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CHAPTER II 

Preliminaries 

In this chapter, we provide some background on mobility models, growth of functions, 

relevant complexity theory and graph theory. All of these items will be used in the later 

chapters.  

2.1 Preliminaries  

 Let ,...}.3,2,1{  

 Let S be a set. The set kS , for k , is the k -fold Cartesian product of the set S

. 

2.2 Mobility in Wireless Networks 

Wireless network can be divided into Cellular Networks, Mobile Ad Hoc Networks, and 

Sensor Networks as follows [17]: 

2.2.1 Cellular Networks 

Cellular networks are the static wireless sources which separate the communication area 

into cells. We usually concern about the protocols that keep tracking the movement of the 

nodes between cells without interrupting the communication, or use cell information to 

track the location of clients.  

2.2.2 Mobile Ad Hoc Networks 

A Mobile Ad Hoc Wireless Network (MANET) is a self-configuring network of mobile 

nodes, and the position of each node is often unavailable. We usually concern about the 

routing direction between sources and the target data while the intermediate are moving 

and battery is limited, or the routing message of a MANET to keep the routing table. 
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2.2.3 Sensor Networks 

A sensor network is the network of sensor devices. A sensor network is used to detected 

data, temperature, pressure motion or sound, and propose how to send it to some operation 

stations. 

2.3 Realistic Mobility Patterns 

This is a real movement that are tracked from the movement of objects in reality. We can 

classify the mobility patterns of the realistic movement as follows: 

2.3.1 Pedestrians 

It is the walking patterns of people or animals which is slow and limited the speed. For 

example, people with mobile, pets with sensor attached, animal herd with limited energy 

sensors. It is mainly worked in a two-dimensional area and sometimes work with the 

group mobility, 

2.3.2 Marine and Submarine Mobility 

There are both two-dimensional and three-dimensional movements like the movement of 

sea surface and submarine, respectively. The speed is limited by the machine of the ships 

or the aquanaut movement. Water absorb high-frequency signal is one of the restrictions 

of the marine communication. 

2.3.3 Earth Bound Vehicles 

The wheels base movement. Most works are on only one dimension, along a street, a 

pathway or even a train rail. GPS sometimes used to track the vehicles. The landscape 

building, road sign reflection, and tunnels may decrease the signal quality. Some extreme 

group mobility patterns, like passenger travelling by train, may also cause the 

communication problem. 
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2.3.4 Aerial Mobility 

The flying objects usually travel a long distance, flock of birds, and sometimes move at 

a high speed, airplane. Airplane generally preserves their height. The anti-collision, 

message passing, position tracking, and flight control applications are proposed. 

2.3.5 Medium Based Mobility 

An ad hoc use sensor network to get information about studying the medium, measure 

the mediums or currents. It can be worked in any dimension depend on the medium itself 

and the circumstances (gas, fluid, air). Mostly study on individual movements. 

2.3.6 Mobility in Outer Space 

Ad hoc will be used for these spaces movement. The movement patterns are complex, 

and there are many restrictions such as the planet’s gravity, the orbit patterns, the 

spaceship acceleration, or the fuel. The networks are used for preventing the collision or 

for recalibrating the orbit positions. 

2.3.7 Robot Motion 

Robots can be moved in any pattern and dimension that the robot designer design. Most 

applications are the project to coordinate the robots tasks by using the communication via 

a network. 

2.4 Synthetic Mobility Model 

Synthetic mobility model is the model that use a mathematical equation to generalize a 

movement pattern. We classify the mobility model as follows: 

2.4.1 Cellular Mobility Model 

Most of the work in the cellular model involve the movement of the nodes between cells. 

2.4.1.1 Random Walk Model: A node move from cell to cell by some probability. 

It is a memoryless model which is used most in the researchers. 



 

10 

 

2.4.1.2 Trace based Models: This model used a real data collected from some 

companies, and it is valuable for evaluating protocols by using a real 

situation and data. However, the trace data sometimes undisclosed. 

2.4.1.3 Fluid Flow Mobility Model: It represents the traffic flow by comparing 

the traffic movement with the flow of fluid in a pipe. 

2.4.2 Random Trip Mobility 

Some variant of MANETs models are shown as follows: 

2.4.2.1 Random Walk Mobility Model: It is the memoryless mobility model. A 

node chooses a random direction and speed at a time, with some bound. 

2.4.2.2 Random Waypoint Mobility Model: It is the random walk model which 

have stop time before a node change its direction or speed. 

2.4.2.3 Random Direction Mobility Model: The random waypoint mobility model 

that the nodes stop and randomly choose a new direction and velocity and 

travel to the direction in the working area. 

2.4.2.4 A Boundless Simulation Area Mobility Model: A model of  torus space. 

2.4.2.5 Gauss-Markov Mobility Model: The tuning degree of this model is 

randomly varies according to the mobility pattern. 

 

2.4.2.6 A Probabilistic Version of the Random Walk Mobility Model: Next step 

movement is related to the previous steps movement with some 

probabilities.  

2.4.2.7 City Section Mobility Model: The random waypoint restricted by the street 

on a city map. 

2.4.3 Group-Mobility Models 

The mobility model that describes the group behavior. They are classified as follows: 
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2.4.3.1 Exponential Correlated Random Mobility Model: The group mobility is 

set from a motion function. 

2.4.3.2 Column Mobility Model: The group mobility direction is set by the 

member in the group. 

2.4.3.3 Nomadic Community Mobility Model: The movement direction is 

nomadic set to let all nodes in the group move together from one place to 

another.  

2.4.3.4 Pursue Mobility Model: There is a target node, and the group member will 

follow the node. 

2.4.3.5 Reference Point Group Mobility Model: The group member follows a 

logical center that has its individual movement. 

2.4.4 Particle Based Mobility 

The model for predicting pedestrian behavior in a panic situation that force pedestrian 

movement with a group into some direction.  

2.4.5 Combined Mobility Models 

Many mobility models are collected to be considered. 

2.4.6 Non-recurrent Models 

Fully or partially predictable movement function defined to some mobile objects. It 

counts the changes in the geometric structure to maintain the movement function. 

2.4.7 Worst-Case Mobility Models 

Any movement of the nodes is limited by a velocity, acceleration, or a constant time. 

2.4.8 Mobility Models and Reality 

There are some conflicts among the real situation mobility and the theoretical one. The 

theoretical model usually assume working in an ideal situation without mistakes. Even, 
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there are adaptations of a theoretical mobility model to some real situation; it is unproven 

that the model can describe the real situation. For example, the random trip mobility 

model is adapt to simulate the movement on a street map. 

2.5 Definitions of Greenlaw and Kantabutra Mobility Model  

The following definition of the mobility model is taken from [14] with permission from 

the authors, as is part of the ensuing discussion. We define the model here to operate on 

a two-dimensional grid. A mobility model is an 8-tuples ),,,,,,,( OCVRLUDS , where 

1.  The set },...,,{ 21 msssS   is a finite collection of sources, where .m  The value m 

is the number of sources. Corresponding to each source is , for ,1 mi   an 

initial location ),( ii yx  is specified, where ., ii yx  

2. The set }110,101,010,001,000{D  is called the directions, and these values 

correspond to no movement, east, west, south, and north, respectively. 

3. The set },...,,{ 21 puuuU   is a finite collection of mobile devices, where .p  The 

set U is called the set of users. The value p is called the number of users.  

Corresponding to each user iu , for ,1 pi   an initial location ),( ii yx  is 

specified, where ., ii yx  

4. The set },...,,{ 21 tlllL  is a finite collection of “bit strings,” where t  and t

i Dl   

for ti 1 . The set L is called the set of user movement. Each group of three 

bits in il  beginning with the first three defines a step in a given direction for the 

user iu ’s movement or no movement at all if the string is 000. The value t is called 

the duration of the model. 

5. The set },...,,{ 21 mrrrR   is a finite collection of “bit   strings,” where )(it

i Dr  , 

)(it  and .1 mi    Each group of three bits in ir  beginning with the first 

three defines a step in a given direction for the source is ’s movement or no 

movement at all if the string is 000. The set R is called the random walks or 

source movement of the mobility model. 
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6. The set },...,,{ 21 mvvvV  is a finite collection of numbers, where .iv  The value iv  

is the corresponding number of steps from ir  per unit time that is  will take. This 

set is called the velocities. 

7. The set },...,,{ 21 mcccC   is a finite collection of lengths, where .ic  The value ic  

is the corresponding diameter of the circular coverage of source is . This set is 

called the coverages. 

8. The set 
1222112211 ,,,,|),,,({ xxyxyxyxyxO  and }12 yy   is a finite 

collection of rectangles in the plane. This set is called the obstacles. 

Greenlaw and Kantabutra design the theoretical mobility model in a two-dimensional grid 

for simplicity. However, the model can be extended to a three-dimensional grid, a finer 

grid, or some other shape of a grid for more reality. In the model, the sources in S  are 

the wireless access points. They are always broadcasting and receiving signals. Although 

real world sources do not move in discrete steps, finer grid can make it realer. Greenlaw 

and Kantabutra assume that the sources are always at a grid point locations. The set D  is 

the four possible directions that a source or user can move in the grid, include no 

movement. The set U  is the set of users carry a mobile device. Users’ movement are 

random and are specified by the series of directions contained in the set L . All users’ 

velocity are the same, equal to one. All user will travel by a unit step or one grid instantly 

at a time duration. However, we can use no movement to restrict the users’ velocity and 

make their movements more realistic. Greenlaw and Kantabutra have modeled the 

movement of the sources by random walks contained in the set R . Because the sources 

in the model can move at the different velocities, the walks in R  have different lengths. 

For example, a car can move on by 100 kilometers per hour on a highway, an elephant 

walking through a forest may move by 1 kilometer per hour, a ship roaming in an ocean 

can be move by 30 kilometers per hour. Therefore, the model represent the speeds of the 

sources by natural numbers in the set V . Of course, a given source may not always travel 

at a constant velocity. It would be worth examining an extension of the model where any 

source’s speed can change over time. Different sources may provide at different wireless 

signal strength depending on a technology and its battery. Therefore, Greenlaw and 
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Kantabutra specify ic  to be the coverage diameter of the various sources. This area under 

the sources’ coverage is called the coverage area. Because wireless signal can be blocked 

by some building or other obstacles, the model has a set of obstacles O in a rectangular 

shape.  

 

Since sources must communicate with each other, Greenlaw and Kantabutra also define 

the communication protocol used in the model.  

 

Definition 2.5.1 (Coverage Representation) A coverage of radius c in a two-dimensional 

grid is represented by the set of grid points within the source coverage and on its 

boundary. 

 

Definition 2.5.2 (Overlapping Coverage Area) Let s, s′ be a coverage or an obstacle in a 

two-dimensional grid and s ∩ s′ = z. We say that s overlaps s′ if and only if |z| ≥ 2. z is 

called an overlapping coverage area. 

In [14], the communication protocols are also stated. The sources are always on; they are 

broadcasting and listening for the communication signal. Users with mobile devices are 

moving in and out of the range of sources. Mobile devices would like to send and receive 

messages with one another. Greenlaw and Kantabutra specified the characters that the 

sources and the users communicate as follows. Let 2k  and .k  

 At a given instance in time any two sources with overlapping-coverage areas may 

communicate with each other in full-duplex fashion as long as the intersection of 

their overlapping-coverage area is not completely contained inside obstacles. We 

say that these two sources are currently in range. A series ksss ,...,, 21  of sources 

are said to be currently in range if is  and 1is  are currently in range for 

11  ki . 

 Two mobile devices cannot communicate directly with one another.  

 A mobile device 
1D  always communicates with another mobile device 

2D  

through a source or series of sources as defined next. The mobile devices 
1D  at 
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location ),( 11 yx  and 
2D  at location ),( 22 yx  communicate through a single 

source s located at ),( 33 yx  if at a given instance in time the lines between points 

),( 11 yx  and ),( 33 yx  and points ),( 22 yx  and ),( 33 yx  are within the area of 

coverage of s, and do not intersect with any obstacle from O. The mobile devices 

1D  at location ),( 11 yx  and 
2D  at location ),( 22 yx  communicate through a 

series of sources 
1s  at location ),( 11 ba , 

2s  at location ),( 22 ba ,…, and ks  at 

location ),( kk ba  that are currently in range if the line between points ),( 11 yx  and 

),( 11 ba  is inside 
1s ’s coverage area and does not intersect any obstacle from O  

and the line between points ),( 22 yx  and ),( kk ba  is inside ks ’s coverage area and 

does not intersect any obstacle from O . 

A Sample Instance of Greenlaw and Kantabutra Mobility Model  

An example of a specific instance corresponding to Figure 2.1 is stated. Let 

),,,,,,,( OCVRLUDSM  , the 8-tuples are defined as follows:  

1. Let },,,{ 4321 ssssS   with initial locations ),4,5(),5,4(),5,1( and )2,4( respectively. 

2. Let }.110,101,010,001,000{D  

3. Let },,{ 321 uuuU   with initial locations ),1,1(),4,2(  and )2,5(  respectively. 

4. Let 3t  and },,,{ 321 lllL   where }000,000,000{il  for 31  i . 

5. Let },,,{ 4321 rrrrR  . For clarity Figure 2.1 only illustrates }101,001,101{1 r  

and omits the other ir ’s, which we assume are all (000,000,000), except for 
2r  

which is twice as long. 

6. Let }1,1,2,1{V . 

7. Let }4,2,2,2{C . 

8. Let )}2,3,1,1{(O . 

Initially, there are four sources ,,, 321 sss  and 
4s  centered at ),4,5(),5,4(),5,1( and ),2,4(  

and there are three users  21,uu  and 3u  centered at ),1,1(),4,2(  and )2,5( , respectively. 

A rectangle obstacle has its lower-left corner at )1,1(  and the upper-right corner at )2,3( . 
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Sources 
1s , 

2s , and 3s  each have a coverage with a diameter 2, and 
4s  has a coverage 

with a diameter 4. Sources 
1s  are defined its movement by the collection of directions 

specify in 
1r .  In this case, 

1s  moves south in the first step, east in the second step, and 

south in the third step. The moves are made with a velocity of 11 v , or one grid per a 

unit of time. 

1
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Figure 2.1 Sample instance of the mobility model 

Note that initially, for example, sources 
2s  and 3s  are currently in range, sources 

2s , 3s

, and 
4s  are a series of sources currently in range, and sources 

1s  and 
2s  are not currently 

in range. Initially, users 
1u  and 3u  cannot communicate either by a source or a series of 

sources. After three steps, 
1u  can communicate with 3u  through the series of sources 

1s  

and 
4s .                           

2.6 Growth of Functions   

In this section, we review some material on the growth of functions. Much of this review 

is taken from [18]. Asymptotic notations are used for comparing the efficient of the 

algorithms. Because of the lower-order term and the multiplicative constant are 
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dominated by the input size when the size is large enough, we compare the efficient of 

the algorithms from their input size only, asymptotic efficiency of algorithms. That 

means, the algorithm which is asymptotically more efficient is the best choice chosen for 

solving a problem than others, but for tiny input size. 

Asymptotic Notation   

The asymptotic notation is the function define the asymptotic running time of the 

algorithm.  It is usually defined by a natural number according to the input size. Basic 

asymptotic notations are specified as follows. 

1. notation  (Big-Theta) 

The notation  asymptotically bounds a function from above and below. For a given 

function )(ng , we denote by ))(( ng as follows. 














o

o

nnforngcnfngcthatsuch

nandccconstantspositivenf
ng

)()()(0

,:)(
))((

21

21
  

A function )(nf  belongs to the set ))(( ng if there exist positive constants 
1c  and 

2c  

such that the function )(nf is in between )(1 ngc and )(2 ngc , for sufficiently large n. 

Because the ))(( ng is the set of function, we could write ”))(()(“ ngnf  . However, 

we will usually write ”))(()(“ ngnf   to express the same notion. 

2.  notation  (Big-O) 

The notation  asymptotically bounds a function from above. We used for an 

asymptotic upper bound. For a given function )(ng , we denote by ))(( ng , as follows. 














o

o

nnforncgnfthatsuch

nandcconstantspositivenf
ng

)()(0

:)(
))((  

A function )(nf  belongs to the set ))(( ng if there exist a positive constant c  such that 

for all values n to the right of 0n , the value of the function )(nf  is on or below )(ncg . 
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Because the ))(( ng is the set of functions, we could write ”))(()(“ ngnf  . However, 

we will usually write ”))(()(“ ngnf   to express the same notion. 

3. notation  (Big-Omega) 

The notation  asymptotically bounds a function from below. We use for an 

asymptotic lower bound. For a given function )(ng , we denote by ))(( ng as follows. 














o

o

nnfornfncgthatsuch

nandcconstantspositivenf
ng

)()(0

:)(
))((  

A function )(nf  belongs to the set ))(( ng if there exist a positive constant c  such that 

for all values n to the right of 0n , the value of the function )(nf  is on or above )(ncg . 

Because the ))(( ng is the set of functions, we could write ”))(()(“ ngnf  . However, 

we will usually write ”))(()(“ ngnf   to express the same notion. 

2.7 Complexity Theory  

The following relevant complexity theory is taken from [18,19,20] and will be used in 

classifying class of the problems we are interested. Algorithms have variety time 

complexity on their input size n in the worst cast running time. For example, )( knO , for 

a constant k , )1(O , )(ln nO , or )2( nO . If an algorithm has worst-case running time 

equal to )( knO for some constant k , we will call it is the polynomial time algorithms. 

However, not all problems can be solved in polynomial time, for example, Halting 

Problem, SAT, 3SAT, Hamiltonian, Set cover, Clique, and Knapsack problem. Normally, 

we group the problems that can be solved in polynomial-time as being tractable, or easy, 

and problems that require superpolynomial time as being intractable, or hard.  

“Problem Class P” is the problems that can be solved in polynomial time by Deterministic 

Turing Machine. 

“Problem Class NP” is the problems that can be solved in polynomial time by Non-

Deterministic Turing Machine, polynomial time verifiable. 
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“Problem Class NP-complete” is the problem is class NP whose status is unknown. No 

polynomial-time algorithm has yet been discovered for an NP-complete problem, nor has 

anyone yet been able to prove that no polynomial-time algorithm can exist for any one of 

them. They are the hardest problem in class NP since one problem in class NP-complete 

can be solved in polynomial time, all other problems in class NP-complete can also be 

solved in polynomial time.  

The theory of NP-completeness is designed for decision problems because of their 

counterpart to study in mathematically in the theory of computation. The decision 

problem composed of generic instances, input to a particular problem, and a question, 

asked in term of the generic instances. Because we do not know the status of NP-

complete, we find the way of showing that one problem is no harder or no easier than 

another. The procedure is called a polynomial time reduction algorithm. 

Let us consider a decision problem A and B. A problem A can be reduced to another 

problem B if any instance of A can be polynomial time rephrase as an instance of B and 

the solution of instance of B corresponding to the solution of the instance of A. We call A 

has polynomial time reducible to B written BA p . And in the sense the problem A is 

“no harder to solve” than the problem B. Polynomial-time reductions provides a formal 

form for showing that one problem is as least as hard as another. That is, if BA p  then 

A is not more than a polynomial-time factor harder than B. Because of the NP-

completeness is to show the hardness of a problem, we use polynomial-time reductions 

to show that a problem is NP-complete as follows. 

To prove that a problem   is NP-complete, we have to show that 

1. NP  

2.some  known NP-complete problem '  transform to  . 

If   satisfies only the second properties, we called it is NP-hard. 

We cannot assume that there is absolutely no polynomial-time algorithm for an NP-

complete problem because no one prove that there is no polynomial time algorithm for 

the NP-complete problem. And no one know whether P=NP?   
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Theorem [18] 

If any NP-complete problem is polynomial-time solvable, then P=NP. Equivalently, if 

any problem in NP is not polynomial-time solvable, then no NP-complete problem in 

polynomial-time solvable. 

 

We handle problems with different complexity class in different ways. If a problem is 

tractable, there is a polynomial time algorithm to solve it. Then, we find asymptotic 

efficiency and proof correctness of the polynomial time algorithm. We try to improve the 

effectiveness and proof optimum. For intractable problems, we will find an 

approximation algorithm to give an approximation value which is close to the optimal 

values or solve some particular case in polynomial time.  

2.8 Graph Theory  

In this section, we discuss the basic concepts from graph theory needed in this thesis [21, 

22]. The definitions relate to a graph theory are stated as follows: 

 

 

  

 

Figure 2.2 Sample graph 

Graph is a diagram that can be represented by means of points (vertices, nodes) and lines 

(edges). We can represent a graph as ),( EVG  , where V is the set of vertices and E is 

the set of edges. 

The degree of a vertex is the number of edges which have the vertex as an endpoint.  

Two vertices u and v  of a graph G is said to be adjacent if there is an edge to join them. 

The two vertices are also incident to the edge. Two edges are adjacent if they have at least 

one vertices in common. 

If two graphs are a one-one correspondence between their vertices, that is two vertices 

are joined by an edge in one graph if and only if the corresponding vertices are joined by 
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an edge in the other, we call the two graphs are isomorphic. They can be regarded as the 

same graph. 

Simple graphs is the graphs that have no loops or multiple edges If there is more than one 

edge join a pair of vertices, the edges are called multiple edges. If an edge has two ends 

from a point, this is called a loop.  

A walk is a sequence of edges. The number of edges in a walk is call length. A path is the 

walk which no vertex appears more than once. A trail is the walk which no edge appears 

more than once. A cycle is the path that has first and last points are the same. A circuit is 

the trail that has first and last points are the same.  

A forest is the graph which contain no cycle. A connected graph is the graph that has a 

path connect every two vertices. If there is only one the connected path between every 

pair of vertices in the graph, we call the graph tree. A tree is a connected forest. A planar 

graph is the graph that can be drawn without crossing edge. A plane graph is the planar 

graph that every node can be mapped to a point in a plane. 

A null graph is the graph with no edges. A complete graph is a simple graph which has 

an edge connect every pair of vertices. A regular graph is the graph that every vertex has 

the same degree. 

A bipartite graph is the graph that its vertices can be separate into two disjoint sets 21,VV  

and every edge of the graph G will join the vertex in 1V to the vertex in 2V . A bipartite 

graph is complete if its edges join every vertex in 1V to every vertex in 2V . The complete 

bipartite graph which has 1|| 1 V  is called a star graph. 

A directed graph or digraph is the graph which the edges have a direction associated to 

them. The ordered pair represent an edge is called arc. An arc ),( vu  or uv  is an arc from  

u  to v , which is different from arc ),( uv  or vu  is an arc from v  to u . 

2.9 Summary  

In this chapter, we provide some background on mobility models. There are many 

wireless models proposed, but we choose the model of Greenlaw and Kantabutra. This 
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model is a theoretical mobility model proposed from the perspective of the complexity 

theory in a two-dimensional grid. This model also provides framework factors that we 

commonly use in a mobile wireless network. Those are the reasons that we choose 

Greenlaw and Kantabutra model. The knowledge about the asymptotic notation, the 

growth of functions, the complexity theory and the graph theory also states and will be 

used throughout the contributions that we will show in the later chapters. 


