CONTENTS

Acknowledgements	iii	
Abstract in Thai	iv	
Abstract in English	vi	
List of Tables List of Figures	xi	
List of Figures	xii	
List of Abbreviations	xiv	
Chapter 1 Introduction	1	
1.1 Overview of the research	1	
1.2 Introduction to arsenic	2	
1.2.1 Occurrence and application of arsenic	2	
1.2.2 Toxicology of arsenic	4	
1.3 Analytical methods for arsenic determination	7	
1.3.1 Cathodic stripping voltammetry	8	
1.3.2 Cyclic voltammetry	12	
1.4 Working electrode	13	
1.5 Research objectives	14	
Chapter 2 Experimental 15		
2.1 Chemicals, apparatus and instruments	15	
2.1.1 Chemicals	15	
2.1.2 Software	16	
2.1.3 Materials and instruments	16	
2.2 Preparation of solutions	16	
2.2.1 Standard solutions	16	

Page

		2.2.2 Working standard solution of As^{III} and As^{V}	16
		2.2.3 Sodium diethyldithiocarbamate solution	17
		2.2.4 Ammonium molybdate solution	17
		2.2.5 Potassium antimonyl tartrate solution	17
		2.2.6 Hydrochloric acid solution	17
		2.2.7 Sodium hydroxide solution	17
		2.2.8 Acetate buffer solution	17
	2.3	Preparation of electrode	17
		2.3.1 Preparation of glassy carbon electrode	17
		2.3.2 Preparation of platinum electrode	18
	2.4	Cathodic stripping voltammetry for inorganic arsenic determination	18
		2.4.1 Square wave cathodic stripping voltammetry system for	
		determination inorganic arsenic employing HMDE in the	
		presence of Cu ^{II} and Na-DDTC	18
		2.4.2 Analytical characteristics of the system	19
	2.5	Cyclic voltammetry for arsenate determination	20
		2.5.1 Cyclic voltammetry system for determination arsenate	
		employing GCE as working electrode	20
		2.5.2 Analytical characteristics of the system	21
		2.5.2.1 Calibration curves and limit of detection	21
		2.5.2.2 Precision study	21
Chap	ter 3 l	Results and discussion	22
	3.1	Optimization of cathodic stripping voltammetry system for	
		determination of inorganic arsenic in presence of Cu^{II} and Na-DDTC	22
		3.1.1 Deposition potential	24
		3.1.2 Concentration of hydrochloric acid	25
		3.1.3 Concentration of Cu ^{II}	26
		3.1.4 Concentration of thiosulfate	27

Page

	3.1.5 Reduction time	28
	3.1.6 Concentration of Na-DDTC	29
	3.1.7 The optimum operation conditions	30
	3.1.8 Analytical characteristics of the system	31
	3.1.9 An attempt to apply for real sample	34
3.2	Optimization cyclic voltammetric system for determination of arsenate	35
	3.2.1 Concentration of molybdate	36
	3.2.2 Concentration of sulfuric acid	37
	3.2.3 Concentration of potassium antimonyl tartrate	38
	3.2.4 Effect of scan rate	40
	3.2.5 Effect of working electrode	41
	3.2.6 Analytical characteristics of the system	42
	3.2.6.1 Calibration curves and limit of detection	42
	3.2.6.2 Precision	45
	3.2.7 Application to water samples	46
Chapter 4 C	Conclusion	48
References		50
	OINT	
Appendix	5.2.2.5	57
Appe	endix A Calculation of Detection Limit and Quantitation Limit for	
	determination of As ^{III} without Na-DDTC	57
Appe	endix B Calculation of Detection Limit and Quantitation Limit for	
	determination of As ^{III} with Na-DDTC in an electrolyte	58
Appe	endix C Calculation of Detection Limit and Quantitation Limit for	
	determination of As ^V by Cyclic voltammetry	59
Appe	endix D The example calculation of recovery percentage	60
Curriculum	n Vitae	61

LIST OF TABLES

Table 1.1	Arsenicals of environmental and biological importances	4
Table 1.2	Toxicology of arsenic species (oral administration to mice and rats)	5
Table 1.3	Possible health-effects of arsenic exposure in adults	6
Table 1.4	Cathodic stripping voltammetric methods for arsenic determination	11
	20 20 40.	
Table 3.1	Conditions for CSV for determination of arsenic	22
Table 3.2	Effect of hydrochloric acid concentration	25
Table 3.3Optimization of CSV system using HMDE as a working electron		
	for determination of arsenic	30
Table 3.4	Conditions for CV for determination of arsenate	35
Table 3.5	Calibration graph data using different potassium antimonyl tartrate	
	concentration	38
Table 3.6	Calibration graph data for each linear range of As^{V} determination	
	using different working electrode	41
Table 3.7	The precision of standard As^{V} determination by cyclic voltammetric	
	system	45
Table 3.8	Determination of As ^V in water samples by Cyclic voltammetry	46
Table 3.9	Comparative determination of As^{V} in water sample by	
	Cyclic voltammetry and Anodic stripping voltammetry	47
	All rights reserved	

LIST OF FIGURES

Figure 1.1	Typical electrochemical cell for voltammetry	8
Figure 1.2 Cathodic stripping voltammetric technique: the potential-time		
	waveform (Bottom), along with the resulting voltammogram (Top)	9
Figure 1.3	Cyclic voltammetry waveform (Top), cyclic voltammogram (Bottom)	12
Figure 1.4	Potential ranges of the different working electrodes	14
Figure 2.1	Cathodic stripping voltammetric system; (a) Metrohm 757 VA	
	computrace voltammograph (b) HMDE: WE, Pt: AE, Ag/AgCl: RE	18
Figure 3.1	Effect of deposition potential on the SWCSV of As ^{III}	24
Figure 3.2	Effect of Cu ^{II} concentration on the sensitivity of As ^{III} determination	26
Figure 3.3	Effect of thiosulfate concentration on the SWCSV of As ^{III}	27
Figure 3.4	Effect of reduction time on the SWCSV of As ^V	28
Figure 3.5	Voltammogram for concentration Na-DDTC (a) 0; (b) 5 μ g L ⁻¹ in	
	supporting electrolyte: 20 μ g L ⁻¹ of As ^{III}	29
Figure 3.6	Effect of Na-DDTC concentration on the SWCSV of As^{III}	30
Figure 3.7	Voltammograms of As ^{III} in concentration range of 2 to 30 μ g L ⁻¹	31
Figure 3.8	Calibration graphs of As ^{III} determination by SWCSV	32
Figure 3.9	Voltammograms of As^{III} in concentration range of 0 to 0.6 µg L^{-1}	33
Figure 3.10	Calibration graphs of AsIII determination by SWCSV containing of	
17	Na-DDTC	33
Figure 3.11	Effect of molybdate concentration in 2.5 % (v/v) H_2SO_4	36
Figure 3.12	Effect of sulfuric acid concentration in 0.5 % (w/v) molybdate	37
Figure 3.13	Effect of potassium antimonyl tartrate concentration in acidic-	
	molybdate (0.5% (w/v) molybdate in 2.0% (v/v) H_2SO_4)	39
Figure 3.14	Effect of scan rate on the peak current of As ^V	40

- Figure 3.15Voltammograms of As^V in various concentration ranges:(a) 10-100 µg L⁻¹,(b) 0.05-0.4 mg L⁻¹ and (c) 1-10 mg L⁻¹43Figure 3.16Calibration graphs of As^V in various concentration ranges:
 - (a) 10-100 μ g L⁻¹,(b) 0.05-0.4 mg L⁻¹ and (c) 1-10 mg L⁻¹ 44

Page

Copyright[©] by Chiang Mai University All rights reserved

LIST OF ABBREVIATIONS

As	Arsenic
As ^{III}	Arsenite
As ^V	Arsenate
AE	Auxiliary electrode
ASV	Anodic stripping voltammetry
BiFE	Anodic stripping voltammetry Bismuth film electrode Copper Concentration of analyte
Cu	Copper
C _A	Concentration of analyte
С.	Concentration at limit of detection
CSV	Cathodic stripping voltammetry
CV	Cyclic voltammetry
DPCSV	Differential pulse cathodic stripping voltammetry
id	Diffusion current
g	Gram
GCE	Glassy carbon electrode
HDME	Hanging drop mercury electrode
Hg	Mercury
Hz	Hertz
r ยุวยา	Liter JM1201818800 MJ
LOD	Limit of detection
LOQ	Limit of quantitation
\overline{X}	Mean
μΑ	Microampere
μL	Microliter
$\mu g L^{-1}$	Microgram per liter
mg L ⁻¹	Milligram per liter
mg	Milligram
mL	Milliliter

mm	Millimeter
mol L ⁻¹	Mole per liter or Molarity
Pt	Platinum
%RSD	Percentage relative standard deviation
RE	Reference electrode
RSD	Relative standard deviation
rpm	Revolutions per minute
S	Second
SD	Standard deviation
SWCSV	Square wave cathodic stripping voltammetry
Na-DDTC	Sodium diethyldithiocarbamate
V 6	Voltage
v/v	Volume by volume
vs.	Versus
w/v	Weight by volume
WE	Working electrode
	S. MANUST
	No. Contraction
	The MAI UNIVERSIT
	UNIVE

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved