CONTENTS

	page
Acknowledgement	c
Abstract in Thai	d
Abstract in English	f
List of Tables	n
List of Figures	p
13.	
List of Schemes	q
List of Abbreviations and Symbols	S
Statement of Originality in Thai	t
Statement of Originality in English	u
Chapter 1 Introduction	1
1.1 Amine <i>N</i> -oxide	1
1.2 Application of Amine <i>N</i> -oxide	3
1.3 Green Chemistry	10
1.4 Representative Green Methodologies for Organic Synthesis	12
1.4.1 Microwave-Assisted Organic Synthesis	12
1.4.2 Ultrasonic-Assisted Organic Synthesis	15
1.4.3 Solvent-Free Reaction	19
1.4.4 The Use of Ionic Liquid in Organic Synthesis	21
1.4.5 The Use of Solid-Supported Reagents	25
1.5 Aim of This Research	28
1.6 Scope and Research Methodology	28

	page
	•
Chapter 2 Development of Green Methodologies for Organic Halide Oxidation	30
Using Amine N-Oxide as Oxidants	
2.1 Introduction	30
2.2 Experimental	33
2.2.1 Chemicals	33
2.2.2 Instruments	34
2.2.3 Ultrasonic-Assisted NMO Oxidation of Benzyl halides	34
2.2.3.1 Optimization for Conversion of Benzyl Chloride into	34
Benzaldehyde Using Ultrasound-Assisted NMO Oxidation	n
2.2.3.2 Synthesis of Carbonyl Compounds by Using the	35
Ultrasound-Assisted NMO Oxidation	
2.2.4 Microwave-Assisted NMO oxidation of Benzyl halides	35
in Ionic Liquid	
2.2.4.1 Investigation Effect of Additive Salts to NMO Oxidation	35
of Benzyl Chloride under Microwave Irradiation	
2.2.4.2 Investigation Solvent Effect for NMO Oxidation of	36
Benzyl Chloride under Microwave Irradiation	
2.2.4.3 Investigation Effect of Microwave Power to Conversion	36
of Benzyl Chloride	
2.2.4.4 Investigation Effect of Oxidant to Conversion of Benzyl	36
Chloride in Ionic Liquid under Microwave Irradiation	
2.2.4.5 Synthesis of Carbonyl Compounds by Using the	37
Microwave-Assisted NMO Oxidation	
2.2.4.6 Investigation Reusability of [emim]Cl Ionic Liquid	37
2.2.5 Investigation of Microwave-Assisted Oxidation of Organic	38
Halides using PyNO in Ionic Liquid	

	page
2.2.6 Synthesis of Polymer-Supported Amine N-oxide Ionic liquid	38
2.2.6.1 Synthesis of Poly(4-vinylpyridine) or P1	38
2.2.6.2 Synthesis of Polymer Supported Ionic Liquid (P2)	39
2.2.6.3 Synthesis of Polymer-Supported Methylpiperazine	39
Ionic Liquid (P3)	
2.2.6.4 Synthesis of Polymer-Supported Methylpiperazine	39
N-oxide Ionic Liquid (P4)	
2.2.7 Activity Test of Synthesized Amine N-oxide Supported Polymer	40
2.3 Results and Discussions	40
2.3.1 Ultrasonic-Assisted NMO Oxidation of Benzyl Halides	40
2.3.1.1 Optimization of NMO Oxidation under Ultrasonic	41
Irradiation	
2.3.1.2 Synthesis of Aldehydes via NMO Oxidation under	42
Ultrasonic Irradiation	
2.3.2 Microwave-Assisted NMO Oxidation of Benzyl Halides	44
in Ionic Liquid	
2.3.2.1 Effect of Solvent and Additive Salts on the NMO	44
Oxidation of Benzyl Chloride	
2.3.2.2 Effect of Microwave Condition on the Oxidation	46
Conversion of Benzyl Chloride	
2.3.2.3 Effect of Oxidant on the Oxidation Conversion of	47
Benzyl Chloride in Ionic Liquid	
2.3.2.4 Synthesis of Carbonyl Compounds Using Microwave-	48
Assisted NMO Oxidation	
2.2.4.5 Reusability of [emim]Cl Ionic Liquid in Oxidation of	51
Benzyl Chloride	

			page
	2.3.3	Microwave-Assisted Pyridine N-Oxide Oxidation of Benzyl	53
	I	Halides in Ionic Liquid	
	2.3.4 \$	Synthesis and Characterization of Amine N-oxide Ionic Liquid	54
	I	Polymer	
	2.3.5	Activity Test of Synthesized Amine N-oxide Supports in	55
		Oxidation of Benzyl Chloride	
Chapter 3	Devel	opment of One-Pot in situ Oxidation/Reductive Amination	58
	of Be	nzyl Halides under Solventless and Ultrasonic Irradiation	
3.1	Introduc	etion	58
3.2	Experin	nental	60
	3.2.1	Chemicals	60
	3.2.2	Instruments	61
	3.2.3	NMO Oxidation of Benzyl Chloride under Solventless and	62
		Ultrasonic Irradiation	
	3.2.4	Examination of Oxidation/Reductive Amination of	62
-	ลิสส์	Benzyl Chloride with Various Acid Catalysts	
	3.2.5	Synthesis of Amines by In Situ Oxidative/Reductive Amination	62
	Cob	Under Solventless and Ultrasonic Irradiation	
3.3	Results	and Discussions	63
	3.3.1	NMO Oxidation of Benzyl Chloride under Solventless and	63
		Ultrasonic Irradiation	
	3.3.2	Examination of Oxidation/Reductive Amination of	64
		Benzyl Chloride with Various Acid Catalysts	

	page
3.3.3 Synthesis of Amines by Solventless and One-Pot <i>In Situ</i>	65
Oxidative/Reductive Amination from Benzylic Halides	
Chapter 4 Development of Alcohol Oxidation Using NMO as an Oxidizing Agent	71
4.1 Introduction	71
4.2 Experimental	72
4.2.1 Chemicals	72
4.2.2 Instruments	73
4.2.3 NMO Oxidation of Alcohol in Ionic Liquid under Ultrasonic	74
Irradiation	
4.2.4 Alcohol Oxidation via Ultrasonic-Assisted In Situ Iodination	74
/Oxidation	
4.2.4.1 Optimization Reaction Condition of Alcohol Oxidation	74
via Ultrasonic-Assisted In Situ Iodination/Oxidation	
4.2.4.2 Synthesis of Aldehydes by In Situ Iodination/Oxidation	74
from Benzylic Alcohols	
4.3 Results and Discussions	75
4.3.1 Investigation of Alcohol Oxidation Using NMO in Ionic liquid	75
4.3.2 Ultrasonic-Assisted Alcohol Oxidation Using One-Pot In Situ	80
Iodination/Oxidation	
4.3.2.1 Optimization for Iodination Using PPh ₃ -Supported	81
Polymer and I ₂ under Ultrasonic Irradiation	
4.3.2.2 Synthesis of Aldehydes Using Ultrasonic-Assisted In Situ	82
Iodination/Oxidation of Benzylic Alcohols	
Chapter 5 Conclusions	87

	page
References	90
List of Publications	104
Appendix	105
Appendix A Appendix B	105
Appendix B	125
Appendix C	133
Curriculum Vitae	152
ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright [©] by Chiang Mai University All rights reserved	

LIST OF TABLES

		Page
Table 1.1	Summary of the applications of amine <i>N</i> -oxides in oxidation reaction	8
Table 1.2	The representative microwave assisted organic reactions	15
Table 2.1	Conversion of benzyl chloride to benzaldehyde by using NMO oxidation with different condition	42
Table 2.2	Synthesis of aldehyde by NMO oxidation of benzyl halides under ultrasonic irradiation	43
Table 2.3	Oxidation of benzyl chloride to benzaldehyde	45
Table 2.4	Effect of microwave conditions on the oxidation of benzyl chloride	46
Table 2.5	Effect of oxidant on the oxidation of benzyl chloride	47
Table 2.6	MW-assisted oxidation of organic halides with NMO in [emim]Cl	49
Table 2.7	The percentage yield of benzaldehyde and recovery of [emim]Cl in	53
	the oxidation of benzyl chloride with nine consecutive reused of IL	
Table 2.8	Microwave-assisted oxidation of benzyl halide using PyNO	54
Table 2.9	Synthesized supported polymers	56
Table 3.1	Optimization for NMO oxidation of benzyl halide using solventless condition under ultrasonic irradiation	63
Table 3.2	Optimization for reductive amination using solventless condition under ultrasonic irradiation	65
Table 3.3	Synthesis of amines <i>via in situ</i> oxidation/reductive amination of benzylic halides	67
Table 4.1	Optimization reaction condition for NMO oxidation of benzyl alcohol in ILs	78
Table 4.2	Optimization for iodination of <i>p</i> -methyl benzyl alcohol using PPh ₃ -supported polymer	82

