CONTENTS

Acknowledgements	c
Abstract in Thai	d
Abstract in English	e
List of Tables	h
List of Figures	i
List of Abbreviations	m
List of Symbols	n
Glossary	0
Chapter 1 Introduction	1
1.1 Quantum dots (QDs)	1
1.2 Silver indium sulfide (AgInS ₂)	2
1.3 Synthesis	3
1.4 Polysaccharides	4
1.5 Characterization	4
1.6 Applications	15
1.7 Literature Review and s reserved	16
Chapter 2 Experimental	20
2.1 Chemical reagents and equipment	20
2.2 Synthesis of CMC-AIS QDs	21
2.3 Characterization of CMC-AIS QDs	23
2.4 Drug Encapsulation Studies	24
2.5 Cellular Uptake of CMC-AgInS ₂ QDs	25

2.7 Biocompatibility Studies	25
2.8 Cytotoxicity Studies	26
Chapter 3 Result and Discussion	27
3.1 Characterization	27
3.2 Drug Encapsulation Studies	57
3.3 Cellular Uptake of CMC-AgInS ₂ QDs	61
3.4 Biocompatibility Studies	65
3.5 Cytotoxicity Studies	66
Chapter 4 Conclusion	67
4.1 Synthesis of CMC-AgInS2 QDs	67
4.2 Characterization	67
4.3 Drug Encapsulation Studies	67
4.4 Cellular Uptake of CMC-AgInS ₂ QDs	68
4.5 Biocompatibility Studies	68
4.6 Cytotoxicity Studies	68
References	69
Appendixลิปสิทธิ์มหาวิทยาลัยเชียงใหม	77
Appendix Aright ^C by Chiang Mai University	78
Curriculum Vitae rights reserved	82

LIST OF TABLES

Table 2.1	Experimental details for the synthesis of CMC-AIS QDs.	22
Table 3.1	Shape of the synthesis CMC-AgInS ₂ QDs by hydrothermal method.	27
Table 3.2	Hydrodynamic size of the CMC-AgInS ₂ QDs synthesized by	
	hydrothermal.	39
	CHILL C. MAI UNIVERSIT	
	ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright [©] by Chiang Mai University All rights reserved	

LIST OF FIGURES

Page

Figure 1.1	Structure of AgInS ₂ : (a) tetragonal and (b)orthorhombic.	2
Figure 1.2	Autoclave for hydrothermal synthesis.	3
Figure 1.3	X-ray diffractrometer.	5
Figure 1.4	X-ray photoelectron spectrometer.	5
Figure 1.5	Ejection of photoelectrons.	6
Figure 1.6	Tranmission electron microscope.	6
Figure 1.7	Transmission electron microscope with all of its components.	7
Figure 1.8	Dynamic light scattering.	8
Figure 1.9	Fourier transform infrared spectroscope.	9
Figure 1.10	Fourier transform infrared spectroscope layout.	9
Figure 1.11	Thermogravimetric analysis.	10
Figure 1.12	UV-Visible spectrophotometer.	11
Figure 1.13	Photoluminescence spectroscope.	12
Figure 1.14	Typical experimental set-up for PL measurements.	13
Figure 1.15	Fluorescence microscope.	13
Figure 1.16	Flow cytometer.	14
Figure 1.17	Scattered and emitted light signals are converted to electronic pulses	
C	that can be processed by the computer.	15
Figure 1.18	The application in different branches of science of quantum dots.	16
Figure 2.1	Schematic diagram for the synthesis of the CMC-AgInS ₂ QDs	
	hydrothermal method.	23

Page

Figure 3.1	Schematic diagram of synthesis of CMC-AgInS ₂ QDs with different of concentration of silver nitrate.	28
Figure 3.2	Schematic diagram of synthesis of CMC-AgInS ₂ QDs with	
	different of sulfur source.	28
Figure 3.3	Schematic synthesis of growing QDs within polymeric template	29
Figure 3.4	TEM images of CMC-AgInS ₂ QDs synthesized by	
	hydrothermal method: sample 4.	30
Figure 3.5	TEM images of CMC-AgInS ₂ QDs synthesized by	
	hydrothermal method: sample 5.	31
Figure 3.6	TEM images of CMC-AgInS ₂ QDs synthesized by	
	hydrothermal method: sample 6.	31
Figure 3.7	TEM images of CMC-AgInS ₂ QDs synthesized by	
	hydrothermal method: sample 8.	32
Figure 3.8	XRD patterns of AgInS ₂ (JCPDS 25-1328).	33
Figure 3.9	XRD patterns of CMC-AgInS ₂ QDs synthesized by	
	hydrothermal method: sample 4, 5 and 6.	33
Figure 3.10	XRD patterns of CMC-AgInS ₂ QDs synthesized by	
	hydrothermal method: sample 4 and 8.	34
Figure 3.11	XPS spectra of the CMC-AgInS ₂ QDs synthesized	
ຄ	by hydrothermal method: survey.	35
Figure 3.12	XPS spectra of the CMC-AgInS ₂ QDs synthesized	
C.	by hydrothermal method: Ag 3d.	36
Figure 3.13	XPS spectra of the CMC-AgInS ₂ QDs synthesized	
	by hydrothermal method: In 3d.	36
Figure 3.14	XPS spectra of the CMC-AgInS ₂ QDs synthesized	
	by hydrothermal method: S 2p.	37
Figure 3.15	XPS spectra of the CMC-AgInS ₂ QDs synthesized	
	by hydrothermal method: C 1s.	37

Page

Figure 3.16	XPS spectra of the CMC-AgInS ₂ QDs synthesized	
	by hydrothermal method: O 1s.	38
Figure 3.17	FTIR spectrum of CMC.	40
Figure 3.18	FTIR spectrum of CMC-AgInS ₂ QDs synthesized by	
	hydrothermal method (sample 4).	41
Figure 3.19	FTIR spectrum of CMC-AgInS ₂ QDs synthesized by	
	hydrothermal method (sample 5).	41
Figure 3.20	FTIR spectrum of CMC-AgInS ₂ QDs synthesized by	
	hydrothermal method (sample 6).	42
Figure 3.21	FTIR spectrum of CMC-AgInS ₂ QDs synthesized by	
	hydrothermal method (sample 8).	42
Figure 3.22	FTIR spectra of CMC-AgInS ₂ QDs synthesized by	
	hydrothermal: sample 4, 5 and 6.	43
Figure 3.23	FTIR spectra of CMC-AgInS ₂ QDs synthesized by	
	hydrothermal: sample 4 and 8.	44
Figure 3.24	TGA curve of AgInS ₂ .	45
Figure 3.25	TGA curve of CMC-AgInS ₂ QDs synthesized by	
	hydrothermal: sample 5	46
Figure 3.26	TGA curve of CMC-AgInS ₂ QDs synthesized by	
	hydrothermal: sample 6.	46
Figure 3.27	TGA curve of CMC-AgInS ₂ QDs synthesized by	
Δ	hydrothermal: sample 8.	47
Figure 3.28	TGA curve of AgInS ₂ and CMC-AgInS ₂ QDs synthesized by	
	hydrothermal.	47
Figure 3.29	Absorbance spectra and band gap energy of CMC-AgInS ₂ QDs	
	synthesized by hydrothermal: sample 4.	50
Figure 3.30	Absorbance spectra and band gap energy of CMC-AgInS ₂ QDs	
	synthesized by hydrothermal: sample 5.	51

Figure 3.31	Absorbance spectra and band gap energy of CMC-AgInS ₂ QDs	
	synthesized by hydrothermal: sample 6.	52
Figure 3.32	Absorbance spectra and band gap energy of CMC-AgInS $_2$ QDs	
	synthesized by hydrothermal: sample 8.	53
Figure 3.33	Photoluminescence spectra of CMC-AgInS ₂ QDs	
	excited from 300-450 nm.	54
Figure 3.34	Photoluminescence spectra of CMC-AgInS ₂ QDs excited by 350 nm	. 55
Figure 3.35	The photoinduced processes in ternary QDs: D is donor site, A_{int} and	
	A _{surf} are acceptor sites for internal and surface defect, respectively.	56
Figure 3.36	Absorbance spectra of the PBS solutions containing free-D	DOX,
	CMC-AgInS ₂ QDs and DOX-loaded CMC-AgInS ₂ QDs.	58
Figure 3.37	The structure of carboxymethyl cellulose sodium salt (CMC).	59
Figure 3.38	The structure of doxorubicin (DOX).	59
Figure 3.39	Absorbance Absorbance spectrum of the PBS solutions containing	
	free-DOX (supernatant).	60
Figure 3.40	Cellular drug accumulation analysis by using flow cytometer of	
	control cell and the cells treated with free DOX and	
	DOX-loaded CMC-AgInS ₂ QDs.	61
Figure 3.41	Fluorescence microscope images of MCF7 cells incubated with	
ci i	(a) control cells and (b) CMC-AgInS ₂ QDs.	62
Figure 3.42	Fluorescence microscope images of (a) control cells and the cells treated with (b) CMC-AgInS ₂ QDs, (c) free DOX and	
	(d) DOX-loaded CMC-AgInS ₂ QDs for 5 h.	63
Figure 3.43	Biocompatible of CMC-AgInS ₂ QDs synthesized by hydrothermal.	65
Figure 3.44	Cytotoxicity of the free DOX and DOX-loaded CMC-AgInS $_2$ QDs	
	against MCF7 cells after being treated for 48 h.	66

LIST OF ABBREVIATIONS

QDs	Quantum dots
CMC	Carboxymethyl cellulose
AIS	Silver indium sulfide
DOX	Doxorubicin
XRD	X-ray Diffraction
XPS	X-ray photoelectron spectroscopy
TEM	Tranmission electron microscopy
DLS	Dynamic light scattering
FTIR	Fourier transform infrared spectroscopy
TGA	Thermogravimetric analysis
PL	Photoluminescence spectroscopy
JCPDS	Joint Committee on Powder Diffraction Standards
%DEE	DOX entrapping efficiency
%DLE	DOX loading efficiency
KBr	Potassium bromide
PBS	Phosphate buffered saline
MCF7	Human breast cancer
CO ₂	Carbon dioxide
MTT	3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide
DMSO	Dimethyl sulfoxide
FBS	Fetal Bovines Serum

RPMI 1640 medium

Roswell Park Memorial Institute 1640 medium (culture medium)

LIST OF SYMBOLS

d(H)	Hydrodynamic diameter
D	Translational diffusion coefficient
k	Boltzmann's constant
Т	Absolute temperature
η	Viscosity
0	Degree
°C	Degree Celsius
s	Second
h G	Hour
kV	Kilovolt
cm 🤯	Centimeter
cm ⁻¹	Wavenumber
min	Minute
nm	Nanometer
L	Liter
μL	Microliter
mg	Milligram
mM	Millimolarity
e adai	Coefficient
α Copyr	Absorbance
hv A	Photon energy
Eg	Energy gap
U/mL	Unit/milliliter (commission on enzyme)

GLOSSARY

QDs	nanocrystal made of semiconductor materials that is small
	enough to exhibit quantum mechanical properties
DOX	a drug used in cancer chemotherapy and derived by chemical
	semisynthesis from a bacterial species
MCF7	a breast cancer cell line
MTT	a colorimetric assay for assessing cell viability

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved