CONTENTS

Acknowledgement	c
Abstract in Thai	d
Abstract in English	f
List of Tables	k
List of Figures	1
List of Abbreviations	0
List of Symbols	r
Statements of Originality in Thai	u
Statements of Originality in English	v
Chapter 1 Introduction	
1.1 Photoluminescence	1
1.1.1 Fluorescence Quantum Yield and Fluorescence Lifetime	3
1.1.2 Stokes Shift	3
1.2 Chemical Sensing	5
1.3 Excited-State Proton Transfer	8
1.4 2-(2'-Hydroxyphenyl)benzoxazole and Its Derivatives	11
1.5 Computational Chemistry	13
1.5.1 Ab Initio Theory	13
1.5.2 Hartree-Fock Approximation	14
1.5.3 Post Hartree-Fock Approximations	15
1.5.3.1 Møller-Plesset Perturbation Theory	15
1.5.3.2 Configuration Interaction Calculation	16
1.5.3.3 Coupled-Cluster Method	16

	1.5.4 Density Functional Theory	18
	1.5.4.1 Time-Dependent Density Functional Theory	19
	1.5.5 Frank-Condon Principle	20
	1.5.6 Adiabatic Dynamics	21
	1.5.7 Basis Sets	22
1.6	Objectives	23

Chapter 2	Dynamics Simulations of Photoinduced Proton Transfer Reactions of
	2-(2'-Hydroxyphenyl)benzoxazole in the Gas Phase and Its Hydrated
	Clusters

2.1	Introduction	25
2.2	Computational Details	29
2.3	Results and Discussions	31
	2.3.1 Ground-State Optimizations	31
	2.3.2 Excited-State Dynamics Simulations	34
	2.3.2.1 2-(2'-Hydroxyphenyl)benzoxazole (HBO, I)	34
	2.3.2.2 2-(2'-Hydroxyphenyl)benzoxazole with One Water	37
	Molecule (HBO(H ₂ O))	
	1. HBO(H ₂ O) Intramolecular Hydrogen-Bonded	37
	Structure (IV)	
	2. HBO(H ₂ O) Intermolecular Hydrogen-Bonded	39
	Structure (V)	
2.4	Chapter Summary	44
Chapter 3	Electronic and Photophysical Properties of 2-(2'-Hydroxyphenyl)	
	benzoxazole and Its Derivatives Enhancing in the Excited-State	
	Intramolecular Proton Transfer Processes: A TD-DFT Study on	

Substitution Effect

3.1	Introduction	45
3.2	Computational Details	49
3.3	Results and Discussion	50

	50
3.3.1 Effect of DFT Functional	56
3.3.2 Energies and Geometries of HBO and Its Derivatives	57
3.3.3 UV-Vis Absorption and Fluorescence Spectra	57
3.3.3.1 Absorption Spectra	61
3.3.3.2 Emission Spectra	62
3.3.4 Energy Diagram of HOMO and LUMO Levels and Frontier	
Molecular Orbitals	66
3.4 Chapter Summary	
Chapter 4 Conclusions	67
References	70
List of Publications	80
Appendix A Definitions	82
Appendix B Scholarships	84
Appendix C Conferences and Workshops	85
Appendix D Publications and Posters	87
Curriculum Vitae	96

ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Table 2.1	Selected bond distances (Å) and torsional angle (degree) and	33
	ground-state relative energies of HBO and HBO(H2O) computed	
	at RI-ADC(2)/SVP-SV(P) level.	
Table 2.2	Summary of the excited-state dynamics analysis of HBO systems.	35
Table 3.1	Absorption (nm), excitation energy (eV), oscillator strength (f),	51
	and deviation between the calculated and experimental wavelength	
	$(\Delta\lambda)$ of syn-enol HBO in the gas phase and in cyclohexane. The	
	calculations were performed using various TD-DFTs at 6-311+G*	
	basis set.	
Table 3.2	Relative energies (kcal.mol ⁻¹) and selected structural parameters	54
	(Å and degree) from optimized structures of HBO and its	
	derivatives computed at B3LYP/6-311+G* level (in gas phase).	
Table 3.3	Electronic and photophysical properties of HBO and its derivatives	58
	computed at TD-B3LYP/6-311+G* level in the gas phase.	
	Calculated enol absorption and keto emission (nm, eV), oscillator	
	strength (f), and major contributions (%).	
	ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่	
	Copyright [©] by Chiang Mai University	
	All rights reserved	
	All lights reserved	

k

LIST OF FIGURES

Figure 1.1	Diagram of photoluminescence of chromophore.	1
Figure 1.2	The Jablonski diagram describing light absorption and emission processes.	2
Figure 1.3	The difference between positions of the band maxima of the absorption and emission spectra of a typical fluorophore.	4
Figure 1.4	Schematic representation of principles of the fluorescent sensor. (a) "OFF" and (b) "ON" signals of fluorescence.	6
Figure 1.5	Schematic representation of excited-state intramolecular proton transfer (ESIntraPT) for four-level photocycle.	9
Figure 1.6	Structure of 2-(2'-hydroxyphenyl)benzoxazole (HBO) and its derivatives (where R and R' = H for HBO and other substituents for HBO derivatives).	11
Figure 1.7	Frank-Condon energy diagram.	20
Figure 1.8	Different conformers of free HBO (<i>syn</i> , <i>anti</i> , and opened-HBO) and its hydrated cluster.	24
Figure 1.9	HBO and its derivatives with R_1 and R_2 substitutions.	24
Figure 2.1	Scheme of excited-state intramolecular proton transfer (ESIntraPT) of HBO.	26
Figure 2.2	Ground-state optimized structures of HBO and its hydrated cluster computed at RI-ADC(2)/SVP-SV(P) level. (a) HBO [HBO (<i>syn</i> , I), HBO (<i>anti</i> , II), HBO (opened, III)] and (b) HBO(H ₂ O) [HBO(H ₂ O) (intramolecular hydrogen-bonded structure, IV), HBO(H ₂ O) (intermolecular hydrogen-bonded structure, V), HBO(H ₂ O) (opened, VI)], adjacent figures are their	27
	side view.	

- Figure 2.3 Average values of HBO (I). (a) Time evolution of average 36 breaking and forming bonds. The shaded areas are the standard deviation. (b) Average torsion angle of N1C1C2C3 and (c) Average relative energies of excited state (S₁), ground state (S₀), and energy difference of S₁ and S₀ state (S₁-S₀).
- Figure 2.4 Snapshots of excited-state dynamics simulation of HBO or (I) at 37 different time (up: top view, down: front view).
- Figure 2.5 Average values of HBO (IV). (a) Time evolution of average 38 breaking and forming bonds. The shaded areas are the standard deviation. (b) Average torsional angle of N1C1C2C3 and (c) Average relative energies of excited state (S₁), ground state (S₀), and energy difference of S₁ and S₀ state (S₁-S₀).
- Figure 2.6 Snapshots of excited-state dynamics simulation of HBO(H₂O) or 39 IV at different time (up: top view, down: front view).
- Figure 2.7 Average values of HBO(H₂O) (V). (a) Time evolution of average 41 breaking and forming bonds for pathway A and (d) for pathway B. The shaded areas are the standard deviation. (b) Average torsional angle of N1C1C2C3 for pathway A and (e) for pathway B. (c) Average relative energies of excited state (S₁), ground state (S₀), and energy difference of S₁ and S₀ state (S₁-S₀) for pathway A and (f) for pathway B.
- Figure 2.8 (a) Snapshots for pathway A and (b) for pathway B of the excited- 42 state dynamics simulation of HBO(H₂O), V at different time (up: top view, down: front view).
- Figure 3.1 2-(2'-Hydroxyphenyl)benzoxazole (HBO) and its derivatives.
- Figure 3.2 Calculated absorption spectra of HBO and its derivatives 57 performed at TD-B3LYP/6-311+G* level in the gas phase.

47

Figure 3.3 Calculated fluorescence spectra of HBO and its derivatives 61 computed at TD-B3LYP/6-311+G* in the gas phase.

- Figure 3.4 Diagram of calculated HOMO and LUMO energy levels as well as 63 HOMO–LUMO gaps (eV) at TD-B3LYP/6-311+G* level of enol absorption and keto emission of HBO and its derivatives.
- Figure 3.5 Frontier molecular orbitals of enol and keto for HBO and its 65 derivatives computed at TD-B3LYP/6-311+G* in the gas phase.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF ABBREVIATIONS

IC	Internal conversion
ISC	Intersystem crossing
S	Second
DNA	Deoxyribonucleic acid
ICT	Intramolecular charge transfer
MLCT	Metal-ligand charge transfer
TICT	Twisted intramolecular charge transfer
BODIPYs	Boron-dipyrromethene
ESIntraPT	Excited-state intramolecular proton transfer
ESPT	Excited-state proton transfer
PT	Proton transfer
ESInterPT	Excited-state intermolecular proton transfer
PQ	1 <i>H</i> -Pyrrolo[3,2- <i>h</i>]quinoline
7HQ	7-Hydroxyquinoline
7AI	7-Azaindole
НВО	2-(2'-Hydroxyphenyl)benzoxazole
HBT	2-(2'-Hydroxyphenyl)benzothiazole
HBI	2-(2'-Hydroxyphenyl)benzimidazole
HBQ	10-Hydroxy-benzo[h]quinoline
TIN-H	2-(2'-Hydroxyphenyl)benzotriazole
PPA	Polyphosphoric acid
	Nanometer Sector Sector V C C
HF	Hartree-Fock approximation
MP	Møller–Plesset perturbation theory
CI	Configuration interaction calculation
CC	Coupled-cluster method
SCF	Self-consistent filed
MP2	second-order Møller–Plesset perturbation theory

CIS	Single excitation configuration interaction
CISD	Single and double excitation configuration interaction
RI	Resolution-of-the-identity
CC2	Second-order approximate coupled-cluster model
ADC(2)	Algebraic diagrammatic construction through second order
$\operatorname{CIS}(D_{\infty})$	The iterative variant of the doubles correlation to CI singles
DFT	Density functional theory
B3LYP	Becke, 3-parameter, Lee-Yang-Parr exchange-correlation
	functional
PBE0	Perdew, Burke, and Ernzerhof exchange-correlation functional
PBE1PBE0	Perdew, Burke, and Ernzerhof exchange-correlation functional
CAM-B3LYP	Handy and coworkers' long-range corrected version of B3LYP
19	using the Coulomb-attenuating method
ωB97XD	Functional from Head-Gordon and coworkers including
40	empirical dispersion
LC-BLYP	The long correction of Hirao and coworkers
TD-DFT	Time-dependent density functional theory
STOs	Slater-type orbitals
GTOs	Gaussian-type orbitals
SV	Split valence
НОМО	Highest occupied molecular orbital
LUMO	Lowest unoccupied molecular orbital
fs	Femtosecond
kcal·mol ⁻¹	Kilocalorie per mole
UV-vis	Ultraviolet-visible
SVP	Split valence polarized
SV(P)	Split valence
Ν	Normal form
ISn	Intermediary structure for each proton transfer
Т	Tautomer
eV	Electron volts

<i>m</i> -MeHBO	2-(2'-Hydroxy-4'-methylphenyl)benzoxazole
MHBO	2-(2'-Hydroxy-4'-methoxyphenyl)benzoxazole
CNHBO	2-(2'-Hydroxy-4'-cyano-phenyl)benzoxazole
HBOM	2-(2'-Hydroxyphenyl)-6-methylbenzoxazole
HBOF	2-(2'-Hydroxy-phenyl)-6-fluoro-benzoxazole
HBOA	2-(2'-Hydroxyphenyl)-6-cabaldehydeben-zoxazole
HBOE	2-(2'-Hydroxyphenyl)benzoxazole-6-carboxylic acid ethyl ester
<i>m</i> -MeHBON	2-(2'-Hydroxy-4'-methylphenyl)-6-nitrobenzoxazole
SCRF	Self-consistent reaction field
C-PCM	The polarizable conductor calculation model
LR	Linear-response
SS	State-specific

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF SYMBOLS

part
1. 1947. 1. 1947.
LY .

α and β	Spin α and β of electron
Ν	Many electron
$\psi_i(N)$	Spin-obital
\hat{f}	Fock operator
ε_i	Spin-obital energy
${\widehat{H}}^{(0)}$	Unperturbed Hamiltonian
Ŷ	Perturbation
$E^{(0)}$	Zeroth-order energy
$E^{(1)}$	First-order energy
<i>E</i> ⁽²⁾	Second-order energy
1 / 8	A finite number
Ci	Expansion coefficients
S	State
e ^C	Exponential operator
A	The Jacobian matrix
ω	Infinity
ρ	Electron probability density
$\rho(r)$	Entire electron density of the molecule
$E[\rho]$	Electronic energy as a function of electron density
$E_T[\rho]$	Kinetic energy as a function of electron density
$E_V[\rho]$	Potential energy as a function of electron density
$E_U[\rho]$	External energy as a function of electron density
$E_{XC}[\rho]$	Exchange-correlation energy as a function of electron density
V _{XC}	Exchange-correlation potential
δρ	Integral of electron density
$E_{XC}^{Hybrid}[ho]$	Hybrid functional energy of a mixture of Hartree-Fock exchange
	with DFT exchange-correlation
С	Constants determined by Becke
$\rho(r,t)$	Time-dependent potentials and electron densities
ν	Vibration
C_k	A set of first-order differential equation for the amplitudes

k	Electronic state
V_k	Potential energy surface for state k
v	The nuclear velocity
F_{kj}	The nonadiabatic coupling vector between the states k and j
P^W	A Wigner distribution
P^i	Momentum associated with the normal coordinate
Q^i)	Normal coordinate
ξ^i_{OH}	The harmonic oscillator wavefunction
S	s-orbital
p	<i>p</i> -orbital
d	<i>d</i> -orbital
1 /6	syn-HBO
п	anti-HBO
п	opened HBO
VI	Intramolecular hydrogen-bonded HBO
v	Intermolecular hydrogen-bonded HBO
VI	Intermolecular hydrogen bonding with water or opened-HBO
π	Pilo
$\pi\pi^*$ and π - π^*	Pi to pi* transition (proton transfer)
$n\pi^*$ and $n-\pi^*$	n to Pi* transition (intramolecular charge transfer)
πσ*	Pi to sigma* transition (hydrogen-atom transfer)
Å adar	Angstrom
ΔΕ	Relative energy
%	Per cent
f	Oscillator strength
Δλ	Deviation between the calculated and experimental wavelength

ข้อความแห่งการริเริ่ม

- การจำลองพลวัตที่สภาวะกระตุ้นของ 2-(2'-ไฮครอกซีฟีนิล)เบนซอกซาโซล (HBO) และกลุ่ม ของน้ำ สามารถให้ข้อมูลทางภาพที่ชัคเจนในระดับโมเลกุลของกระบวนการถ่ายโอนโปรตอน และสามารถใช้เป็นข้อมูลสำหรับการศึกษาเพิ่มเติมในระบบที่คล้ายคลึงที่มีตัวทำละลาย
- ตัวแทนที่ดีของ HBO ที่มีหมู่แทนที่ซึ่งให้ความเข้มแสงของการกายแสงสูง สโตกส์ชิฟท์มาก และกายแสงในช่วงกวามยาวกลื่นยาวขึ้นกือ HBO ที่มีหมู่รับอิเล็กตรอนได้ดีแทนที่อยู่บนส่วน ของเบนซอกซาโซล
- การทำนายผลจากการคำนวณด้วยคอมพิวเตอร์เป็นประโยชน์ในการแปลผลการทคลอง และ สามารถใช้เป็นเครื่องมือคัดกรองเพื่อแนะนำนักเคมีในการสังเคราะห์อนุพันธ์ HBO ตัวใหม่ได้

ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

STATEMENTS OF ORIGINALITY

- The excited-state dynamics simulations of 2-(2'-hydroxyphenyl)benzoxazole (HBO) and its hydrated clusters can provide clear pictures in molecular level of proton transfer process and can be used for further studies in the similar systems with solvents.
- 2. The good candidates of HBO having substituents that provide high intensity of emission, large Stokes shift, and emission in the longer wavelength for use as a fluorescent sensor are HBO having strong electron-withdrawing groups substituted on a benzoxazole moiety.
- The prediction from the computational calculations is helpful to interpretation of experimental results and can be used as a screening tool to guide chemists for synthesizing new HBO derivatives.

TVG MAI

ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved