CONTENTS

		Page
. 1 1 1		
Acknowledg		С
Abstract in 7		e
Abstract in I	English	g
Contents	es res	i
List of Table	es	1
List of Figur		n
List of Abbr	eviations and Symbols	p
Chapter I: In	troduction	1
1.1	Statement and significance of the problems	1
1.2	Literature reviews	5
	1.2.1 Epidemiology	5
	1.2.2 The life cycle of the malaria parasites	6
	1.2.3 Symptoms and diagnosis of malaria disease	8
	1.2.4 Antimalarial drugs and resistance	9
1.3	Objectives of the study	23
Chapter II: N	Materials and Methods	24
2.1	Chemicals and instruments	24
2.2	Study area and subjects	24
2.3	In vitro culture of P. falciparum	25
2.4	Synchronization of <i>P. falciparum</i> culture	25
2.5	Malaria SYBR Green I-based Fluorescence (MSF) Assay	26
2.6	Extraction of genomic DNA (gDNA)	28
2.7	Polymerase Chain Reaction	29
2.8	Purification of PCR product for DNA sequencing	29
2.9	Sequencing of DNA	30
2.10	In vitro antimalarial drugs sensitivity analysis	30

Chapter III: R	esults		31
3.1	In vitro	o antimalarial drug-susceptibility testing of	31
	P. falc	iparum strains	
	3.1.1	Drug-susceptibility of P. falciparum strains against	32
		Pyrimethamine (PYR)	
	3.1.2	Drug-susceptibility of P. falciparum strains against	34
		Chloroquine (CQ)	
	3.1.3	Drug-susceptibility of P. falciparum strains against	36
		Mefloquine (MQ)	
	3.1.4	Drug-susceptibility of P. falciparum strains against	38
	_//.	Dihydroartemisinin (DHA)	
	3.1.5	Drug-susceptibility of P. falciparum strains against	40
		the new antimalarial drug candidate (P218)	
3.2	Compa	arison the effect of antimalarial drug Pyrimethamine	43
	and the	e new antimalarial drug candidate 'P218' on growth	
	of P. fa	alciparum strains	
3.3	In vitro	o drug-susceptibility testing of <i>P. falciparum</i> isolates	43
	from n	nalaria patients in Mae-Sariang district area,	
	Mae H	Iong Son province	
	3.3.1	Drug-susceptibility of <i>P. falciparum</i> isolates on	44
9		Pyrimethamine (PYR)	
ล	3.3.2	Drug-susceptibility of <i>P. falciparum</i> isolates on	46
C	opyr	Chloroquine (CQ)	
Α	3.3.3		48
		Mefloquine (MQ)	
	3.3.4	Drug-susceptibility of <i>P. falciparum</i> isolates on	50
		Dihydroartemisinin (DHA)	
	3.3.5	Drug-susceptibility of <i>P. falciparum</i> isolates on	52
		The new antimalarial drug candidate 'P218'	
3.4	Identif	fication of mutation(s) in drug resistant genes in	57
	P. falc	iparum field isolates	

Chapter IV: Discussion 65
Chapter V: Conclusion 68
References 69
Appendix 79
Appendix A 79
Appendix B 81
Appendix C 83
Curriculum Vitae 87
ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright [©] by Chiang Mai University All rights reserved

LIST OF TABLES

		Page
Table 3-1	In vitro susceptibility of P. falciparum strains against	34
	Pyrimethamine (PYR)	
Table 3-2	In vitro susceptibility of P. falciparum strains against	36
	Chloroquine (CQ)	
Table 3-3	In vitro susceptibility of P. falciparum strains against	38
	Mefloquine (MQ)	
Table 3-4	In vitro susceptibility of P. falciparum strains against	40
	Dihydroartemisinin (DHA)	
Table 3-5	In vitro susceptibility of P. falciparum strains against	42
	the new antimalarial drug candidate 'P218'	
Table 3-6	Comparison the effect of antimalarial drug Pyrimethamine (PYR)	43
	and the new antimalarial drug candidate 'P218' on growth of	
	P. falciparum strains	
Table 3-7	IC ₅₀ values of Pyrimethamine, Chloroquine, Mefloquine,	54
	Dihydroartemisinin, and P218 against P. falciparum from	
0	field isolates and reference strains	
Table 3-8	Mutations of PfDHFR enzyme that involve in PYR-resistant	60
C	P. falciparum strains	
Table 3-9	Mutations of PfDHFR enzyme that involve in PYR-resistant	61
/ 1	P. falciparum field isolates	
Table 3-10	Mutations at PfCRT enzyme that involve in CQ-resistant	62
	P. falciparum strains	
Table 3-11	Mutations at PfCRT enzyme that involve in CQ-resistant	63
	P. falciparum field isolates	
Table 3-12	Summary of tested <i>P. falciparum</i> number and percentage of	64
	PfCRT and PfDHFR mutations	

64

LIST OF FIGURES

		Page
Figure 1-1	Countries with ongoing transmission of malaria, 2013	1
· ·		7
Figure 1-2	Life cycle of the <i>Plasmodium</i> species	•
Figure 1-3	The stages in erythrocytic schizogonic phases of <i>P. falciparum</i> in 6-48 hour culture	8
Figure 1-4	Mechanisms of action of 4-aminoquinolines	10
Figure 1-5	Chemical structure of 4-Aminoquinolines	11
Figure 1-6	Chemical structure of Arylaminoalcohols	13
Figure 1-7	Chemical structure of Primaquine	15
Figure 1-8	Chemical structure of Antifolate drugs	16
Figure 1-9	Pathway of folate biosynthesis in <i>Plasmodium</i> spp.	19
Figure 1-10	The new antifolate antimalarial drug candidate 'P218' and PYR	20
Figure 1-11	Chemical structure of artemisinin and derivatives	21
Figure 1-12	Chemical structure of antimalarial drugs	22
ลิ	Atovaquone, Proguanil, Doxycycline, Clindamycin	
Figure 3-1	Relationship between parasitemia and measured fluorescence	32
Figure 3-2	Effect of Pyrimethamine (PYR) on the growth of	33
/1	P. falciparum strains	
Figure 3-3	Effect of Chloroquine (CQ) on the growth of	35
	P. falciparum strains	
Figure 3-4	Effect of Mefloquine (MQ) on the growth of	37
	P. falciparum strains	
Figure 3-5	Effect of Dihydroartemisinin (DHA) on the growth of	39
	P. falciparum strains	

Figure 3-6	Effect of the new antimalarial drug candidate 'P218'	41
	on the growth of P. falciparum strains	
Figure 3-7	Effect of Pyrimethamine on the growth of P. falciparum	45
	field isolates	
Figure 3-8	Effect of Chloroquine on the growth of P. falciparum field isolates	47
Figure 3-9	The Effect of Mefloquine on the growth of P. falciparum	49
	field isolates	
Figure 3-10	The Effect of Dihydroartemisinin (DHA) on the growth of	51
	P. falciparum isolates	
Figure 3-11	The Effect of P218 on the growth of P. falciparum field isolates	53
Figure 3-12	Representative sequence alignment results of DHFR from	58
	P. falciparum field isolates and P. falciparum strains	
Figure 3-13	Representative sequence alignment results of CRT from	59
	P. falciparum field isolates and P. falciparum strains	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่
Copyright© by Chiang Mai University
All rights reserved

LIST OF ABBREVIATIONS OR SYMBOLS

% Percent

cm Centimeter

CO₂ Carbondioxide

DI Deionized water

°C Degree Celsius

g Gram

h Hour

kg Kilogram

L Liter

M Molarity

MW Molecular weight

mg Milligram

min Minute

ml Milliliter

mM Millimolar

mm Millimeter

nM Nanomolar

nm Nanometer

N₂ Nitrogen

O₂ Oxygen

OD Optimal density

μg Microgram

μl Microliter

μm Micrometer

RBC Red blood cell

nRBC normal red blood cell

iRBC infected red blood cell

kDa Kilodaltons

bp Base pair

kbp Kilobase pair

NaHCO₃ Sodium bicarbonate

NaCl Sodium chloride

Na₂HPO₄ Disodium hydrophosphate

KH₂PO₄ Potassium dihydrophosphate

KCl Potassium chloride

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved