หัวข้อวิทยานิพนธ์ การสังเคราะห์และการหาลักษณะของซิลเวอร์อินเดียมซัลไฟด์

ควอนตัมคอตที่คัดแปรค้วยการ์บอกซีเมทิลเซลลูโลสโคยวิธี

ใฮโดรเทอร์มอลเพื่อประยุกต์ในทางชีวการแพทย์

ผู้เขียน นางสาวอิศรา ผิวชัย

ปริญญา วิทยาศาสตรมหาบัณฑิต (เคมี)

อาจารย์ที่ปรึกษา รองศาสตราจารย์ธิติพันธุ์ ทองเต็ม

บทคัดย่อ

ในงานวิจัยนี้ ได้เตรียมซิลเวอร์อินเดียมซัล ไฟด์ควอนตัมคอตที่ดัดแปรด้วยการ์บอกซีเมทิลเซลลู โลส $(CMC-AgInS_2\ QDs)$ โดยวิธีใช โครเทอร์มอล จากซิลเวอร์ในเตรต $(AgNO_3)$ อินเคียมในเตรต $(In(NO_3)_3)$ ไทโออะเซตาไมด์ (C_2H_5NS) หรือโซเดียมไธโอซัลเฟตเพนตะไฮเดรต $(Na_2S_2O_3\cdot 5H_2O)$ หรือแอล-ซีสเตอีน (L-cystein) และคาร์บอกซีเมทิลเซลลูโลส (CMC) ใน สารละลายที่มีค่าความเป็นกรด-เบสเท่ากับ 11 ที่อุณหภูมิ 200 องศาเซลเซียส เป็นเวลา 2 และ 24 ้ชั่วโมง จากนั้นศึกษาโครงสร้างผลึก โดยใช้หลักการเลี้ยวเบนของรังสีเอ็กซ์ (XRD) ศึกษาสัณฐาน วิทยาและขนาดของอนุภากด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องผ่าน (TEM) พบว่าเกิด โครงสร้างเคี่ยวแบบออร์ โธรอมบิก รูปร่างแบบแท่งนาโน แผ่นบางนาโน แผ่นนาโน และทรงกลมนา โน ศึกษาองค์ประกอบและสถานะออกซิเคชัน โดยหลักการของเอ็กซ์เรย์โฟโตอิเล็กตรอนสเปกโตรส โคปี (XPS) พบว่าประกอบด้วย $C,\,O,\,Ag^+,\,In^{3+}$ และ S^{2-} ศึกษาคาร์บอกซีเมทิลเซลลู โลสบนพื้นผิว โดยใช้หลักการของฟูเรียร์ทรานสฟอร์มอินฟราเรคสเปกโตรสโคปี (FTIR) และศึกษาการ เปลี่ยนแปลงน้ำหนักของสารด้วยเครื่องมือวิเคราะห์การเปลี่ยนแปลงน้ำหนักของสารด้วยความร้อน (TGA) พบว่ามีการสั่นที่ 1609 และ 1408 ต่อเซนติเมตร ซึ่งเป็นการสั่นของกลุ่ม ${
m COO}^{\scriptscriptstyle -}$ ในการ์บอกซี เมทิลเซลลูโลส และมีน้ำหนักเปลี่ยนแปลงคิดเป็นร้อยละ 5 ซึ่งแสดงว่ามีคาร์บอกซีเมทิลเซลลูโลสบน พื้นผิวของอนุภาค รวมทั้งได้ศึกษาสมบัติทางแสง โดยหลักการโฟโตลูมิเนสเซนท์และยูวี-วิซิเบิล สเปกโตรสโคปี พบว่ามีประสิทธิภาพการยึดติดยาและการโหลดยาคิดเป็นร้อยละ 50 และ 14 ตามลำดับ รวมทั้งศึกษาการเข้ากัน ได้ของ CMC-AgInS $_2$ QDs กับเนื้อเยื่อด้วยวิธี MTT assay พบว่า อัตราการรอดชีวิตของเซลล์มีค่าสูง และเข้ากันได้ดีกับเนื้อเยื่อ ทำให้สามารถนำไปใช้ในการ ขนส่งยาเพื่อยับยั้งการเจริญเติบ โตของเซลล์มะเร็งได้

Thesis Title Synthesis and Characterization of Carboxymethyl Cellulose

Modified Silver Indium Sulfide Quantum Dots by Hydrothermal

Method for Biomedical Application

Author Miss Isara Phiwchai

Degree Master of Science (Chemistry)

Advisor Committee Assoc. Prof. Titipun Thongtem

ABSTRACT

Carboxymethyl cellulose modified silver indium sulfide quantum dots (CMC-AgInS₂ QDs) were synthesized by hydrothermal method with starting chemicals containing AgNO₃, In(NO₃)₃, thioacetamide (C₂H₅NS) or sodium thiosulfate pentahydrate (Na₂S₂O₃·5H₂O) or L-cystein and carboxymethyl cellulose (CMC) sodium salt in autoclaves. The final pH of the mixed solution was 11 and treated at 200 °C for 2 and 24 h. Phase purity of the nanocrystals were characterized by X-ray diffraction (XRD). Morphology and size of the nanocrystals were characterized by transmission electron microscopy (TEM). Single phase orthorhombic structure of CMC-AgInS₂ QDs was composed of a number of very tiny crystals of nanorods, nanosheets, nanoplates and nanospheres. The surface chemical composition and element valence state of the nanocrystals, characterized by X-ray photoelectron spectroscopy (XPS), were composed of C, O, Ag⁺, In³⁺ and S²⁻. The presence of CMC on surface of nanocrystals was confirmed by Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). Peaks at around 1609 and 1408 cm⁻¹ are attributed to the stretching vibration of the carboxylate groups (COO⁻) with the weight loss of CMC on CMC-AgInS₂ QDs of approximately 5 %. CMC was coated onto the surface of AgInS₂ QDs to form CMC-AIS QDs. Photoluminescence (PL) and UV-visible spectroscopy were used to investigate optical properties of the product as well as drug loading efficiency. In this study, doxorubicin entrapping efficiency (% DEE) and doxorubicin loading efficiency (% DLE) were determined to be 50 % and 14 %, respectively. Biocompatibility of CMC-AgInS₂ QDs determined by MTT assay indicated low toxicity of these nanocrystals. Investigation on cellular uptake and cytotoxicity revealed that the CMC-AgInS₂ QDs can be used as nanocarriers to deliver the therapeutic agent into the cancer cell.