APPENDIX A

Detection limit calculation

The detection limit is the concentration of analyte that give signal equal to three times the standard deviation of blank signal [Vickers, 1987]. In this work, it was calculated from standard deviation the blank (n=10). The method can be followed these steps:

1. Peak height of the blank signal was examined and put in one column of Excel program.

	ื่ม ∦ี่ตัด 	Aria		* 10	Ă Ă	≡ =[=)
37	าง 🦷 🧳 ตัวคัดวางรู	_{รปแบบ} B	ΙŪ·	<u> </u>	<u>•</u> • <u>A</u> •	≣≣	1
	คลิปบอร์ด	Gi i	แบบ	อักษร	- Ga		
	124		f_x				
	A	В	С	D	E	F	
1	Peak Height						
2	(mV)						
3	15.3388						
4	13.3639						
5	12.5917						
6	12.5386						
7	17.8970						
8	14.7557						
9	12.8384						
10	16.5680						
11	15.1160						
12	14.0986						
10							

2. Calculate the average of the values in column A by using the AVERAGE formula in the formula bar.

	X	J 17 - (2 -	∓		_	-	
	u	ฟม หน้าแรก	แทรก	เค้าโครงห	น่ากระดาษ	ត្ស័ពទ	ข้อมูล ตรวร
		มี ตัด โกล้า	Aria	ı	* 10	ĂĂ	= = =
	31	 และคัดอางรู เมื่อ เมื่อ	ฐปแบบ B	ΙŪ·		<u>•</u> • <u>A</u> •	E E E
		คลิปบอร์ด	Es.	แบบ	เอ้กษร	G.	
[N14	- (0	f _*			
		A	В	С	D	E	F
	1	Peak Height	Average				
	2	(mV)	(mV)				
	3	15.3388					
	4	13.3639					
	5	12.5917					
	6	12.5386					
	7	17.8970	14 5107				
	8	14.7557	14.5107				
1	9	12.8384					
	10	16.5680					
	11	15.1160					
	12	14.0986					
11							

3. Calculate the standard deviation of the values in column A by using the STDEVA formula in the formula bar.

	EI		001	411	~/	21
X	H 19 - (1 -			-		-
u	ฟ้ม หน้าแรก	แทรก	เค้าโครงห	น้ำกระดาษ	ត្ស័ពទ	ข้อมูล ตรว
	ไม่ ตัด ไม่ ตัดออก เ	A	rial	* 10	× A A	= = =
31	🔮 ตัวคัดวาง	รูปแบบ ไ	B <i>I</i> <u>U</u> ∗	· •	<u>} - A</u> -	≣ ≣ ∄
	คลิปบอร์ด	5	ແນງ	มอักษร	Fa	
	H24	(f_x			
1	A	В	С	D	E	F
1	Peak Height	Average	e SD			
2	(mV)	(mV)	(mV)			
3	15.3388					
4	13.3639					
5	12.5917					
6	12.5386					
7	17.8970	14 5105	1 7047			
8	14.7557	14.510	1./84/			
9	12.8384					
10	16.5680					
11	15.1160					
12	14.0986					

4. Calculate the 3SD from standard deviation value in column C. The 3SD is y value in a linear calibration equation.

X	□ ¹) • (¹ •	₹				÷	
u 21	ฟม หน่าแรก ผิตัด 📄 คัดลอกง ั 💞 ตัวคัดวางรู	แทรก Aria รูปแบบ B	เค่าโครงห ป <i>I</i> <u>U</u> -	นำกระดาษ ▼ 10 · 	त्युल5 r A ^ ^ ≫ - <u>A</u> -	1 (1 (1 (1) (1) (1) (1) (1) (1) (1) (1))
	คลิปบอร์ด	G	แบบ	Jอักษร	Fai		
	M19		f_x				
	A	В	С	D	E	F	
1	Peak Height	Average	SD	3SD			
2	(mV)	(mV)	(mV)	(mV)			(
3	15.3388			1 7947 5 2540			
4	13.3639						
5	12.5917						
6	12.5386						
7	17.8970	14 5107	14.5107 1.7847 5.				
8	14.7557	14.5107		5.5540			
9	12.8384						
10	16.5680						
11	15.1160						
12	14.0986						
10	NO. N.		1.7	100 11			

5. The detection limit can be calculated as following:

y = mx + c	C'A	y = 273.4x + (-9.608)
LOD	=	(y - c)/m
LOD	_ =	(5.3540 - (-9.608))/273.4
LOD	โ่า≢ห	0.05 mg L^{-1}
Therefore,	detectio	n limit is 0.05 mg L ⁻¹
Copyrigh		by Chiang Mar University
All	ig	hts reserved

APPENDIX B

SIAgram of standard solutions for iron, manganese, phosphate and ammonium

SIAgrams were obtained from injecting various concentration of iron, manganese, phosphate and ammonium standard solutions into the proposed SI-colorimetric system, these are shown in Figure 5.1 - 5.4, respectively.

and $10.0 \text{ mg } \text{L}^{-1}$)

Figure 5.2 SIAgram of manganese(II) standard solution (0.2, 0.3, 0.5, 2.0,

Figure 5.3 SIAgram of phosphate standard solution (0.2, 0.3, 0.5, 1.0, 3.0 and 5.0 mg L^{-1})

Figure 5.4 SIAgram of ammonium standard solution (0.2, 0.3, 0.5, 2.0,

All rights reserved

APPENDIX C

Sampling points

Water samples were collected from 9 sampling points along the Ping river in Chiang Mai, Thailand, beginning from Amphur Chiang Dao to Amphur Muang of Chiang Mai province as the map shown in Figure 2.1 (page 24). The pictures of sampling points are shown in Figure 5.5 - 5.13.

Figure 5.5 Ping Kong sampling point

Figure 5.6 Intaram temple sampling point

Figure 5.7 Kaeng Pan Tao sampling point

Figure 5.8 Thap Dua temple sampling point

Figure 5.9 Mae Taeng sampling point

Figure 5.10 Nawamin bridge sampling point

Figure 5.11 Nawarat bridge sampling point

Figure 5.12 Mae Kha canal sampling point

Figure 5.13 Padad sampling point (after discharge of water from Mae Kha canal into Ping river)

APPENDIX D

Chemical parameters of water samples of the Ping river

The general water chemical parameters, including pH, dissolved oxygen (DO) and conductivity, of Ping river in a year are shown in Table 5.1 - 5.4 for February, May, August and November of 2015, respectively.

10	1	9 7	121
Sampling points	рН	Dissolved oxygen (mg L ⁻¹)	Conductivity (µS cm ⁻¹)
E	8.01	2.65	140
2	8.01	5.50	320
3	8.13	6.50	310
4	8.35	3.30	310
5	7.19	6.90	170
ลิสสิทธิ์	7.51	7.00	190
7	7.55	6.40	190
8	7.48	1.80	430
A 9 1	7.47	4.10	320

Table 5.1 Some chemical parameters of water samples in February 2015

Sampling points	рН	Dissolved oxygen (mg L ⁻¹)	Conductivity (µS cm ⁻¹)
1	6.84	5.20	257
2	7.09	6.00	447
3	7.47	7.00	411
4	7.18	10.00	403
5	6.50	5.30	305
6	5.50	5.20	296
7	6.78	5.40	266
8	7.10	1.30	653
9	6.85	4.50	266

 Table 5.2 Some chemical parameters of water samples in May 2015

Table 5.3 Some chemical parameters of water samples in August 2015

N XI		A 34 L	A 11	
Sampling points	Dissolved pH oxygen (mg L ⁻¹)		Conductivity (µS cm ⁻¹)	
ລິບສິກຣິ	7.41	6.40	507	
Co ² veght	7.36	6.20	756	
	7.57	5.80	736	
4	7.68	6.50	683	
5	6.94	5.10	539	
6	7.28	5.00	668	
7	7.29	4.60	628	
8	7.16	0.40	1132	
9	7.01	1.60	782	
5 6 7 8 9	6.94 7.28 7.29 7.16 7.01	5.10 5.00 4.60 0.40 1.60	539 668 628 1132 782	

Sampling points	рН	Dissolved oxygen (mg L ⁻¹)	Conductivity (µS cm ⁻¹)	
1	6.73	7.00	467	
2	6.54	6.95	329	
3	6.65	6.95	363	
4	6.77	8.30	341	
5	6.88	6.40	157	
6	6.24	5.50	243	
7 8	6.58	5.40	190	
8	6.76	1.10	605	
9	6.70	3.20	266	
CHINE	G MAI L	NIVERSI	1007	
<mark>ลิขสิทธิ์</mark> Copyright AII r	มหาวิท © by Ch	<mark>ายาลัยเ</mark> niang Mai	ີ ອ່ອງ Berved	

 Table 5.4 Some chemical parameters of water samples in November 2015

THE RELEVANCE OF THE RESEARCH WORK TO THAILAND

The quality of water resources is very important for application of water in various fields. Recently, various activities of humans and animals can affect the quality of water. Therefore, monitoring of water quality becomes necessary for ecological assessment. The determination of water quality parameters requires a lot of resources and takes long time. In addition, most of the standard methods requires expensive and complicated instruments. Cost-effective analytical instruments are necessary for developing country, especially Thailand.

This research work had developed sequential injection colorimetric system for determination of different parameters that indicating water quality. The developed system offered automatic operation, multi-parameter analysis, low reagent consumption, low detection limit, high precision, and cost effective instrument for determination of iron, manganese, phosphate, and ammonium in one system. It was applied for analysis of water samples from the Ping river, which is the main water supply for Chiang Mai, and it is also an upstream river which flows through many provinces of Thailand. The proposed methods could be an alternative for measurement of water quality parameters of water samples.

> ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

CURRICULUM VITAE

Author's Name	Miss. Natcha Kaewwonglom				
Date/Year of Birth	May, 1990				
Place of Birth	Kanchanaburi Province, Thailand				
Education	2012 B.S., Chemistry, Kanchanaburi Rajabhat University				
	2015 M.S., Chemistry, Chiang Mai University				
Scholarship	2015 Center of Excellence for Innovation in Chemistry (PERCH-CIC)				
Publication	N. Kaewwonglom and J. Jakmunee, "Sequential injection system with multi-parameter analysis capability for water quality measurement," Talanta, 144 (2015) 755-762.				
Experience 2014	Teaching assistant for Chemistry Laboratory I Course				
2014 Copy A 1 1	N. Kaewwonglom and J. Jakmunee, "Sequential injection colorimetric system for determination of total iron and manganese in water sample (Poster presentation)," The 19 th International Conference on Flow Injection Analysis (ICFIA), 30 November – 5 December, 2014, Fukuoka, Japan				
2015	N. Kaewwonglom and J. Jakmunee, "Development of Multi- parameter Analysis System for Determination of Total Iron and Manganese in Water Sample of River Ping in Chiang Mai Province, Thailand (Poster presentation)," TRF Seminar Series in				

Basic Research CVIII, 14 January, 2015, Chiang Mai, Thailand

 Training for The ACS/CST BOOST Trainer Leadership
 Institute, "Building Opportunity out of Science and Technology (BOOST) Program," sponsored by U.S. Department of State, 11-16 October 2015, Chiang Mai, Thailand.

