CHAPTER 6

Effects of *Tropilaelaps mercedesae* parasitism on the weight of different stages of *Apis mellifera* (Hymenoptera: Apidae)

6.1 Introduction

In Thailand, the most destructive acarine parasites of the introduced western honeybee, Apis mellifera, are Varroa destructor and Tropilaelaps mercedesae, which are both ectoparasitic on honey bee brood. The adapted host for V. destructor is the eastern honey bee A. cerana (Oudemans, 1904). T. mercedesae's adapted host is the giant honey bee A. dorsata (Burgett and Kitprasert, 1990; Burgett et al., 1990). Both mite species are able to utilize the introduced western honey bee species (A. mellifera) as an alternate, competent host. That A. mellifera beekeepers recognized the severity of acarine brood parasites ever since the introduction of this exotic species in the early 1980s (Burgett and Akratanakul, 1985). These ectoparasitic mite infestations are the primary cause for A. mellifera colony mortality in Thailand. The primary hosts for both mite species are the immature stadia of the honey bee with the most severe pathogenic effects experienced during the pre-pupa through pupal stages. The damage caused by V. destructor is well noted as it has attained a near worldwide distribution. T. mercedesae is still limited to its Southeast Asian distribution concurrent with the biogeography of A. dorsata with the exception of its inadvertent introduction to the Korean peninsula in the mid1990s (Woo and Lee, 1993), which is outside of the range of A. dorsata. High levels of mite parasitism will eventually result in colony death, which is ultimately brought about by the loss of replacement bees necessary to replenish the natural mortality of older worker forager bees.

Past research on *V. destructor* parasitism of *A. mellifera* has shown reduced weight of parasitized worker and drone pupa, as well as shortened life spans of adult worker bees and reduced sperm production by drones (De Jong, et al. 1982; De Jong and De Jong, 1983; Rinderer et al., 1998, Duay et al., 2002; 2003). The effects of *T*.

mercedesae parasitism on the brood of *A. mellifera* are to date unknown. In this study, I assessed the effects of *T. mercedesae* parasitism on the weights of infested *A. mellifera* brood .

6.2 Materials and methods

6.2.1 Samples

A. mellifera capped brood combs were collected from an apiary maintained by the Thai Department of Agriculture Beekeeping Extension and Development Center and from commercial A. mellifera apiaries around Chiang Mai in 2013-2014. Brood combs were collected from 42 colonies that were untreated with acaricides for at least three months prior to examination. Brood cells were decapped and the immature stage noted. For infested brood, the number of adult and immature mite stages was recorded. Honey bee pupal stages were differentiated according to body and eye color and classified as follows: newly sealed larva, prepupa, white eyed pupa, pink eyed pupa, purple eyed pupa, tan bodied pupa, black thorax pupa, and newly emerged adult bees. Newly sealed larva was distinguished from pre-pupa by the presence of silk beneath the cell capping. Recorded mite stadia were as follows: foundress females, eggs, protonymphs, deutonymphs, and F₁ adults (male and female).

6.2.2 Data analysis

The transcription levels were normalized using SPSS version 20 for Windows (SPSS, Inc., 2012). One sample t-tests and one-way ANOVA were used to analyze the significance of different mean values for overall data to compare weights of infested and uninfested brood.

6.3 Results

In total, 11,263 *A. mellifera* brood cells were de-capped; 5,879 workers and 5,384 drones. *T. mercedesae* infestation rates were 9.2% for worker brood (Table 6.1) and 8.9% for drone brood (Table 6.2).

For drones, the mean weight for infested newly emerged adult was 161.7 ± 61.9 mg; for non-infested drones, the mean weight was 196.2 ± 66.6 mg (Table 6.4). This is

a 17.6% weight loss for infested drones vs. non-infested and is statistically significant at the 1% level (t-test). However, no difference in weight was detected for infested and non-infested newly emerged worker bees (Table 6.3).

 Table 6.1 Number of A. mellifera worker brood examined and
 the percentage of *T. mercedesae* infestation.

Honey bee stage		Worker		
		Uninfested brood	T. mercedesae	Total
Newly sealed larva	NL	179	16 (20.3%)	195
Pre-pupa	PP	- 391	48 (12.3%)	439
White eyes pupa	WE	671	61 (9.1%)	732
Pink eyes pupa	PI	531	69 (13.0%)	600
Purple eyes pupa	PE	596	92 (15.4%)	688
Tan body	T	787	141 (17.9%)	928
Black thorax	В	407	41 (10.1%)	448
Newly emerged bee	Ε	1780	69 (3.9%)	1849
\sum		5342	537 (9.2%)	5879

Pupa stage		Drone		
18	1.	Uninfested brood	T. mercedesae	Total
Newly sealed larva	NL	542	175 (13.8%)	717
Pre-pupa	PP	372	121 (32.5%)	493
White eyes pupa	WE	766	44 (5.7%)	810
Pink eyes pupa	PI	724	37 (5.1%)	761
Purple eyes pupa	PE	790	38 (4.8%)	828
Tan body	Т	793	28 (3.5%)	821
Black thorax	В	378	17 (4.5%)	395
Newly emerged bee	En En	538	21 (3.9%)	559

Table 6.2 Number of A. mellifera drone brood sampled and

Average weights for uninfested brood and T. mercedesae parasitized brood for both workers and drones decreased relative to developmental stage as shown in Figures 6.1 and 6.2, respectively. Overall, the average weight of all brood stadia when comparing uninfested brood to infested brood for both workers (Figure 6.1) and drones (Figure 6.2) was not significantly different (F = 1.005, P = 0.485 and F = 0.672, P =0.999, respectively).

