CONTENTS

Acknowledgement	d	
Abstract in Thai	e	
Abstract in English	g	
List of Tables	1	
List of Figures	m	
List of Abbreviations	р	
Statements of Originality in Thai	S	
Statements of Originality in English	t	
Chapter 1 Introduction	1	
1.1 Statement and significant of the problems 1		
1.1 Statement and significant of the problems11.2 Objectives2		
1.3 Literature Review	2	
UNIT		
1.4 Principle and Rationales	13	
Chapter 2 Research design and Methods	15	
2.1 Research design by Chiang Mai University	15	
2.2 Classification of α-thalassemia genotypes by gap-PCR	17	
and PCR-RFLP		
2.3 Growth of hybridoma and single-cell cloning	21	
2.4 Detection of mouse anti-Hb Bart's by indirect ELISA	22	
2.5 Isolation of RNA, synthesis of cDNA and antibody gene	23	
amplification		
2.6 Cloning of the $V_{\rm H}$ and $V_{\rm L}$ gene	27	
2.7 Analysis of the $V_{\rm H}$ and $V_{\rm L}$ gene	30	

	2.8	Construction of the full length scFv gene	33
	2.9	Cloning of the full length scFv gene	36
	2.10	Optimization of IPTG induction	39
	2.11	Expression of the scFv antibody	40
	2.12	Purification of the scFv antibody by affinity chromatography	41
		and refolding of the scFv antibody	
	2.13	Specificity of the refolded scFv antibody and the parent monoclonal	41
		antibody by Western blot and indirect ELISA	
	2.14	Sensitivity of the refolded scFv antibody and the parent monoclonal	42
		by dot blot ELISA	
	2.15	Affinity constant determination of the refolded scFv antibody	43
		and the parent monoclonal antibody by indirect ELISA	
	2.16	Stability of the refolded scFv antibody	43
Chap	ter 3 I	Results	44
	3.1	Genotyping of α -thalassemias in primigravidarum volunteers	44
	3.2	Specificity of mouse anti-Hb Bart's monoclonal antibody	46
	3.3	RNA isolation, cDNA synthesis and antibody gene amplification	48
	3.4	V _H and V _L gene cloning	49
	3.5	Analysis of V _H and V _L DNA sequence	54
	3.6	Full length scFv gene construction	58
	3.7	Full length scFv gene cloning	59
	3.8	Full length scFv gene analysis	59
	3.9	Optimization of IPTG induction and the full length scFv expression	62
	3.10	ScFv antibody expression	63
	3.11	ScFv antibody purification and refolding	65
	3.12	Specificity of the refolded scFv antibody and the parent	66
		monoclonal antibody	
	3.13	Sensitivity of the refolded scFv antibody and the parent	69
		monoclonal antibody	
	3.14	Affinity constant of the refolded scFv antibody and the parent	70
		monoclonal antibody	

3.15 Stability	y of the refolded scFv antibody	71
Chapter 4 Discussion	on	72
Chapter 5 Conclusi	on	80
References		81
List of Publications		92
Appendix		93
Appendix A	List of chemicals and materials used in study	93
Appendix B	List of instruments used in study	97
Appendix C	List of buffers and media used in study	99
Appendix D	Bacterial strains and their vectors	111
Appendix E	Protocol of RNA isolation	118
Appendix F	Protocol of PCR product purification from agrose gel	121
Appendix G	Protocol of bacterial competent cells preparation	124
Appendix H	Protocol of plasmid DNA purification	125
Appendix I	Protocol of SDS-polyacrylamide and native polyacrylamide gel preparation	128
Appendix J	Protocol of proteins transfer from polyacrylamide gels to membranes	130
Appendix K	Protocol of protein concentration determination	132
Appendix L	Protocol of scFv antibody purification by Ni-NTA	135
Сору	affinity chromatography	
Curriculum Vitae	rights reserved	136

LIST OF TABLES

Table 1.1	Phenotype of unstable α -chain variants	7
Table 1.2	Hb Bart's levels in cord blood of difference genotypes of α -thalassemia	10
Table 2.1	Sequences of primers for PCR genotyping of α -thalassemias	21
Table 2.2	List of antibody-specific DNA primers used for the V_H gene amplification	24
Table 2.3	List of antibody-specific DNA primers used for the V_L gene amplification	26
Table 2.4	Primers designed for construction of the full length scFv gene	34
Table 3.1	Classification of α -thalassemia genotypes in 638 primigravidarum volunteers from Maharaj Nakorn Chiang Mai Hospital	46
Table 3.2	Specificity of mouse monoclonal antibody to Hbs; Bart's, A ₂ , E, F, A and H by indirect ELISA	47
Table 3.3	Recovery yield of the scFv antibody from each step of purification	65
Table 3.4	Specificity of the refolded scFv antibody to Hbs; Bart's, A ₂ , E, F, A	68
	and H by indirect ELISA	
	Copyright [©] by Chiang Mai University All rights reserved	

LIST OF FIGURES

Figure 1.1	Deletions that cause α^0 -thalassemia.	4
Figure 1.2	The mechanism by which the common deletions underlying	5
	α^+ -thalassemia occur	
Figure 1.3	Deletions that cause α^+ -thalassemia	6
Figure 1.4	The Fv fragment contains the antigen-binding regions of antibodies	11
Figure 1.5	Antibody model showing subunit composition	12
Figure 2.1	Schematic representation of the procedures of the scFv generation	16
Figure 2.2	The locations on chromosome 16 of the specific primers	18
	for the amplification of α^0 -thalassemia ^{SEA} type	
Figure 2.3	The locations on chromosome 16 of the specific primers	19
	for the amplification of α^+ -thalassemia - $\alpha^{3.7}$ and - $\alpha^{4.2}$ type	
Figure 2.4	The locations on chromosome 16 of the specific primers	20
	for the amplification of HbCS and Msel restriction sites	
Figure 2.5	The circle map, promoter and T overhang cloning sequences	29
Eigung 2.6	of pGEM [®] -T Easy vector	21
Figure 2.6	Kabat and Chothia numbering scheme for the identification of CDRs-H	31
Figure 2.7	Kabat and Chothia numbering scheme for the identification of CDRs-L	32
Figure 2.8	The schematic diagram of the construction of the full length scFv	35
A	gene by SOE-PCR	
Figure 2.9	The circle map, promoter and multiple cloning sequences of	38
	pET28a(+) expression vector	
Figure 2.10	Expression vector map of the pET28a(+)-scFv anti-Hb Bart's	39
Figure 3.1	PCR detection of the common genotypes of α -thalassemias	45
Figure 3.2	Reactivity of mouse monoclonal antibody to Hbs; Bart's, A2, E, F,	47
	A and H by indirect ELISA	

Figure 3.3	Agarose gel electrophoresis of amplicons of V_L and V_H gene from	48
-	cDNA of mouse hybridoma	
Figure 3.4	Agarose gel electrophoresis of amplicons of <i>E. coli</i> TOP10F white	50
-	bacterial colonies for the presence of pGEM [®] -T-V _H by colony PCR	
Figure 3.5	Agarose gel electrophoresis of amplicons of <i>E. coli</i> TOP10F white	52
	bacterial colonies for the presence of $pGEM^{\textcircled{B}}$ -T-V _L by colony PCR	
Figure 3.6	Agarose gel electrophoresis of <i>Eco</i> R I restriction digestion analysis	55
	of purified plasmid DNA from the pGEM [®] -T-V _H	
Figure 3.7	Nucleotide and amino acid sequences of V _H	56
Figure 3.8	Nucleotide and amino acid sequences of V _L	57
Figure 3.9	Nucleotide and amino acid sequences of the other V_L	57
Figure 3.10	Agarose gel electrophoresis of amplicons of the V_H , V_L	58
	and full length scFv genes	
Figure 3.11	Agarose gel electrophoresis of amplicons of E. coli BL21(DE3)	60
	colonies for the presence of pET28a(+)-scFv anti-Hb Bart's by	
	colony PCR	
Figure 3.12	Nucleotide and amino acid sequences of the N-terminal histidine	61
	fusion full length scFv	
Figure 3.13	Polyacryamide gel electrophoresis of the expression of the scFv	62
	antibody in E. coli BL21(DE3) after IPTG induction at various time	
Figure 3.14	Polyacryamide gel electrophoresis of the expression of the scFv	63
	antibody in E. coli BL21(DE3) for analysis of induction condition	
Figure 3.15	Western blot analysis of the expression of N-terminal histidine	64
(fusion scFv antibody	
Figure 3.16	Polyacryamide gel electrophoresis of the refolded scFv antibody	66
Figure 3.17	Native polyacrylamide gel electrophoresis and Western blot	67
	analysis of the specific binding of the refolded scFv antibody	
	and the parent monoclonal antibody to Hb Bart's	
Figure 3.18	Reactivity of the refolded scFv antibody to Hb Bart's, A2, E, F, A	68
	and H by indirect ELISA	
Figure 3.19	Sensitivity of the refolded scFv antibody and the parent monoclonal	69
	antibody to Hb Bart's by dot blot ELISA	

Figure 3.20 Reactivity of the refolded scFv antibody and the parent monoclonal 70 antibody to various concentrations of Hb Bart's for analysis of the affinity constant by indirect ELISA

LIST OF ABBREVIATIONS

AMV		Avian myeloblastosis virus
bp		Base pair
cDNA		Complementary deoxyribonucleic acid
CDRs		Complementarity determining regions
CO_2		Carbon dioxide
CS		Constant Spring
DNA		Deoxyribonucleic acid
dNTP	8	Deoxynucleotide triphosphate
E. coli	10	Escherichia coli
EDTA	30%	Ethylenediaminetetraacetic acid
ELISA	-283-	Enzyme linked immunosorbent assay
FBS		Fetal bovine serum
Fc	NE1	Constant fragment of immunoglobulin
Fv	NE.	Variable fragment of immunoglobulin
g	Nº2	Gram
GST		Glutathione-S-transferase
h		Hour
Hb	S	Hemoglobin
His	adansi	Histidine
HRP	Copyright ⁽	Horseradish peroxidase
IBs	ALL	Inclusion bodies
IEF		Isoelectric focusing
Igs		Immunoglobulins
IMAC		Immobilized metal affinity chromatography
IMDM		Iscove's Modified Dulbecco's Medium
IPTG		Isopropyl-β-D-thiogalactopyranoside
K_a		Affinity constant

kb	Kilobase
kDa	Kilodalton
L	Liter
LB	Luria Bertani
М	Molar
mAb	Monoclonal antibody
MCH	Mean corpuscular hemoglobin
MCV	Mean corpuscular volume
MED	Mediterranean
mg	Milligram
min 🖌 🔊	Minute
mL	Milliliter
mM	Millimolar
μg	Microgram
μL	Microliter
μM	Micromolar
N	Normality
Ni-NTA	Nickle-nitrilotriacetic acid
nm	Nanometer
OD	Optical density
PAGE	Polyacrylamide gel electrophoresis
PBS Salansi	Phosphate buffer saline
PBS-T	Phosphate buffer saline-Tween 20
PCR Copyright	Polymerase chain reaction
PMSF A	Phenylmethyl sulfonyl fluoride
PVDF	Polyvinylidene difluoride
RBC	Red blood cell
RFLP	Restriction fragment length polymorphism
RNA	Ribonucleic acid
rpm	Revolution per minute
RT-PCR	Reverse transcriptase polymerase chain reaction
S	Second

ScFv	Single-chain variable fragment
SDS	Sodium dodecyl sulfate
SEA	Southeast Asia
SOE-PCR	Splice overlapped extension-polymerase chain reaction
TAE	Tris-acetate-EDTA buffer
TMB	3, 3', 5, 5'-Tetramethylbenzidine
Trx	Thioredoxin
UV	Ultraviolet
V	Voltage
V _H	Variable domains of immunoglobulin heavy chain
VL	Variable domains of immunoglobulin light chain
5.	
2	C C S S S S S S S S S S S S S S S S S S

ข้อความแห่งการริเริ่ม

- ศึกษารูปแบบพันธุกรรมและความชุกที่เป็นปัจจุบันของโรคอัลฟาธาลัสซีเมียในหญิงตั้งครรภ์ ท้องแรกที่มีภูมิลำเนาอยู่ในภาคเหนือของประเทศไทยด้วยวิธีแก็ปพีซีอาร์และพีซีอาร์-อาร์เอฟแอลพี
- รีกอมบิแนนท์แอนติบอดีชนิดเอสซีเอฟวีที่จำเพาะต่อฮีโมโกลบินบาร์ทส์ถูกสร้างขึ้นใหม่ด้วย เทคโนโลยีรีกอมบิแนนท์ดีเอ็นเอเพื่อใช้ทดแทนโมโนโกลนอลแอนติบอดีเป็นการแก้ปัญหา เซลล์ไฮบริดโดมาที่อาจสูญเสียความสามารถในการสร้างและหลั่งโมโนโคลนอลแอนติบอดี เมื่อเลี้ยงเซลล์เป็นเวลานาน

STATEMENTS OF ORIGINALITY

- 1. Common genotypes and update data of the prevalence of α -thalassemias were determined in northern Thai primigravidarum by gap-PCR and PCR-RFLP.
- A novel recombinant scFv antibody specific to Hb Bart's was generated using recombinant DNA technology as an alternative to monoclonal antibody dissolving the problems of gradual loss of the synthesis and secretion of monoclonal antibody during long-term cultivation of the hybridimas.

