CONTENTS

	Page
Acknowledgement	c
Abstract in Thai	d
Abstract in English	f
List of Tables	k
List of Figures	1
List of Abbreviations	n
List of Symbols	q
Chapter 1 Introduction	1
1.1 Historical background	1
1.2 Literature reviews	4
1.2.1 Process of inflammation	4
1.2.2 Mediators of inflammation	7
1.2.3 Diseases-associated with chronic inflammation	10
1.2.4 Molecular signaling pathways of inflammation	15
in macrophages	15
1.2.5 Inhibition of inflammation from natural product	21
1.2.6 Biological activities of crebanine	23
1.3 Objectives	24
1.5 Objectives	24
Chapter 2 Material and method	25
2.1 Chemicals and materials	25
2.2 Cell culture	25
2.3 Sample preparation	25
2.4 Measurement of cell viability	26

2.5	The effect of the crebanine on the LPS-induced inflammation process	28
	2.5.1 Determination of pro-inflammatory cytokine	28
	(IL-6 and TNF-α) productions	
	2.5.2 Measurement of NO production	29
	2.5.3 Measurement of PGE ₂ levels	30
2.6	Protein determination	31
2.7	Treatment condition of crebanine in preparing of whole cells lysates,	32
	cytoplasmic and nuclear fraction for Western blot analysis	
2.8	Western blot analysis	33
2.9	Effect of MAPKs and PI3-K/Akt inhibitors on LPS-induced	35
	RAW 264.7 cells	
	2.9.1 Effect of MAPKs and PI3-K/Akt inhibitors on LPS-induced	35
	AP-1 and NF-κB phosphorylation.	
	2.9.2 Effect of MAPKs and PI3-K/Akt inhibitors on LPS-induced	35
	inflammatory mediators production.	
2.10	0 Statistical analysis	36
Chapter 3	3 Results	
3.1	Effect of crebanine on RAW 264.7 macrophages cytotoxicity	37
3.2	Effect of crebanine on pro-inflammatory cytokines IL-6 and TNF- α	39
	in LPS-stimulated RAW 264.7 macrophages.	
3.3	Effect of crebanine on NO production and iNOS expression	42
	in LPS-induced RAW 264.7 macrophages.	
3.4	Effect of crebanine on PGE ₂ production and COX-2 expression	45
	in LPS-stimulated RAW 264.7 macrophages.	
3.5	Effect of crebanine on LPS-stimulated the activation of MAPKs	48
	and PI3-K/Akt signaling pathway	
3.6	Effect of crebanine on the activation of NF-κB	53
	in LPS-stimulated RAW 264.7 macrophages	
3.7	Effect of crebanine on AP-1 activation	58
	in LPS-induced RAW 264.7 macrophages	

Chapter 4 Discussion and conclusion	62
References	66
Appendix	76
Appendix A	76
Appendix B	79
Appendix C	80
Curriculum Vitae	86
ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่	
Copyright [©] by Chiang Mai University All rights reserved	

LIST OF TABLES

Page

Tables 1 Effect of crebanine on RAW 264.7 cells cytotoxicity for 24 and 48 h 40

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

		Page
Figure 1	The process of leukocyte movement to the inflammatory sites	6
Figure 2	The inflammatory cascade triggered by IL-1 and TNF-α	7
Figure 3	The L-arginine-nitric oxide pathway	8
Figure 4	Biosynthesis of prostaglandins	9
Figure 5	The outline of inflammatory pathways involved in atherosclerosis	11
Figure 6	Cancer-related inflammation	13
Figure 7	The interaction of immune cells and inflammatory mediators	14
	play a role in rheumatoid arthritis	
Figure 8	NF-κB signaling pathway	17
Figure 9	Structure of lipopolysaccharide	18
Figure 10	Overview of LPS/TLR4 signaling pathways	19
Figure 11	The involvement of TLR-mediated MyD88-dependent pathway	20
Figure 12	Effects of anti-inflammatory plant natural products on activation	22
	and suppression of multiple cell signaling pathways	
Figure 13	The chemical structure of crebanine	23
Figure 14	The principle of MTT assay in cells mitochondria	26
Figure 15	Principle of nitrite measuring via the Griess reaction	30
Figure 16	Effect of crebanine on RAW 264.7 cells cytotoxicity at 24 and 48 h	41
Figure 17	Effect of crebanine on IL-6 production in LPS-stimulated	43
	RAW 264.7 macrophages	
Figure 18	Effect of crebanine on TNF-α production in LPS-stimulated	44
	RAW 264.7 macrophages	
Figure 19	Effect of crebanine on NO production in LPS-stimulated	46
	RAW 264.7 macrophages	
Figure 20	Effect of crebanine on iNOS expression in LPS-stimulated	47
	RAW 264.7 macrophages	

Figure 21	Effect of crebanine on PGE2 production in LPS-stimulated	49
	RAW 264.7 macrophages	
Figure 22	Effect of crebanine on COX-2 expression in LPS-stimulated	50
	RAW 264.7 macrophages	
Figure 23	Effect of crebanine on LPS-stimulated activation of MAPKs	52
	signaling pathway in activated macrophages.	
Figure 24	Effect of crebanine on LPS-stimulated the activation of PI3-K/Akt	53
	signaling pathway	
Figure 25	Effect of specific inhibitors on the regulation of MAPKs and	54
	PI3-K/Akt signaling pathway in LPS-stimulated IL-6 production	
Figure 26	Effect of specific inhibitors on the regulation of MAPKs and	55
	PI3-K/Akt signaling pathway in LPS-stimulated NO production	
Figure 27	Effect of crebanine on $I\kappa B$ - α degradation in LPS-stimulated	57
	RAW 264.7 macrophages	
Figure 28	Effect of crebanine on NF-κB translocation in LPS-stimulated	58
	RAW 264.7 macrophages	
Figure 29	Effect of crebanine on p65 phosphorylation in LPS-stimulated	59
	RAW 264.7 macrophages	
Figure 30	The association of MAPKs and PI3-K/Akt signaling pathway	60
	in the p65 phosphorylation	
Figure 31	Effect of crebanine on the AP-1 translocation in LPS-induced	62
	RAW 264.7 macrophages	
Figure 32	Effect of crebanine on c-Jun phosphorylation at serine63 residue	63
	in LPS-stimulated RAW 264.7 macrophages	
Figure 33	The influence of MAPKs and PI3-K/Akt signaling pathway	64
	in the phosphorylation of c-Jun	

LIST OF ABBREVIATIONS

% percent

°C degree celsius

μg microgram

μl microliter

μM micromolar

γIFN gamma interferon

W/V weight by volume

APS ammonium persulfate

BSA bovine serum albumin

CO₂ carbon dioxide

COX-2 cyclooxygenase-2

DMEM dulbecco's modified eagle's medium

DMSO dimethyl sulfoxide

DTT dithiothreitol

DI deionized water

ECL enhance chemiluminescence

EDTA ethylenediaminetetraacetic acid

EGTA ethyleneglycoltetraacetic acid

ELISA enzyme-linked immunosorbent assay

eNOS endothelial nitric oxide synthase

FBS fetal bovine serum

g gram h hour

HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid

HIF1α hypoxia-inducible factor 1 alpha

HRP horseradish peroxidase

IL-6 interleukin-6

iNOS inducible nitric oxide synthase

IKK IκB kinase

IRF-3 interferon regulatory factor-3
IRAKs IL-1 receptor-associated kinase

ISRE interferon sensitive response element

KCL potassium chloride

l liter

LPS lipopolysaccharide

MAPKs mitogen-activated protein kinases

MTT 3-(4,5 dimethylthiazole-2yl)-2,5 diphenyltetrazolium

bromide

mg milligram

min minute

ml milliliter

nm nanometer mM milimolar

M molar

NaF sodium fluoride

NF-κB nuclear factor kappa B

Na₃VO₄ sodium orthovanadate

NaCl sodium chloride

NaHCO₃ sodium bicarbonate

Na₂HPO₄ disodium hydrogen phosphate

KH₂PO₄ potassium dihydrogen phosphate

NO nitric oxide

NOS nitric oxide synthase

nNOS neuronal nitric oxide synthase

PARP poly (ADP-ribose) polymerase

PBS phosphate buffered saline

PBST buffer PBS containing 0.5% (v/v) Tween-20

PGE₂ prostaglandin E₂

PI3-K phosphatidylinositol 3'-kinase

PMSF phenylmethanesulfonylfluoride

RIPA buffer radioimmunoprecipitation assay buffer

RNI reactive nitrogen intermediates

rpm revolutions per minute

S.D. standard deviation

SDS sodium dodecyl sulfate

SDS-PAGE sodium dodecyl sulfate polyacrylamide gel

electrophoresis

STAT3 signal transducer and activator of transcription 3

TAK1 transforming growth factor-β-activated kinase 1

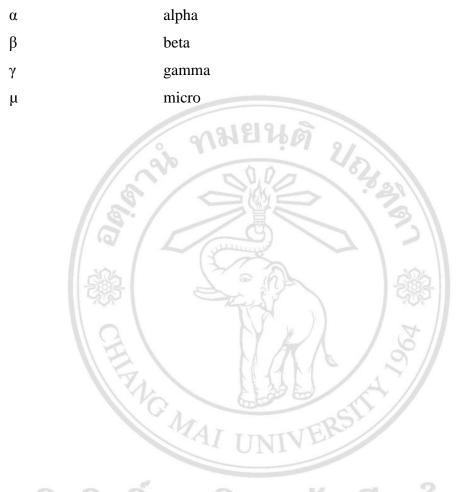
TBK-1 TANK-binding protein

TEMED tetramethylethylenediamine

TLR4 toll-like receptor 4

TNF-α tumor necrotic factor-alpha

TNFR tumor necrosis factor receptor


TRAF6 TNF receptor-associated factor 6

TRIF TIR domain-containing adaptor inducing interferon-β

TRAM TRIF-related adaptor molecules

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF SYMBOLS

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved