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STATEMENTS OF ORIGINALITY

Michelson interferometer was developed to investigate field induced strain

behavior. The new knowledge of ferroic material properties in term of aging
behavior, loss mechanism, temperature dependence and magnetoelectric effect
could also be obtained by the use of interferometry combined with modified

system (i.e. heat load sample holder and solenoid coil).

The investigation of induced-strain characteristic relations with external fields
such as electric field, magnetic field and heat in order to find their characteristic in

order to develop multifunctional applications such as sensors/actuators.