LIST OF TABLES (Continued)

		Page
Table 4.3	Synthesis of carbonyl compound <i>via</i> iodination/oxidation of alcohols	84
Table 1A Table 2A	Titration of standard NaCl Titration of 1 st reused IL	121 121
Table 3A	Titration of 9 th reused IL	121
Table 4A	Calculation of chlorine ion content in fresh IL	122
Table 5A	Calculation of chlorine ion content in 1st reused IL	122
Table 6A	Calculation of chlorine ion content in 9 th reused IL	122
	ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright [©] by Chiang Mai University All rights reserved	

LIST OF FIGURES

		Page
Figure 1.1	General structure of amine <i>N</i> -oxide	1
Figure 1.2	Examples of amine <i>N</i> -oxide	2
Figure 1.3	The electromagnetic spectrum	13
Figure 1.4	Microwave irradiation versus conventional heating convection	14
Figure 1.5	Publications on MW-assisted reactions (1990–2013)	14
Figure 1.6	Approximate frequency ranges corresponding to ultrasound	16
Figure 1.7	Publications on ultrasonic-assisted reactions	16
Figure 1.8	Development and collapse of cavitation bubble	17
Figure 1.9	Generation of high speed microjet by cavitation near solid surface	18
Figure 1.10	Cartoon of solid phase reaction, solvent-free reaction, and	21
	solid-state reaction (bottom)	
Figure 1.11	Common cations and anions for room temperature ionic liquids	22
Figure 1.12	Preparation of IL polymer by polymerization of IL monomers	24
Figure 1.13	Preparation of IL polymer by grafting technique	24
Figure 1.14	Schematic comparison between (a) polymer supported reagent	26
	assisted organic synthesis and (b) solid phase synthesis	
Figure 1.15	The representative synthetic protocol using silica supported catalyst	26
Figure 1.16	Representative common solid supports	27
Figure 2.1	Structure of ILs	46
	Physical appearance of fresh IL compared to reused IL after used 2 and	51
	9 times	
Figure 2.3	¹ H-NMR (400 MHz, CDCl ₃) of 1-ethyl-3-methylimidazolium	52
	chloride (after nine times reused)	
Figure 4.1	Ionic liquid structures used in oxidation of benzyl alcohol	71

LIST OF SCHEMES

		Page
Scheme 1.1	Osmium-catalyzed dihydroxylation	3
Scheme 1.2	Oxidation of TBA trifluoroborate using NMO/TPAP system	4
Scheme 1.3	The reactions of isocyanides and amines with amine N-oxides	4
Scheme 1.4	Oxidation of dibenzylamine using NMO	5
Scheme 1.5	Ganem oxidation	5
Scheme 1.6	Oxidation of alkyl halide by using polymer supported	5
Scheme 1.7	The use of polymer supported amine <i>N</i> -oxide in synthetic cluster chemistry	6
Scheme 1.8	The use of polymer supported NMO in P-K cyclisation reaction	6
Scheme 1.9	Oxidation of alcohol to corresponding aldehydes or ketones using	7
	TPAP and polymer supported NMO	
Scheme 1.10	Preparation of tertiary amine N-oxide supported polymer	7
Scheme 1.11	Preparation of tertiary amine N-oxide supported pyridine based	8
	Polymer	
Scheme 1.12	Preparation of IL polymer via covalently functionalized of	23
Scheme 1.13	Merifield resin with IL moiety Preparation of magnetic supported imidazolium based IL	25
Scheme 2.1	Hass–Bender reaction	30
A	II rights reserved	
Scheme 2.2	Sommelet reaction Ovidetion of hencyl chloride using NIMO under ultresenie	31
Scheme 2.3	Oxidation of benzyl chloride using NMO under ultrasonic irradiation	40
Sahama 2.4		41
Scheme 2.4	Mechanism of NMO oxidation of benzyl chloride in the presence	41
Sahama 2.5	of KI catalyst Microwaya assisted evidetion of organic helides using	10
Scheme 2.5	Microwave-assisted oxidation of organic halides using NMO in [emim]Cl	48

LIST OF SCHEMES (Continued)

		Page
Scheme 2.6	Oxidation of benzyl halide using PyNO	54
Scheme 2.7	Synthesis of methylpiperazine N-oxide supported IL polymer	55
Scheme 3.1	<i>N</i> -alkylation of amine	58
Scheme 3.2	Reductive amination	59
Scheme 3.3	Ultrasonic-assisted synthesis of amines by in situ oxidation	60
	/reductive amination from benzylic halides	
Scheme 3.4	Proposed mechanism of solvent-free in situ oxidation/reductive	64
	amination for conversion of benzyl halides into amines	
Scheme 4.1	The use of [hmim]X as recyclable halogenating agent	75
Scheme 4.2	Mechanism of [TBA]Br ₃ oxidation of alcohol	76
Scheme 4.3	Proposed oxidation mechanism of alcohol using IL and NMO	76
Scheme 4.4	Proposed mechanisms for disproportionation of benzyl alcohol	79
Scheme 4.5	One-pot in situ iodination/oxidation for conversion of benzylic	81
	alcohol into the corresponding carbonyl compounds	
Scheme 4.6	The mechanism of iodination with PS-PPh ₃ /I ₂ system	82
C	opyright [©] by Chiang Mai University	
A	II rights reserved	

LIST OF LIST OF ABBREVIATIONS AND SYMBOLS

δ Chemical shift (ppm)

 \geq Greater than or equal to

°C Degree Celsius cm⁻¹ Wavenumber

DMF Dimethylformamide

DMSO Dimethylsulfoxide

EtOH Ethanol

GC Gas Chromatography

GC-MS Gas Chromatography-Mass Spectrometry

IL Ionic Liquid

IR Infrared Spectroscopy

K Degree Kelvin

M Concentration in nit of mole per liter

MeOH Methanol

mmol Millimole

MNPs Magnetic Nanoparticles

mol Mole

MW Molecular Weight

NMM *N*-Methylmorpholine

NMO *N*-Methylmorpholine *N*-oxide

NMR Nuclear magnetic resonance

PyNO Pyridine *N*-oxide

THF Tetrahydrofuran

TMANO Trimethylamine *N*-oxide

Tol Toluene

Wt Weight

ข้อความแห่งการริเริ่ม

- การใหม่ที่สะอาดสำหรับการเปลี่ยนสารอินทรีย์เฮไลด์ไปเป็นอนุพนธ์ของการ์บอนิลได้ถูก พัฒนาขึ้นโดยใช้การออกซิเดชันของเอ็นเมธิลมอร์ฟอร์ลินเอ็น-ออกไซด์ภายใต้การกระตุ้นด้วย ใมโครเวฟในของเหลวไอออนิกที่เป็นตัวทำละลายที่สามารถเก็บและนำกลับมาใช้ใหม่ได้
- 2) ครั้งนี้เป็นครั้งแรกที่นำเสนอวิธีการเปลี่ยนสารอินทรีย์เฮไลด์ไปเป็นเอมีน โดยใช้การทำปฏิกิริยา ออกซิเดชัน และรีดักทีพอะมิเนชันแบบสองขั้นตอนในขวดเดียวกัน ภายใต้สภาวะที่ปราสจากตัว ทำละลาย และการกระตุ้นด้วยคลื่นเหนือเสียง
- 3) วิธีการใหม่ที่มีประสิทธิภาพในการเปลี่ยนอัลกอฮอล์ไปเป็นสารประกอบคาร์บอนิลโดยใช้การ ทำปฏิกิริยาไอโอดิเนชันและออกซิเดชันแบบสองขั้นตอนในขวดเดียวกัน ภายใต้การกระตุ้นด้วย คลื่นเหนือเสียงได้ถูกรายงานไว้ในวิทยานิพนธ์เล่มนี้

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

STATEMENT OF ORIGINALITY

- 1) A new green protocol for the conversion of organic halides into carbonyl derivatives was developed using *N*-methyl-morpholine *N*-oxide oxidation under microwave irradiation in ionic liquid as a recoverable and reusable solvent.
- 2) This research reports the first time for the conversion of organic halides into amines using one-pot oxidation/reductive amination under solvent-free condition and ultrasonic irradiation.
- 3) A new efficient method for the conversion of alcohols into corresponding carbonyl compounds using a one-pot iodination/oxidation under ultrasonic irradiation is currently reported in this thesis.

