CONTENTS

		Page
Acknowledge	ement	c
Abstract in Tl	hai	d
Abstract in E	nglish	d
List of Tables		k
List of Figure	s กายยนต์	1
Chapter 1	Star Star 23 21	1
1.1	Problem Statement	1
1.2	Research question	6
1.3	Objectives	7
1.4	Scope of study	7
1.5	Output expectation	7
1.6	Thesis outline	8
Chapter 2 Tl	neories and Literature Review	9
2.1	Phnom Penh Row houses and regulations	9
2.2	Phnom Penh weather data	12
2.3	Comfort factors and standard of comfort zone	13
ମ	2.3.1 Operative temperature	14
С	2.3.2 Air velocity Chiang Mai University	15
A	2.3.3 Relative humidity STESETVED	16
2.4	Passive stack effect ventilation strategies for dwelling	17
	2.4.1 Principle of air movement	17
	2.4.2 Stack effect ventilation strategies	18
	2.4.3 Theories of heat transfer in Trombe wall	21
2.5	Previous studies	31
	2.5.1 Types and materials of Trombe wall	31
	2.5.2 Advantages of Trombe wall	33

CONTENTS (Continued)

		P	'age
	2	2.5.3 The Study of Trombe wall ratio	33
2.	.6 2	XFlow Computational Fluid Dynamics	36
Chapter	3 Met	thodology	39
3.	.1 I	Description of methodology	39
3.	.2 N	Modeling set up and boundary conditions	41
	3	3.2.1 Modeling set up	41
	3	3.2.2 Model boundaries condition	43
3.	.3 I	Post processing analysis	45
		325 36	
Chapter	4 Res	ults and Discussion	47
4.	.1 \$	Simulation result on top of stair block chamber	47
	4	4.1.1 Temperature simulation output	47
	4	4.1.2 Velocity simulation output	51
	4	4.1.3 Mass flow simulation output	57
4.	.2 5	Simulation result for whole house experiment	58
	4	4.2.1 Temperature at specific place of house	58
	84	4.2.2 Velocity at specific place in row house	64
	aq	4.2.3 Simulation results of air mass flow rate	71
4.	.3 C a	Discussion t [©] by Chiang Mai University	71
	A	4.3.1 Comparison of velocity at Trombe wall outlets for	71
		the two groups	
	4	4.3.2 Capacity of Trombe wall	73
	4	4.3.3 Chances for new experiments	73
Chapter	5 Con	clusion and Suggestion	77
5.	.1 (Conclusion	77
5.	.2 I	Limitation	79

CONTENTS (Continued)

LIST OF TABLES

Page

Table 3.1 temperature on internal surface of glass and wall	44
Table 3.2 input parameter for simulation	45
Table 4.1 average mass flow at steady state of each heat flux.	58
Table 4.2 average of temperature at living room, kitchen, and outlet (in k)	59
Table 4.3 average of air velocity in living room, kitchen and outlet (in m/s)	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

	Page
Figure 1.1 houses type classification in phnom penh 2008	1
Figure 1.2 phnom penh map borey row house block area	3
Figure 1.3 comparison of indoor and outdoor wind speed from a base case	4
measurement of row house	
Figure 1.4 comparison of indoor and outdoor temperature from a base case	5
measurement of row house	
Figure 1.5 comparison of indoor and outdoor humidity from a base case	5
measurement of row house	
Figure 2.1 picture of phnom penh row house for the study case	10
Figure 2.2 daily high/low temperature for phnom penh. The daily average low	13
(blue) and high (red) [8]	
Figure 2.3 ashrae summer psychrometric chart for human comfort [10]	14
Figure 2.4 bioclimatic comfort chart by olgyay, vector 1961 [14]	17
Figure 2.5 the process of heat transfer.	23
Figure 2.6 shows a fluid element's state of stress in terms of the pressure	24
and nine viscous stress components.	
Figure 2.7 fluid element's state of stress in terms of the pressure and	28
nine viscous stress components [24]	
Figure 3.1 diagram of research methodology study	34
Figure 3.2 3d modeling of the study case showing the location of trombe wall,	42
in(m) rights reserved	
Figure 3.3 3d modeling of the study case showing the existing house with	42
its outlet, in (m)	
Figure 3.4 trombe wall dimension in (cm)	43
Figure 4.1 Average temperature in channel by all heat flux	48
Figure 4.2 Comparison of temperature pattern in channel from wall to glass,	49
at 5s	

LIST OF FIGURES (Continued)

F	' age
Figure 4.3 Comparison of temperature pattern in channel from wall to glass,	49
at 20s	
Figure 4.4 Comparison of temperature pattern in channel from wall to glass,	49
at 200s	
Figure 4.5 3D view temperature by heat flux 1000W/m ² , at time 5s	50
Figure 4.6 (left) 3D view temperature by heat flux 1000W/m ² , at time 20s	50
Figure 4.7 (left) 3D view temperature by heat flux 1000W/m ² , at time 200s	50
Figure 4.8 temperature pattern in channel by heat flux 1000W/m ² , at time 5s	51
Figure 4.9 (left) temperature pattern in channel by heat flux 1000W/m ² ,	51
at time 20s	
Figure 4.10 (right) temperature pattern in channel by heat flux 1000W/m ² ,	51
at time 200s	
Figure 4.11 average of velocity in channel by all heat flux at step of times	52
Figure 4.12 Comparison of velocity pattern in channel from wall to glass at 5s	53
Figure 4.13 Comparison of velocity pattern in channel from wall to glass at 20s	53
Figure 4.14 Comparison of velocity pattern in channel from wall to glass at 200s	54
Figure 4.15 3D view and flow vector of velocity by heat flux 1000W/m ² ,	55
at time 5s	
Figure 4.16 3D view and flow vector of velocity by heat flux 1000W/m ² ,	55
at time 20sght [©] by Chiang Mai University	
Figure 4.17 3D view and flow vector of velocity by heat flux 1000W/m ² ,	56
at time 200s	
Figure 4.18 Velocity flow pattern in channel by heat flux 1000W/m ² , at 5s	56
Figure 4.19 (left) Velocity flow pattern in channel by heat flux 1000 W/m ² , at 20s	57
Figure 4.20 (right) Velocity flow pattern in chnnel by heat flux 1000W/m ² ,	57
at 200s	
Figure 4.21 Mass flow at inlet of channel along steps to time	57
Figure 4.22 NTW case, temperature pattern at 60s	60

LIST OF FIGURES (Continued)

	Page
Figure 4.23 HC-NTW case, temperature pattern at 60s	60
Figure 4.24 TW 200W/m ² case, temperature pattern at 60s	61
Figure 4.25 TW 1000W/m ² case, temperature pattern at 60s	61
Figure 4.26 HC-TW1000W/m ² case, temperature pattern at 60s	62
Figure 4.27 HC-TW1000W/m ² case at horizontal cutting, temperature pattern	62
at 60s	
Figure 4.28 (left) Temperature pattern at living room, at time 5s	63
Figure 4.29 (right) Temperature pattern at living room, at time 20s	63
Figure 4.30 (left) Temperature pattern at living room, at time 40s	63
Figure 4.31 (right) Temperature pattern at living room, at time 60s	63
Figure 4.32 Temperature pattern at kitchen, at time 60s	64
Figure 4.33 NTW case, velocity flow pattern at 60s	66
Figure 4.34 HC-NTW case, velocity flow pattern at 60s	66
Figure 4.35 TW 200W/m ² case, velocity flow pattern at 60s	66
Figure 4.36 TW 1000W/m ² case, velocity flow pattern at 60s	67
Figure 4.37 HC-TW1000W/m ² case, velocity flow pattern at 60s	67
Figure 4.38 HC-TW1000W/m ² case at horizontal cutting plan, velocity flow	67
pattern at 60s Figure 4.39 HC-TW1000W/m ² case at horizontal cutting plan, velocity vector flow pattern at 60s	68
Figure 4.40 (left) Velocity pattern at living room, at time 5s 60	68
Figure 4.41 (right) Velocity pattern at living room, at time 20s	68
Figure 4.42 (left) Velocity pattern at living room, at time 40s	69
Figure 4.43 (right) Velocity pattern at living room, at time 60s	69
Figure 4.44 (left) Velocity pattern at kitchen, at time 5s	69
Figure 4.45 (right) Velocity pattern at kitchen, at time 20s	69
Figure 4.46 (left) Velocity pattern at kitchen, at time 40s	70
Figure 4.47 (right) Velocity pattern at kitchen, at time 60s	70

LIST OF FIGURES (Continued)

Page

Figure 4.48 Mass flow rate gotten at outlets of each case at time steps (s)	71
Figure 4.49 Comparison of velocity on 3 cases of heat flux 1000W/m ²	72
was applied	
Figure 4.50 Comparison of air movement in stair channel of group Top stair	73
chamber simulation (left), and whole house simulation (right)	
Figure 4.51 Trombe wall design for family room	74
Figure 4.52 Resizing Trombe wall design and maintain the existing outlet	75
Figure 4.53 Proposed design about the combination of Trombe wall and	76
roof solar collector	

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved