and induced strain of	106
	xPMN–(1- x)PT samples where $x = 0.9$, 0.8 and 0.7	
Figure 4.61	The magnetic field (density) as a function of solenoid coil length	108
Figure 4.62	The electric field induced strain and polarization of PLZT (9/70/30)	110
	at various magnetic fields	
Figure 4.63	The electric field induced strain and polarization of PLZT (9/65/35)	111
	at various magnetic fields	
Figure 4.64	The electric field induced strain and polarization of PLZT (9/60/40)	112
	at various magnetic fields	
Figure 4.65	The induced strain as a function of polarization of PLZT (9/70/30)	113
	at various magnetic fields	
Figure 4.66	The induced strain as a function of polarization of PLZT (9/65/35)	114
	at various magnetic fields	
Figure 4.67	The induced strain as a function of polarization of PLZT (9/60/40)	115
(at various magnetic fields	
Figure 4.68	The electric field induced strain and polarization of 0.9PMN-0.1PZT	117
	at various magnetic fields	
Figure 4.69	The electric field induced strain and polarization of 0.7PMN-0.3PZT	118
	at various magnetic fields	
Figure 4.70	The electric field induced strain and polarization of 0.5PMN-0.5PZT	119
	at various magnetic fields	
Figure 4.71	The induced strain as a function of polarization of 0.9PMN-0.1PZT	120
	at various magnetic fields	

Figure 4.72	The induced strain as a function of polarization of 0.7PMN-0.3PZT	121
	at various magnetic fields	

- Figure 4.73 The induced strain as a function of polarization of 0.5PMN-0.5PZT 122 at various magnetic fields
- Figure 4.74 The electric field induced strain and polarization of 0.9PMN-0.1PT 123 at various magnetic fields
- Figure 4.75 The electric field induced strain and polarization of 0.8PMN-0.2PT 124 at various magnetic fields
- Figure 4.76 The electric field induced strain and polarization of 0.7PMN-0.3PT 126 at various magnetic fields
- Figure 4.77 The induced strain as a function of polarization of 0.9PMN-0.1PT 127 at various magnetic fields
- Figure 4.78 The induced strain as a function of polarization of 0.8PMN-0.2PT 128 at various magnetic fields
- Figure 4.79 The induced strain as a function of polarization of 0.7PMN-0.3PT 129 at various magnetic fields

The MAI

ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

LIST OF ABBREVIATIONS

AFE	Antiferroelectric phase
BaCO ₃	Barium carbonate
BT	Barium titanate
BZN	Barium zinc niobate
a	Lattice parameter in a axis
С	Lattice parameter in c axis
c/a	Tetragonality
CUBIC	Cubic
Е	Electric field
Ec	Coercive field
FE _{Rh}	Ferroelectric rhombohedral phase
FE _{Tet}	Ferroelectric tetragonal phase
La_2O_3	Lanthanum oxide
MONO	Monoclinic
MPa	Megapascal
MPB	Morphotropic phase boundary
Nb ₂ O ₅	Niobium pentaoxide
Р	Polarization
PbO	Lead oxide
PE _{cubic}	Paraelectric cubic phase
PLZTOPY	Lead lanthanum zirconate titanate
PLZT-BT	Lead lanthanum zirconate titanate-barium titanate
PLZT-PZN	Lead lanthanum zirconate titanate-lead zinc niobate
PMN	Lead magnesium niobate
PMN-PT	Lead magnesium niobate-lead titanate
PMN-PZT	Lead magnesium niobate-lead zirconate titanate
P _r	Remanent polarization
Ps	Saturate polarization
PST	Lead strontium titanate

- PT Lead titanate
- PZ Lead zirconate
- PZN Lead zinc niobate
- PZT Lead zirconate titanate
- RHOM Rhombohedral
- SEM Scanning electron microscope
- SFE Slim loop ferroelectric
- ST Strontium titanate
- T_c Curie's temperature
- TET Tetragonal
- TiO₂ Titanium dioxide
- T_m Temperature at maximum dielectric constant

ANG MAI

2023

- ZnO Zinc oxide
- ZrO₂ Zirconium dioxide
- XRD X-ray diffraction

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ข้อความแห่งการริเริ่ม

- ใมเคิลสันอินเตอร์เฟอร์ โรมิเตอร์ ได้ถูกพัฒนาเพื่อใช้สังเกตพฤติกรรมของความเครียด เพื่อศึกษาความรู้เรื่องคุณสมบัติของสารเฟร์ โรอิกในพฤติกรรมการเสื่อมตามอายุ กลไกการ สูญเสีย การขึ้นกับปัจจัยของอุณหภูมิ และผลของแมกนีโตอิเล็กทริก ที่สามารถวัดได้โดยระบบ ใมเคิลสันอินเตอร์เฟอร์ โรมิเตอร์ที่ได้รับการปรับปรุง (เข้ากับที่จับตัวอย่าง แบบให้ความร้อน หรือสนามแม่เหล็ก)
- การสังเกตลักษณะเฉพาะของความเครียดที่ถูกกระตุ้นที่สัมพันธ์กับสนามต่างๆ เช่น สนามไฟฟ้า สนามแม่เหล็ก และ ความร้อน ในการนำไปสู่การพัฒนาสู่การประยุกต์ใช้ในทาง เซ็นเซอร์ และ ตัวขับเร้า

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

STATEMENTS OF ORIGINALITY

- 1. Michelson interferometer was developed to investigate field induced strain behavior. The new knowledge of ferroic material properties in term of aging behavior, loss mechanism, temperature dependence and magnetoelectric effect could also be obtained by the use of interferometry combined with modified system (i.e. heat load sample holder and solenoid coil).
- 2. The investigation of induced-strain characteristic relations with external fields such as electric field, magnetic field and heat in order to find their characteristic in order to develop multifunctional applications such as sensors/actuators.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved