CONTENTS

Acknowledgement	d
Abstract in Thai	e
Abstract in English	g
Abstract in English List of Tables	n
List of Figures	q
Statement of Originality in Thai	t
Statement of Originality in English	u
Chapter 1 Introduction	1
1.1 Principles and rationale	1
1.2 Research Objectives	1
1.3 Usefulness of the Research	2
1.4 Structure of the Thesis	2
Chapter 2 Theoretical background	4
2.1 Student thinking model	4
2.2 Methods for probing student thinking	20
2.3 Two-tier multiple choice question	25
2.4 Model analysis	27
2.5 Thermodynamics understanding	29

2.6	Interactive lecture demonstrations	31
Chapter 3	Seebeck effect demonstration	33
3.1	Thermoelectric theory	33
3.2	Experimental design	37
3.3	Experimental results and discussion	41
3.4	Conclusion	46
3.5	Implementation to teaching	46
Chapter 4	Thermodynamics of rubber band	48
4.1	Theoretical aspect	48
4.2	Experimental design	52
4.3	Experimental results and discussion	55
4.4	Conclusion	63
4.5	Implementation to teaching	63
Chapter 5	Fog in the bottle demonstration	64
5.1	Theoretical aspect	64
5.2	Experimental design	67
5.3	Experimental results and discussion	68
5.4	Conclusion	72
5.5	Implementation to teaching	73
Chapter 6	Physics education research methodology	74
6.1	Thermodynamics conceptual survey	74

6.2	Model analysis	75
6.3	Physics education for development of interactive lecture	80
	demonstrations (ILDs)	
6.4	Pee-pee boys demonstration	88
6.5	Movable syringe demonstration	90
6.6	Physics education for evaluation of thermodynamics concept	91
Chapter 7	Results and discussion on physics education research	99
7.1	Thermodynamics conceptual survey	99
7.2	Physics education research results for Seebeck effect	102
	demonstration	
7.3	Physics education research results for thermodynamics of rubber	107
	band	
7.4	Physics education research results for fog in the bottle	108
	demonstration	
7.5	Physics education research results for pee-pee boys	113
	demonstration	
7.6	Physics education research results for movable syringe	119
	demonstration	
7.7	Physics education research results for thermodynamics	121
	conceptual	
Chapter 8	Conclusions and discussion	133
8.1	Thermodynamics conceptual survey	133
8.2	Seebeck effect demonstration	134

8.3 Thermodynamics of rubber band	134
8.4 Fog in the bottle demonstration	134
8.5 Pee-pee boys demonstration	135
8.6 Movable syringe demonstration	135
8.7 Physics education for evaluation of thermodynamics concept	135
References	137
Appendix	149
Appendix A	149
Appendix B	157
Appendix C	162
Appendix D	177
Appendix E	192
Appendix E Appendix F	202
Appendix G	212
Appendix H NSUM191818880 MU	218
Appendix I/right [©] by Chiang Mai University	224
Appendix J rights reserved	229
Appendix K	235
Appendix L	241
Appendix M	245
Appendix N	249

Appendix O	252
Appendix P	255

CURRICULM VITAE

Page

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Table 2.1 The conceptual change model (CCM)	7
Table 2.2 The categories of the form of questions	20
Table 2.3 The strengths and weakness of the interview	22
Table 2.4 The two types of interviews	23
Table 2.5 The advantages and disadvantage of questionnaires	24
Table 2.6 Identified students' misconceptions on thermodynamics	29
Table 2.7 Thermodynamics interactive lecture demonstration sequences	32
Table 3.1 The Seebeck coefficients of some material	34
Table 3.2 Thermoelectric Module: TEC 1-12708 Technical Datasheet	39
Table 3.3 The electric potential difference (ΔV) and temperature difference	41
(ΔT) of metal wire	
Table 3.4 The average temperature and time of thermoelectric module	43
Table 3.5 Voltage (mV) generated by the thermoelectric module versus the temperature difference (ΔT)	45
Table 4.1 The procedure of A constant analysis	50
Table 4.2 The elongation of rubber band No.1	56
Table 4.3 The elongation of rubber band No.2	57
Table 4.4 The elongation of rubber band No.3	58
Table 4.5 The constant of rubber band	59
Table 4.6 Result for thermodynamics potential change	62

Table 5.1	Data of state variables during the irreversible adiabatic process	68
Table 5.2	Calculated values of number of mole, work done and vapor	70
	pressure of the system undergoing the irreversible adiabatic	
	process	
Table 5.3	Final state variables and work done by the system for both	70
	adiabatic irreversible and reversible process with the same final	
	pressure	
Table 5.4	Final state variables and work done by the system for both	71
	adiabatic irreversible and reversible process with the same final	
	volume	
Table 6.1	The conceptual areas of TCS	75
Table 6.2	PODS for Seebeck effect demonstration	82
Table 6.3	PODS for thermodynamics of rubber band	84
Table 6.4	PODS for fog in the bottle demonstration	86
Table 6.5	PODS for pee-pee boys demonstration	86
Table 6.6	PODS for movable syringe demonstration	87
Table 6.7	Significant Alternative Concepts covered in the TDT	93
Table 6.8	Propositional knowledge statements and corresponding item	94
	number for TDTL [©] by Chiang Mai University	
Table 6.9	The numbers from the code of the test results	98
Table 7.1	Associations between the physical models and the choices of the	100
	seven TCS questions on the Thermodynamics conceptual survey	
Table 7.2	Results of class model density matrices and class model states on	100
	the thermodynamics concept with data from Chiang Mai	
	University students	

Table 7.3 The pre and post dominant eigenvalues, class model eigenvectors	101
and vertical/horizontal components for the class model point	
Table 7.4 The prediction results on the demonstration 1 and 2 ($N=40$)	103
Table 7.5 Levels of satisfaction of the students in using the thermoelectric effect ILDs	105
Table 7.6 Test statistics for student's response on TDT	107
Table 7.7 Student predictions and reasoning on fog in the bottle ILD	109
Table 7.8 The students' results on fog in the bottle ILD	111
Table 7.9 Test statistics for student's response on TDT	112
Table 7.10 Student predictions and reasoning on Demonstration 1 and 2	113
Table 7.11 Student responses to questions 3-5 in terms of work, heat	115
transfer and change in internal energy	
Table 7.12 Student opinions on pee-pee boys interactive lecture	118
demonstration (ILD)	
Table 7.13 Descriptive statistics of student response on TDT	121
Table 7.14 The reliability of TDT with a range of statistics ($N=109$)	122
Table 7.15 Significant Concepts of TDT (N=109)	123
Copyright [©] by Chiang Mai University	
All rights reserved	

LIST OF FIGURES

Figure 1.1 The outline of development and evaluation of teaching	3
demonstration in thermal physics	
Figure 2.1 The process of conceptual change	6
Figure 2.2 The stage of Conceptual Change Model (CCM)	15
Figure 2.3 The association between working memory and long term memory	16
Figure 2.4 The cognitive structure description	17
Figure 2.5 The mental model construction	18
Figure 2.6 A process of model development leading to a conceptual change	28
Figure 2.7 Interactive lecture Demonstration Learning Cycle	31
Figure 3.1 The basic diagram for Seebeck effect causing	34
Figure 3.2 Illustration of Seebeck effect	35
Figure 3.3 Seebeck coefficient and the Fermi energy	36
Figure 3.4 The Seebeck effect of metal wire set up	37
Figure 3.5 The experiment set up for metal wire	38
Figure 3.6 Thermoelectric Module: TEC1-12708	38
Figure 3.7 Thermoelectric devices set up	40
Figure 3.8 The Seebeck coefficient of copper wire	42
Figure 3.9 Two heat sinks Temperature versus time of the thermoelectric	43
module	
Figure 3.10 The IR photos of thermoelectric devices	44

Figure 3.11 Voltage (mV) generated by the thermoelectric module versus the	45
temperature difference (ΔT)	
Figure 4.1 The structural model of polymer chains deformation	49
Figure 4.2 Experimental setup to determine the A constant of rubber band	53
Figure 4.3 Photo of experimental setup for investigating thermodynamics potential change	54
Figure 4.4 The relation between force and extension of the rubber band No.1	56
Figure 4.5 The relation between force and extension of the rubber band No.2	57
Figure 4.6 The relation between force and extension of the rubber band No.3	58
Figure 4.7 Relation between tension (τ) and length (L) at six different temperatures	60
Figure 4.8 Relation between tension (τ) and temperature (T) for four different lengths	60
Figure 4.9 Relation between tension $(\partial S / \partial L)_T$ and length (L) of rubber	61
band Figure 4.10 Relation between the change of internal energy (ΔU) and the change of temperature (ΔT)	62
Figure 5.1 The apparatus of the fog formation experiment	67
Figure 5.2 The fog formation inside the bottle	68
Figure 5.3 The measured temperature and pressure with operated time	69
Figure 5.4 The photo from IR-camera (a) before the operation, (b) and (c) during the operation, and (d) after operation	69
Figure 6.1 The model analysis procedure	76
Figure 6.2 A model space consisting of three orthogonal model vectors e_1 ,	77

 e_2 and e_3

Figure 6.3 Model regions on model plot	80
Figure 6.4 The sequence of ILDs in this study	81
Figure 6.5 Pee-pee boy after pouring hot water on it	88
Figure 6.6 The glass pee-pee boy after pouring hot water	89
Figure 6.7 Pee-pee boy for ILD setup	89
Figure 6.7 Pee-pee boy for ILD setup Figure 6.8 The IR-photo of pee-pee boy demonstration Figure 6.9 A demonstration setup of movable syringe.	90
Figure 6.9 A demonstration setup of movable syringe.	91
Figure 6.10 Diagram displaying steps in the TDT development process	92
Figure 6.11 An example of TDT	97
Figure 7.1 Model plot comparing between pre- and post-class model points	102
Figure 7.2 An example of student written explanation for improve the results	104
Figure 7.3 A student opinion towards learning the Seebeck effect ILDs	107
Figure 7.4 The proportion of correct response in all question of pre-post test for thermodynamics of rubber band	108
Figure 7.5 The proportion of correct response in all question of pre-post test for fog in the bottle demonstration	112
Figure 7.6 A situation of constant pressure with an increase in temperature	117
Figure 7.7 An example of prediction sheet on question 1	119
Figure 7.8 An example of student's incorrect prediction on pressure graph	120
Figure 7.9 The proportion of correct responses regarding the zeroth law	125
Figure 7.10 The proportion of correct responses regarding the first law	127
Figure 7.11 The proportion of correct responses regarding the second law	130

ข้อความแห่งการริเริ่ม

- วิทยานิพนธ์นี้ได้นำเสนอวิธีการพัฒนาและประเมินสื่อสาธิตการสอนในฟิสิกส์ความร้อน ซึ่ง ประกอบด้วย ชุดสาธิตเทอร์ โมอิเล็กทริก, ชุดสาธิตฟิสิกส์ความร้อนของแผ่นยาง และ ชุด สาธิตการเกิดหมอกในขวด
- เพื่อเป็นแนวทางในการประเมินความคิดรวบขอดของนักศึกษา ก่อนและหลังการสอนด้วยชุด สาธิตโดยใช้แบบสำรวจแนวกิดรวบขอดทางเทอร์โมไดนามิกส์ (Thermodynamics Conceptual Survey: TCS)

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

STATEMENTS OF ORIGINALITY

- 1. This thesis presents the development and evaluation of teaching demonstrations in thermal physics, including thermoelectric device (TEC), thermal physics of rubber band and fog in the bottle.
- 2. In order to evaluate student conceptions before and after teaching with the demonstration by using Thermodynamics Conceptual Survey (TCS).

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved