### CONTENTS

| Acknowledgement                                                      | iii    |
|----------------------------------------------------------------------|--------|
| Abstract in Thai                                                     | iv     |
| Abstract in English                                                  | vii    |
| List of Tables                                                       | xiii   |
| List of Figures                                                      | xvii   |
| List of Abbreviations                                                | xxiii  |
| List of Symbols                                                      | xxvii  |
| Statement of Originality in Thai                                     | xxviii |
| Statement of Originality in English                                  | xxix   |
| Chapter 1 Introduction                                               | 1      |
| 1.1 Historical Background                                            | 1      |
| 1.2 Literature reviews                                               | 4      |
| 1.3 Objectives                                                       | 41     |
| Chapter 2 Materials and methods                                      | 42     |
| 2.1 Chemicals and materials used                                     | 42     |
| 2.2 Elucidation and characterization of the active component(s) from | 42     |
| red rice extract                                                     |        |
| 2.3 Cell lines and cell cultures                                     | 48     |
| 2.4 Effect of the CEE, Hex, DCM, EtOAc and water fractions on        | 49     |
| cell viability                                                       | -      |
| 2.5 Effect of the CEE, Hex, DCM, EtOAc and water fractions on        | 49     |
| MDA-MB-231 and HT-1080 cells invasion                                |        |

| 2.6 Effect of the CEE, Hex, DCM, EtOAc and water fractions on       | 50 |
|---------------------------------------------------------------------|----|
| MMP-2 and MMP-9 secretions from HT-1080 cells                       |    |
| 2.7 Effect of the CEE, Hex, DCM, EtOAc and water fractions on       | 51 |
| MMP-9 secretion from MDA-MB-231 cells                               |    |
| 2.8 Effect of the CEE, Hex, DCM, EtOAc and water fractions on       | 51 |
| MMP-2 and MMP-9 activities from HT-1080 cells                       |    |
| 2.9 Effect of the CEE, Hex, DCM, EtOAc and water fractions on       | 52 |
| MMP-9 activity from MDA-MB-231 cells                                |    |
| 2.10 Effect of the CEE, Hex, DCM, EtOAc and water fractions on      | 52 |
| collagenase activity                                                |    |
| 2.11 Effect of CEE, Hex, DCM, EtOAc and water fractions on NO       | 53 |
| production from LPS-induced RAW 264.7 mouse macrophage cells        |    |
| 2.12 Effect of CEE, Hex, DCM, EtOAc and water fractions on IL-1,    | 54 |
| IL-6 and TNF- $\alpha$ production from LPS induced RAW 264.7 mouse  |    |
| macrophage cells                                                    |    |
| 2.13 Isolation of proanthocyanidin-rich fraction from red rice      | 55 |
| (PRFR)                                                              |    |
| 2.14 Determination of proanthocyanidin concentration by             | 55 |
| acid/butanol assay                                                  |    |
| 2.15 Identification of proanthocyanidin types in PRFR using HPLC    | 56 |
| 2.16 Cell lines and cell culture                                    | 56 |
| 2.17 Cytotoxicity of PRFR on MDA-MB-231, HT-1080, SKOV-3            | 56 |
| and human skin fibroblast cells                                     |    |
| 2.18 Anti-invasion and migration effects of PRFR on MDA-MB-231      | 57 |
| cells                                                               |    |
| 2.19 Effect of PRFR on the secretion of MMP-9                       | 57 |
| 2.20 Effect of PRFR on the MMP-9 activity in MDA-MB-231 cells       | 58 |
| 2.21 Effect of PRFR on the activity of collagenase type IV activity | 58 |
| 2.22 Effect of PRFR on the production of IL-6 from MDA-MB-231       | 58 |
| cells                                                               |    |
| 2.23 Effect uPA-plasminogen secretion by PRFR                       | 58 |

| 2.24 Inhibitory effects of PRFR on the expression of MT1-MMP,                | 59  |
|------------------------------------------------------------------------------|-----|
| uPAR, PAI-1 and ICAM-1 using western blot ananlysis                          |     |
| 2.25 Effect of PRFP on the NF-κB DNA binding activity                        | 60  |
| 2.26 Statistical analysis                                                    | 61  |
| Chapter 3 Results                                                            | 62  |
| 3.1 Preparation and quantitative determination of phytochemicals in          | 62  |
| red rice fractions                                                           |     |
| 3.2 Cytotoxicity of CEE, Hex, DCM, EtOAc and water fractions on              | 67  |
| MDA-MB-231, HT-1080 human invasive cells                                     |     |
| 3.3 Effect of red rice fractions, phenolic acids, grape seed                 | 73  |
| proanthocyanidin, $\gamma$ -tocotrienol and $\gamma$ -oryzanol on MDA-MB-231 |     |
| and HT-1080 cells invasion                                                   |     |
| 3.4 Effect of CEE, Hex, DCM, EtOAc and water fractions on                    | 83  |
| secretion of ECM degradation enzymes                                         |     |
| 3.5 Effect of CEE, Hex, DCM, EtOAc and water fractions on the                | 95  |
| activities of enzymes involved in ECM degradation                            |     |
| 3.6 Effect of CEE, Hex, DCM, EtOAc and water fractions on the                | 112 |
| pro-inflammatory cytokine production from LPS-induced RAW                    |     |
| 264.7 macrophage cells                                                       |     |
| 3.7 Proanthocyanidin content determination in PRFR                           | 129 |
| 3.8 Cytotoxicity of PRFR on cancer cells and human skin fibroblasts          | 134 |
| 3.9 Anti-invasive effect of PRFR on MDA-MB-231 cells                         | 139 |
| 3.10 Anti-migration effect of PRFR on MDA-MB-231 cells                       | 141 |
| 3.11 Effect of PRFR on the secretion and activity of ECM                     | 144 |
| degradation enzymes secreted from MDA-MB-231 cells                           |     |
| 3.12 Effect of PRFR on the production of IL-6 in LPS-treated MDA-            | 150 |
| MB-231 cells                                                                 |     |
| 3.13 Inhibitory effect of PRFR on the uPA/uPAR/PAI-1 system in               | 152 |
| MDA-MB-231 cells                                                             |     |
| 3.14 Inhibitory effects of PRFR on the expression of MT1-MMP in              | 156 |

| MDA-MB-231 cells                                                                                               |     |
|----------------------------------------------------------------------------------------------------------------|-----|
| 3.15 Inhibitory effects of PRFR on the expression of ICAM-1, an                                                | 158 |
| adhesion molecule                                                                                              |     |
| 3.16 Effect of PRFR on the NF-κB DNA binding activity                                                          | 160 |
| Chapter 4 Discussion and conclusion                                                                            | 162 |
| References                                                                                                     | 172 |
| List of Publications                                                                                           | 194 |
| Appendix                                                                                                       | 195 |
| Appendix A                                                                                                     | 195 |
| Appendix B                                                                                                     | 197 |
| Appendix C                                                                                                     | 199 |
| AL UNIVERSIT                                                                                                   |     |
| <b>ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่</b><br>Copyright <sup>©</sup> by Chiang Mai University<br>All rights reserved |     |

#### LIST OF TABLES

| Table 1.1  | The regulatory biochemical mediators of inflammation and                                         | 9  |
|------------|--------------------------------------------------------------------------------------------------|----|
|            | cancer                                                                                           |    |
| Table 1.2  | The matrix metalloproteinases family                                                             | 20 |
| Table 1.3  | Gelatinase substrate                                                                             | 22 |
| Table 1.4  | The MMPIs available in clinical cancer therapy                                                   | 32 |
| Table 3.1  | Phytochemical constituents of the red rice fractions by colormetric method                       | 65 |
| Table 3.2  | Quantitative analysis of polyphenols in the red rice fractions<br>by HPLC                        | 66 |
| Table 3.3  | Quantitative analysis of to<br>cotrienol, to<br>copherol and $\gamma$ -oryzanol in the red rice  | 66 |
| Table 3.4  | Cytotoxicity of CEE fraction on HT-1080 and MDA-MB-231 cells                                     | 70 |
| Table 3.5  | Cytotoxicity of Hex fraction on HT-1080 and MDA-MB-231 cells                                     | 70 |
| Table 3.6  | Cytotoxicity of DCM fraction on HT-1080 and MDA-MB-<br>231 cells                                 | 71 |
| Table 3.7  | Cytotoxicity of EtOAc fraction on HT-1080 and MDA-MB-<br>231 cells                               | 71 |
| Table 3.8  | Cytotoxicity of water fraction on HT-1080 and MDA-MB-<br>231 cells                               | 72 |
| Table 3.9  | Anti-invasive effect of CEE, Hex, DCM, EtOAc and water fractions on MDA-MB-231 and HT-1080 cells | 75 |
| Table 3.10 | Anti-invasive effect of Hex, DCM and water fraction on                                           | 77 |

MDA-MB-231 cells

| Table 3.11 | Anti-invasive effect of catechin, protocatechuic acid,                       | 81  |
|------------|------------------------------------------------------------------------------|-----|
|            | chlorogenic acid, vanillic acid and ferulic acid on MDA-MB-                  |     |
|            | 231 cells                                                                    |     |
| Table 3.12 | Anti-invasive effect of vanillic acid and ferulic acid (1 $\mu$ g/ml)        | 81  |
|            | on MDA-MB-231 cells                                                          |     |
| Table 3.13 | Anti-invasive effect of grape seed proanthocyanidin on                       | 82  |
|            | MDA-MB-231 cells                                                             |     |
| Table 3.14 | Anti-invasive effect of $\gamma$ -tocotrienol and $\gamma$ -oryzanol on MDA- | 82  |
|            | MB-231 cells                                                                 |     |
| Table 3.15 | Effect of the CEE fraction on MMP-2 and MMP-9 secretions                     | 87  |
|            | from HT-1080 cells                                                           |     |
| Table 3.16 | Effect of the Hex fraction on MMP-2 and MMP-9 secretions                     | 87  |
|            | from HT-1080 cells                                                           |     |
| Table 3.17 | Effect of the DCM fraction on MMP-2 and MMP-9                                | 88  |
|            | secretions from HT-1080 cells                                                |     |
| Table 3.18 | Effect of the EtOAc fraction on MMP-2 and MMP-9                              | 88  |
|            | secretions from HT-1080 cells                                                |     |
| Table 3.19 | Effect of the water fraction on MMP-2 and MMP-9 secretions                   | 89  |
|            | from HT-1080 cells                                                           |     |
| Table 3.20 | Effect of the CEE, Hex, DCM, EtOAc and water fractions on                    | 94  |
| ล          | MMP-9 secretion from MDA-MB-231 cells                                        |     |
| Table 3.21 | Effect of the CEE fraction on MMP-2 and MMP-9 activities                     | 99  |
| A          | from HT-1080 cells                                                           |     |
| Table 3.22 | Effect of the Hex fraction on MMP-2 and MMP-9 activities                     | 99  |
|            | from HT-1080 cells                                                           |     |
| Table 3.23 | Effect of the DCM fraction on MMP-2 and MMP-9 activities                     | 100 |
|            | from HT-1080 cells                                                           |     |
| Table 3.24 | Effect of the EtOAc fraction on MMP-2 and MMP-9                              | 100 |
|            | activities from HT-1080 cells                                                |     |

| Table 3.25 | Effect of the water fraction on MMP-2 and MMP-9 activities            | 101 |
|------------|-----------------------------------------------------------------------|-----|
|            | from HT-1080 cells                                                    |     |
| Table 3.26 | Effect of CEE, Hex, DCM, EtOAc and water fractions on                 | 106 |
|            | MMP-9 activities from MDA-MB-231 cells                                |     |
| Table 3.27 | Effect of CEE, Hex, DCM, EtOAc and water fractions on                 | 111 |
|            | collagenase type IV activity                                          |     |
| Table 3.28 | Effect of CEE, Hex, DCM, EtOAc and water fractions on the             | 116 |
|            | NO production in LPS-induced RAW 264.7 cells                          |     |
| Table 3.29 | Effect of CEE fraction on the production of IL-1 $\beta$ , IL-6 and   | 126 |
|            | TNF- $\alpha$ induced by LPS in RAW 264.7 cells                       |     |
| Table 3.30 | Effect of Hex fraction on the production of IL-1 $\beta$ , IL-6 and   | 126 |
|            | TNF- $\alpha$ induced by LPS in RAW 264.7 cells                       |     |
| Table 3.31 | Effect of DCM fraction on the production of IL-1 $\beta$ , IL-6 and   | 127 |
|            | TNF- $\alpha$ induced by LPS in RAW 264.7 cells                       |     |
| Table 3.32 | Effect of EtOAc fraction on on the production of IL-1 $\beta$ , IL-6  | 127 |
|            | and TNF- $\alpha$ induced by LPS in RAW 264.7 cells                   |     |
| Table 3.33 | Effect of water fraction on the production of IL-1 $\beta$ , IL-6 and | 128 |
|            | TNF- $\alpha$ induced by LPS in RAW 264.7 cells                       |     |
| Table 3.34 | The Total proanthocyanidins content of water fraction, PRFR           | 133 |
|            | and grape seed extract                                                |     |
| Table 3.35 | Cytotoxicity of PRFR on MDA-MB-231 cells for 1 and 2                  | 137 |
|            | days days                                                             |     |
| Table 3.36 | Cytotoxicity of PRFR on HT-1080 cells for 1 and 2 days                | 137 |
| Table 3.37 | Cytotoxicity of PARF on SKOV-3 cells for 1 and 2 days                 | 138 |
| Table 3.38 | Cytotoxicity of PARF on normal fibroblast cells for 1 and 2           | 138 |
|            | days                                                                  |     |
| Table 3.39 | Anti-invasion and anti-migration effect of PRFR on MDA-               | 143 |
|            | MB-231 cells                                                          |     |
| Table 3.40 | Effect of PRFR on the secretion of MMP-9 from MDA-MB-                 | 145 |

231 cells

| Table 3.41 | Effect of PRFR on the MMP-9 activity of MDA-MB-231      | 147 |
|------------|---------------------------------------------------------|-----|
|            | cells                                                   |     |
| Table 3.42 | Effect of PRFR on the collagenase type IV activity      | 149 |
| Table 3.43 | Effect of PRFR on the production of IL-6 in LPS-induced | 151 |
|            | MDA-MB-231 cells                                        |     |
| Table 3.44 | Effect of PRFR on uPA secretion from MDA-MB-231 cells   | 153 |
| Table 3.45 | Effect of PRFR on uPAR and PAI-1 expression from MDA-   | 155 |
|            | MB-231 cells                                            |     |
| Table 3.46 | Effect of PRFR on the expression of MT1-MMP in MDA-     | 157 |
|            | MB-231 cells                                            |     |
| Table 3.47 | Effect of PRFR on the expression of ICAM-1 in MDA-MB-   | 159 |
|            | 231 cells                                               |     |
| Table 3.48 | Effect of PRFR on NF-KB DNA binding activity in MDA-    | 161 |
|            | MB-231 cells                                            |     |
|            | AL THE S                                                |     |
|            | NEL MAN Z                                               |     |
|            |                                                         |     |
|            | MAL UDIN ERS!                                           |     |
|            | II UNIVE                                                |     |
|            |                                                         |     |
|            |                                                         |     |

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright<sup>©</sup> by Chiang Mai University All rights reserved

#### LIST OF FIGURES

| Figure 1.1  | The hallmark biological capabilities of cancer                      | 5  |
|-------------|---------------------------------------------------------------------|----|
| Figure 1.2  | Extrinsic and intrinsic cascades relating inflammation and          | 7  |
|             | cancer and an                   |    |
| Figure 1.3  | The involvement mechanisms of inflammation in cancer                | 10 |
|             | development                                                         |    |
| Figure 1.4  | The NF-KB activation pathway                                        | 12 |
| Figure 1.5  | The NF-KB activated inflammatory pathway in the                     | 15 |
|             | transformed cell and the survival in tumor proliferation,           |    |
|             | invasion, angiogenesis, and metastasis                              |    |
| Figure 1.6  | Steps of cancer metastasis                                          | 18 |
| Figure 1.7  | Activation of uPA System. uPAR binds to inactive form of            | 28 |
|             | uPA first which is later converted to the active form.              |    |
| Figure 1.8  | Pathway of TIMP (MMP inhibitors) and PAI (uPA inhibitors)           | 29 |
| Figure 1.9  | The structure of hydroxybenzoic (A) and hydroxycinnamic             | 38 |
|             | acid (B) derivatives                                                |    |
| Figure 1.10 | The vitamin E derivatives structure of tocotrienol and              | 39 |
|             | tocopherol isoforms                                                 |    |
| Figure 1.11 | The structures of the $\gamma$ -oryzanol steryl ferulates including | 41 |
| A           | cycloartenyl ferulate (A), 24-methylenecycloartanyl ferulate        |    |
|             | (B), campesteryl ferulate (C) and sitosteryl ferulate (D)           |    |
| Figure 2.1  | The reaction of anthocyanin in pH dependent                         | 45 |
| Figure 2.2  | The NO detection method by Griess reagent                           | 54 |
| Figure 3.1  | Cytotoxicity of CEE fraction on HT-1080 and MDA-MB-231              | 67 |

| Figure 3.2  | Cytotoxicity of Hex fraction on HT-1080 and MDA-MB-231              | 68 |
|-------------|---------------------------------------------------------------------|----|
| Figure 3.3  | Cytotoxicity of DCM fraction on HT-1080 and MDA-MB-                 | 68 |
|             | 231 cells                                                           |    |
| Figure 3.4  | Cytotoxicity of EtOAc fraction on HT-1080 and MDA-MB-               | 69 |
|             | 231 cells                                                           |    |
| Figure 3.5  | Cytotoxicity of water fraction on HT-1080 and MDA-MB-               | 69 |
|             | 231 cells                                                           |    |
| Figure 3.6  | Anti-invasive effect of CEE, Hex, DCM, EtOAc and water              | 74 |
|             | fractions on MDA-MB-231 cells                                       |    |
| Figure 3.7  | Anti-invasive effect of CEE, Hex, DCM, EtOAc and water              | 74 |
|             | fractions on HT-1080 cells                                          |    |
| Figure 3.8  | Anti-invasive effect of Hex fraction on MDA-MB-231 cells            | 76 |
| Figure 3.9  | Anti-invasive effect of DCM fraction on MDA-MB-231 cells            | 76 |
| Figure 3.10 | Anti-invasive effect of water fraction on MDA-MB-231 cells          | 77 |
| Figure 3.11 | Anti-invasive effect of catechin (Cat), protocatechuic acid         | 79 |
|             | (Pro), chlorogenic acid (Chl), vanillic acid (Val) and ferulic      |    |
|             | acid (Fer) on MDA-MB-231 cells                                      |    |
| Figure 3.12 | Anti-invasive effect of grape seed proanthocyanidin (A), $\gamma$ - | 80 |
|             | tocotrienol and $\gamma$ -oryzanol (B) on MDA-MB-231 cells          |    |
| Figure 3.13 | Effect of the CEE fraction on MMP-2 and MMP-9 secretions            | 84 |
| ັ ລິ        | from HT-1080 cells                                                  |    |
| Figure 3.14 | Effect of the Hex fraction on MMP-2 and MMP-9 secretions            | 84 |
| ۵<br>۸      | from HT1080 cells                                                   |    |
| Figure 3.15 | Effect of the DCM fraction on MMP-2 and MMP-9                       | 85 |
| U           | secretions from HT1080 cells                                        |    |
| Figure 3.16 | Effect of the EtOAc fraction on MMP-2 and MMP-9                     | 85 |
| 8           | secretions from HT1080 cells                                        |    |
| Figure 3.17 | Effect of the water fraction on MMP-2 and MMP-9 secretions          | 86 |
| 0           | from HT1080 cells                                                   |    |
|             |                                                                     |    |

| Figure 3.18 | Effect of the CEE fraction on MMP-9 secretion from MDA-    | 91  |
|-------------|------------------------------------------------------------|-----|
|             | MB-231 cells                                               |     |
| Figure 3.19 | Effect of the Hex fraction on MMP-9 secretion from MDA-    | 91  |
|             | MB-231 cells                                               |     |
| Figure 3.20 | Effect of the DCM fraction on MMP-9 secretion from MDA-    | 92  |
|             | MB-231 cells                                               |     |
| Figure 3.21 | Effect of the EtOAc fraction on MMP-9 secretion from       | 92  |
|             | MDA-MB-231 cells                                           |     |
| Figure 3.22 | Effect of the water fraction on MMP-9 secretion from MDA-  | 93  |
|             | MB-231 cells                                               |     |
| Figure 3.23 | Effect of the CEE fraction on MMP-2 and MMP-9 activities   | 96  |
|             | of HT-1080 cells                                           |     |
| Figure 3.24 | Effect of the Hex fraction on MMP-2 and MMP-9 activities   | 96  |
|             | from HT1080 cells                                          |     |
| Figure 3.25 | Effect of the DCM fraction on MMP-2 and MMP-9 activities   | 97  |
|             | from HT1080 cells                                          |     |
| Figure 3.26 | Effect of the EtOAc fraction on MMP-2 and MMP-9            | 97  |
|             | activities from HT1080 cells                               |     |
| Figure 3.27 | Effect of the water fraction on MMP-2 and MMP-9 activities | 98  |
|             | from HT1080 cells                                          |     |
| Figure 3.28 | Effect of CEE fraction on MMP-9 activity of MDA-MB-231     | 103 |
| ຨ           | cell INSUM19181888888888                                   |     |
| Figure 3.29 | Effect of Hex fraction on MMP-9 activity from MDA-MB-      | 103 |
| Δ           | 231 cell                                                   |     |
| Figure 3.30 | Effect of DCM fraction on MMP-9 activity from MDA-MB-      | 104 |
|             | 231 cell                                                   |     |
| Figure 3.31 | Effect of EtOAc fraction on MMP-9 activity from MDA-MB-    | 104 |
|             | 231 cell                                                   |     |
| Figure 3.32 | Effect of water fraction on MMP-9 activity from MDA-MB-    | 105 |
|             | 231 cell                                                   |     |
| Figure 3.33 | Effect of CEE fraction on collagenase type IV activity     | 108 |

determined by fluorometric assay.

| Figure 3.34 | Effect of Hex fraction on collagenase type IV activity using a       | 108 |
|-------------|----------------------------------------------------------------------|-----|
|             | fluorometric assay                                                   |     |
| Figure 3.35 | Effect of DCM fraction on collagenase type IV activity using         | 109 |
|             | a fluorometric assay                                                 |     |
| Figure 3.36 | Effect of EtOAc fraction on collagenase type IV activity             | 109 |
|             | using a fluorometric assay                                           |     |
| Figure 3.37 | Effect of water fraction on collagenase type IV activity using       | 110 |
|             | a fluorometric assay                                                 |     |
| Figure 3.38 | Effect of CEE fraction on the NO production in the LPS-              | 113 |
|             | induced RAW 264.7 cells                                              |     |
| Figure 3.39 | Effect of Hex fraction on the NO production in the LPS-              | 113 |
|             | induced RAW 264.7 cells                                              |     |
| Figure 3.40 | Effect of DCM fraction on the NO production in the LPS-              | 114 |
|             | induced RAW 264.7 cells                                              |     |
| Figure 3.41 | Effect of EtOAc fraction on the NO production in the LPS-            | 114 |
|             | induced RAW 264.7 cells                                              |     |
| Figure 3.42 | Effect of water fraction on the NO production in the LPS-            | 115 |
|             | induced RAW 264.7 cells                                              |     |
| Figure 3.43 | Effect of CEE fraction on IL-1 $\beta$ production in the LPS-        | 118 |
|             | induced RAW 264.7 cells                                              |     |
| Figure 3.44 | Effect of CEE fraction on the production of IL-6 in the LPS-         | 118 |
| C           | induced RAW 264.7 cells                                              |     |
| Figure 3.45 | Effect of CEE fraction on the production of TNF- $\alpha$ in the     | 119 |
| ~           | LPS-induced RAW 264.7 cells                                          |     |
| Figure 3.46 | Effect of Hex fraction on the production of IL-1 $\beta$ in the LPS- | 119 |
|             | induced RAW 264.7 cells                                              |     |
| Figure 3.47 | Effect of Hex fraction on the production of IL-6 in the LPS-         | 120 |
|             | induced RAW 264.7 cells                                              |     |
| Figure 3.48 | Effect of Hex fraction on the production of TNF- $\alpha$ in the     | 120 |

LPS-induced RAW 264.7 cells

| Figure 3.49 | Effect of DCM fraction on the production of IL-1 $\beta$ in the    | 121 |
|-------------|--------------------------------------------------------------------|-----|
|             | LPS-induced RAW 264.7 cells                                        |     |
| Figure 3.50 | Effect of DCM fraction on the production of IL-6 in the            | 121 |
|             | LPS-induced RAW 264.7 cells                                        |     |
| Figure 3.51 | Effect of DCM fraction on the production of TNF- $\alpha$ in the   | 122 |
|             | LPS-induced RAW 264.7 cells                                        |     |
| Figure 3.52 | Effect of EtOAc fraction on the production of IL-1 $\beta$ in the  | 122 |
|             | LPS-induced RAW 264.7 cells                                        |     |
| Figure 3.53 | Effect of EtOAc fraction on the production of IL-6 in the          | 123 |
|             | LPS-induced RAW 264.7 cells                                        |     |
| Figure 3.54 | Effect of EtOAc fraction on the production of TNF- $\alpha$ in the | 123 |
|             | LPS-induced RAW 264.7 cells                                        |     |
| Figure 3.55 | Effect of water fraction on the production of IL-1 $\beta$ in the  | 124 |
|             | LPS-induced RAW 264.7 cells                                        |     |
| Figure 3.56 | Effect of water fraction on the production of IL-6 in the LPS-     | 124 |
|             | induced RAW 264.7 cells                                            |     |
| Figure 3.57 | Effect of water fraction on the production of TNF- $\alpha$ in the | 125 |
|             | LPS-induced RAW 264.7 cells                                        |     |
| Figure 3.58 | Chromatographic profiles of the PRFR fractionated by a             | 131 |
| 8           | Sephadex LH-20 column chromatography                               |     |
| Figure 3.59 | HPLC profiles of acid hydrolized PRPR (B) compared to              | 132 |
| C           | standards (A) by Chiang Mai University                             |     |
| Figure 3.60 | Cytotoxicity of PRFR on MDA-MB-231 cells for 1 and 2               | 135 |
|             | days                                                               |     |
| Figure 3.61 | Cytotoxicity of PRFR on HT-1080 cells for 1 and 2 days             | 135 |
| Figure 3.62 | Cytotoxicity of PRFR on SKOV-3 cells for 1 and 2 days              | 136 |
| Figure 3.63 | Cytotoxicity of PRFR on normal human fibroblast cells for 1        | 136 |
|             | and 2 days                                                         |     |
| Figure 3.64 | Anti-invasive effect of PRFR on MDA-MB-231 cell                    | 140 |

| Figure 3.65 | Anti-migration effect of PRFR on MDA-MB-231 cell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 142   |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Figure 3.66 | Effect of PRFR on the secretion of MMP-9 from MDA-MB-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 145   |
|             | 231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
| Figure 3.67 | Effect of PRFR on the activity of MMP-9 secreted from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 147   |
|             | MDA-MB-231 cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| Figure 3.68 | Effect of PRFR on the activity of collagenase type IV by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 149   |
|             | fluorometric assay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
| Figure 3.69 | Effect of PRFR on the production of IL-6 in MDA-MB-231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 151   |
|             | cells of the line |       |
| Figure 3.70 | Inhibitory effect of PRFR on the uPA secretion from MDA-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 153   |
|             | MB-231 cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
| Figure 3.71 | Effect of PRFR on the expression of uPAR and PAI-1 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 154   |
|             | MDA-MB-231 cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| Figure 3.72 | Inhibitory effect of PRFR on the expression of MT1-MMP in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 157   |
|             | MDA-MB-231 cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| Figure 3.73 | Inhibitory effect of PRFR on the expression of ICAM-1 in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 159   |
|             | MDA-MB-231 cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| Figure 3.74 | Effect of PRFR on NF-KB DNA binding activity in MDA-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 161   |
|             | MB-231 cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
| <b>F</b> '  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.0   |
| Figure 4.1  | The proposed structure of procyanidins (A) and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 168   |
| ล           | prodelphinidins (B) in PRFR from red rice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | . – . |
| Figure 4.2  | Proposed mechanism of PRFR inhibit MDA-MB-231 cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 171   |
|             | invasion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| A           | ii rights reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |

## LIST OF ABBREVIATIONS

| %                       | Percent                    |
|-------------------------|----------------------------|
| °C                      | Degree Celsius             |
| nm                      | Nanometer                  |
| mg                      | Milligram                  |
| min                     | Minute Minute              |
| mL                      | Millilitre                 |
| nm                      | Nanometer                  |
| mM                      | Millimolar                 |
| mRNA                    | Messenger RNA              |
| MW                      | Molecular weight           |
| μg                      | Microgram                  |
| μΜ                      | Micromolar                 |
| µm 🛛 🖂                  | Micrometer                 |
| μl                      | Micro liter                |
| v/v                     | Volume by volume           |
| w/v                     | Weight by volume           |
| AP1                     | Activated protein 1        |
| APS                     | Ammonium persulphate       |
| BSA                     | Bovine serum albumin       |
| CaCl <sub>2</sub> ODV19 | Calcium chloride           |
| CE A I I r              | Catechin S C C S C C V C C |
| CEE                     | Crude ethanolic extract    |
| cm <sup>2</sup>         | Square centimeter          |
| COX-2                   | Cyclooxygenase-2           |
| $CO_2$                  | Carbon dioxide             |
| DCM                     | Dichloromethane            |
| DF                      | Dilution Factor            |

| DI water       | Deionized water                                    |
|----------------|----------------------------------------------------|
| DNA            | Deoxyribonucleic acid                              |
| DMAP           | 4-Dimethylaminopyridine                            |
| DMEM           | Dulbecco's Modified Eagle's Medium                 |
| DMSO           | Dimethyl sulfoxide                                 |
| ECM            | Extracellular matrix                               |
| EDTA           | Ethylenediaminetetraacetic acid                    |
| ELISA          | Enzyme-linked immunosorbent assay                  |
| EMSA           | Electrophoretic mobility shift assay               |
| ERK1/2         | Extracellular Signal-Regulated Kinases 1 and 2     |
| EtOAc          | Ethyl acetate                                      |
| FBS            | Fetal bovine serum                                 |
| g              | Gram                                               |
| GA SS          | Gallic acid                                        |
| h              | Hour                                               |
| HCI            | Hydrochloric acid                                  |
| HEPES          | N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid |
| Hex            | Hexane                                             |
| HPLC           | High Performance Liquid Chromatography             |
| HIF-1a         | hypoxia-inducible factor-1alpha                    |
| ICAM-1         | Inter-Cellular Adhesion Molecule 1                 |
| IC20 dans      | Inhibitory concentration at 20% growth             |
| IC50 Convergen | Inhibitory concentration at 50% growth             |
| IgG            | Immunoglobulin G                                   |
| IKK            | IκB kinase                                         |
| iNOS           | Inducible nitric oxide synthase                    |
| IFN-γ          | Interferon-gamma                                   |
| ΙκΒα           | Nuclear factor of kappa light polypeptide          |
|                | gene enhancer in B-cells inhibitor, alpha          |
| JNK            | Jun N-terminal Kinase                              |
| KCl            | Potassium chloride                                 |

| kDa                              | Kilodalton                                                   |
|----------------------------------|--------------------------------------------------------------|
| KH <sub>2</sub> PO <sub>4</sub>  | Potassium dihydrogen phosphate                               |
| MMP                              | Matrix metalloproteinase                                     |
| MT-MMP                           | Membrane type-matrix metalloproteinase                       |
| MTT                              | 3-(4,5 dimethylthiazole-2yl)-2,5 diphenyltetrazolium bromide |
| NaOH                             | Sodium hydroxide                                             |
| NaCl                             | Sodium chloride                                              |
| NaHCO <sub>3</sub>               | Sodium bicarbonate                                           |
| NaH <sub>2</sub> PO <sub>4</sub> | Dibasic sodium phosphate                                     |
| Na <sub>2</sub> HPO <sub>4</sub> | Monobasic sodium phosphate                                   |
| NF-κB                            | Nuclear factor kappa B                                       |
| NO                               | Nitric oxide                                                 |
| IL                               | Interleukin                                                  |
| LPS                              | Lipopolysaccharide                                           |
| PI3K                             | Phosphoinositide-3 kinase                                    |
| PAI-1                            | Plasminogen activator inhibitor-1                            |
| PAI-2                            | Plasminogen activator inhibitor-2                            |
| PAGE                             | Polyacrylamide gel electrophoresis                           |
| PBS                              | Phosphate buffer saline                                      |
| рН                               | Power of Hydrogen ion                                        |
| RES                              | Reticuloendothelial system                                   |
| s.d.adans                        | Standard derivation                                          |
| SDS Copyright                    | Sodium dodecyl sulfate                                       |
| SDS-PAGE                         | Sodium dodecyl sulfate-polyacrylamide gel electrophoresis    |
| STAT3                            | Signal transducer and activator of transcription 3           |
| TCA                              | Trichloroacetic acid                                         |
| TEMED                            | N,N,N,N-tetramethyl ethylene-diamine                         |
| TAC                              | Total anthocyanin content                                    |
| TFC                              | Total flavonoid content                                      |
| TPAC                             | Total proanthocyanidin content                               |
| TPC                              | Total phenolic content                                       |

| THF       | Tetrahydrofuran                          |
|-----------|------------------------------------------|
| TIMPs     | Tissue inhibitors of metalloproteinases  |
| TNF       | Tumor necrosis factor                    |
| Tris-base | Tris-(hydroxymethyl aminomethane)        |
| uPA       | Urokinase plasminogen activator          |
| uPAR      | Urokinase plasminogen activator receptor |
| VCAM-1    | Vascular cellular adhesion molecule- 1   |
| VEGF      | Vascular endothelial growth factor       |



**ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่** Copyright<sup>©</sup> by Chiang Mai University All rights reserved

# LIST OF SYMBOLS

Alpha α Beta β Gamma γ Delta δ 2102,27 นต Kappa к THE WALL ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright<sup>©</sup> by Chiang Mai University All rights reserved

# ข้อความแห่งการริเริ่ม

- การยับยั้งแพร่กระจายของเซลล์มะเร็งจากสารสกัดข้าวแดง (ส่วนสกัดเอทานอล เฮกเซน ได กลอโรมีเทน เอทิลอะซีเตท และน้ำ) ในเซลล์มะเร็งมนุษย์ชนิดรุกรานชนิด HT1080 และ MDA-MB-231 โดยพบโปรแอนโซไซยานิดิน แกมมาโทโคไตรอืนอลและแกมมาออริซานอล เป็นส่วนประกอบหลักในส่วนสกัดเอทานอล เฮกเซน ไดคลอโรมีเทน และน้ำ โดยสารกลุ่มนี้ สามารถยับยั้งการแพร่กระจายของเซลล์มะเร็งได้โดยยับยั้งการหลั่งและการทำงานของเอนไซม์ เมทริกซ์เมทาโลโปรดีนเนสชนิดที่ 2 และ 9 ได้
- การแขกส่วนสกัด โปรแอนโร ไซยานิดิน (PRFR) จากสารสกัดข้าวแดง โดยใช้เซฟาเด็กซ์แอล เอช 20 พบว่าส่วนสกัด PRFR ส่งผลต่อการทำงานและการแสดงออกของ โปรตืนที่เกี่ยวข้องกับ การรุกรานของเซลล์มะเร็ง โดยส่งผลต่อ NF-KB และส่งผลให้ยับยั้งการรุกรานของเซลล์มะเร็ง เต้านมมนุษย์ได้

THO MAI

ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright<sup>©</sup> by Chiang Mai University All rights reserved

#### STATEMENT OF ORIGINALITY

- 1. The anti-invasive properties of red rice extract fractions (CEE, Hex, DCM, EtOAc and water fraction) on HT1080 and MDA-MB-231 cell invasion. The proanthocyanidin  $\gamma$ -oryzanol and  $\gamma$ -tocotrienol also detectable in the CEE, Hex, DCM and water fractions. These compounds have been showed an anti-invasive property via decrease the secretion and activities of MMP-2 and MMP-9.
- To isolate the proanthocyanidin enrich fraction (PRFR) from red rice by Sephadex LH-20, and examine whether this PRFR altered the activities and the expression levels of invasion-associated proteins, potentially by targeting NF-κB, which leading to inhibit MDA-MB-231 breast cancer cell invasion.



ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright<sup>©</sup> by Chiang Mai University All rights reserved