4903

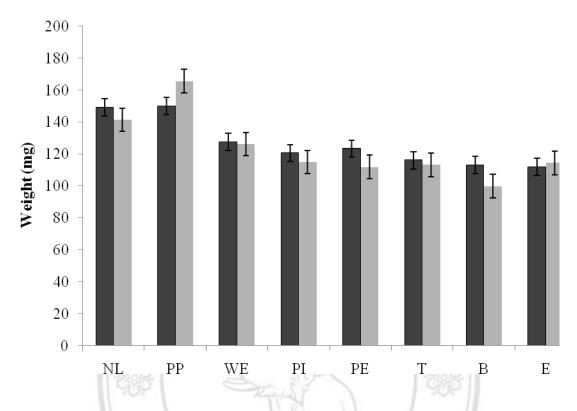
 Σ

481(8.9%)

5384

Infested worker brood cells contained up to 11 mites. The average number of mites infesting a worker brood cell was 2.7 ± 1.6 ; for infested drone cells the average infestation was 1.8 ± 1.5 . The maximum number of mites observed infesting a drone brood cell was 9 mites.

Pupa stage		Worker		
//	-191	Uninfested brood	T. mercedesae	
Newly sealed larva	NL	149.2±11.5	141.4±35.7	
Pre-pupa	PP	150.1±38.5	165.6±51.8	
White eyes pupa	WE	127.6±23.9	126.2±24.7	
Pink eyes pupa	PI	120.6±8.0	115.0±9.8	
Purple eyes pupa	PE	123.4±25.9	112.0±9.5	
Tan body	T	116.1±8.8	113.3±18.3	
Black thorax	В	113.1±8.4	99.9±18.6	
Newly emerged bee	E	112.0±17.2	114.5±19.6	


 Table 6.3 Weight (mean±SD) of different stages of uninfested

 and T. mercedesae-infested A. mellifera worker.

Table 6.4 Weight (mean±SD) of different stages of uninfested

Pupa stage		Drone		
10	_	Uninfested brood	T. mercedesae	
Newly sealed larva	NL	262.4±29.4	271.8±22.8	
Pre-pupa	PP	295.0±45.0	264.0±37.6	
White eyes pupa	WE	279.6±30.1	271.2±35.8	
Pink eyes pupa	PI	265.1±32.7	258.9±27.2	
Purple eyes pupa	PE	275.2±33.0	245.7±29.7	
Tan body	Т	265.6±31.1	237.6±32.1	
Black thorax	B	252.0±21.1	228.1±22.2	
Newly emerged bee	Е	196.2±66.6	161.7±61.9	
ALLEL	g n t	s rese	rvea	

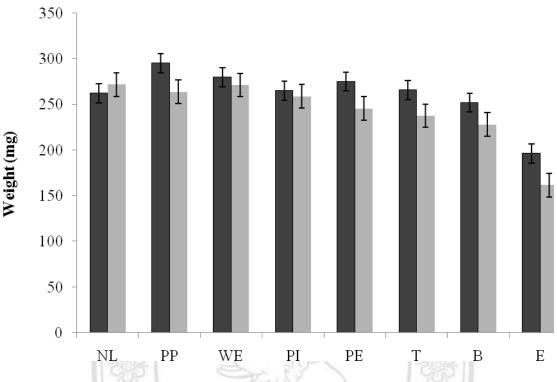

and *T. mercedesae*-infested *A. mellifera* drone.

Figure 6.1 Weight (mean±SE) of different stages of uninfested (dark gray bars) and *T. mercedesae*-infested (light gray bars) *A. mellifera*.workers.

GMAI

Figure 6.2 Weight (mean±SE) of different stages of uninfested (black line) and *T. mercedesae*-infested (gray line) *A. mellifera*.drone.

6.4 Discussion

Varroa parasitism is known to have negative effects on drone's health, survival and reproductive fitness (Rinderer et al. 1999; Duay et al., 2003). While Rinderer et al. (1999) reported about 7% weight loss, Duay et al. (2003) reported an average weight loss of 10% for newly emerged infested adult drones relative to uninfested controls. In this study, I present the first evidence for weight loss effects of *T. mercedesae* parasitism on *A. mellifera* drones. On average, *T. mercedesae*-infested drone lost an average weight of 17.6% relative to uninfested drones. Although, I did not monitor drone survival and sperm production, this study demonstrates one harmful effect of *T. mercedesae* infestation on *A. mellifera*.

Similarly, De Jong et al. (1982) reported that *Varroa* mites (most likely *V. destructor*) negatively affect weights of newly emerged Africanized worker bees. Their results showed a significant difference in the weights of newly emerged infested workers as 6.3 to 25% less than non-infested workers, which was correlated with the

number of mites per infested host. My results with *T. mercedesae* infestation of worker brood did not show a statistically significant difference in weight between infested and uninfested newly emerged workers. These studies were conducted on brood examined during a 12 month observation period during which seasonal differences in the overall state of colony nutritional health will vary. Because of the potential season fluctuation, it can be expected that a wider range of variation in brood weight especially for workers (both infested and non-infested) will occur. Drone production is seasonal and thus, a narrower range of variation is expected.

These results demonstrate statistically significant differences in weight of developing brood stadia of both workers and drones of *A. mellifera* (more pronounced in drones), which is the non-adapted host of *T. mercedesae*. Further studies of the effects of parasitism on adult longevity in both workers and drones, and sperm production of drones would be beneficial.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved