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CHAPTER 2 

 

Methodology 

 

This chapter provides a summary of the methodology and recent developments in the 

financial econometrics. This part of the study is divided into five subsections for using 

in Chapter 3, 4 and 5. Firstly, to determine the optimal portfolio weight, we present 

three different methods that are used to compute based on the risk and return 

framework. Secondly, we present the Demster-Shafer theory and linear belief function 

for combining the information from different events. Thirdly, we explain the GARCH 

model and the vector autoregressive model. Fourthly, we give some detail of the 

copula theory. Lastly, we provide the concept of extreme value theory for applying 

the financial data.  

 

2.1 Portfolio Optimization Method 

 

2.1.1 Markowitz method 

In the conventional method, Markowitz (1952) introduced this method based on 

risk and return for portfolio selection problem. The return of a portfolio can be 

defined by the expected return  and modeled as a weight sum of each stock’s 

mean returns   from stock 1 to stock  

 

 

 

(2.1) 

 

where  is the weight of each stock returns in portfolio. The risk of portfolio 

can be defined by the variance  and modeled as a weight sum of variance-

covariance of each stock’s returns.    
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(2.2) 

 

where  is variance-covariance of stock return in portfolio. We also write the 

portfolio variance in matrix notation as 

 

 

 

(2.3) 

 

To optimize the portfolio by Markowitz framework, we can minimize the 

variance of portfolio in equation 2.2 subject to the return of a portfolio in 

equation 2.1. This problem can be set up as: 

 

 

 

(2.4) 

 

where  is the summation of return stocks,  is the minimum 

level of portfolio return that the investors would like to receive from this 

portfolio. The sum of the weight of all stock returns invested must be equal to 

one and the last constraint is the non-negativity weight, which means no short 

sales in this portfolio. Although, this method has some drawback as the 

assumption of multivariate normality is in sample returns. 

 

2.1.2 Entropy method 

Alternatively, this study applied the entropy method to the portfolio selection 

method. Entropy in the information theory refers to the uncertainty related with 
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random variable. The basic concept of entropy was proposed by Shannon 

(1948).             

                         

Definition of the entropy: Let   be the random variable that is taking value in 

 and with probabilities  and  , . 

To measure the uncertainty, let  be the information content that interprets 

the uncertainty that is associated in the event  (see Golan et 

al. (1996))                       

               

 
 

(2.5) 

 

The entropy  of a discrete random  depends on the probabilities of  and 

the entropy is defined by the expected informational content as   

 

 

 

(2.6) 

 

Then, Janynes (1992) applied the entropy to maximum entropy principle that is 

a technique to estimate the probabilities. The study used this method for a 

portfolio selection. The mean entropy method is the following: 

 

 

 

(2.6) 
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Moreover, this study also emphasizes the entropy method for optimizing the 

portfolio. We applied the entropy into the objective function subject to the first 

(mean) and second (variance) moments in statistics. Let  is the maximum 

level of portfolio return and is the maximum level of portfolio variance that 

the investors would like to receive from this portfolio. We say this method that 

the mean-variance entropy method is the following:  

 

 

 

(2.8) 

 

The excess return per unit of risk is the simple ratio formula for comparing the 

portfolio performance that was proposed by Sharpe (1966). This study proposes 

a new method that used the idea of the Sharpe ratio for constructing the 

constraint of entropy method. We call it the Sharpe ratio entropy method. 

 

 

 

(2.9) 
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2.1.3 VaR and CVaR portfolio optimization 

Previously, many investors use variance for the decisions involving risk 

measures. However, variance has some limitations as it is evaluated under the 

symmetry assumption that is not suitable for measuring the market risk. 

Alternatively,  is one of a risk measure that can specify only the scenario of 

downside (or upside) risk by defining the potential loss for a given confidence 

level.  

 

Definition of : Let  be the random returns of  assets,  is a set of 

feasible portfolios,  is the confidence level and the linear loss function 

of portfolio  not exceeding a given threshold . 

 of portfolio is defined as follows: 

 

  (2.10) 

 

However,  have some weakness for portfolio analysis because it doesn’t 

satisfy the properties of subadditivity and concavity in case of non-elliptical 

distributions. Rockafellar and Uryasev (2000) developed a risk measure called 

the conditional value at risk (or expected shortfall). 

 

Definition of : Let be the random variables and  is the density 

function of  ,  is the expected loss exceeding the  in the confidence 

level at , which is defined by  

 

 

 

(2.11) 

 

To calculate the optimal portfolio weight, this study set up the  

optimization problem by the following this equation 2.12 
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(2.12) 

 

In equation 2.12,  is a vector of expected return, is the expected portfolio 

return and  is the sum of portfolio weights. 

 

2.2 Belief Functions 

 

The theory of belief functions was proposed by Dempster (1967) and Shafer (1976), it 

was also called the Dempster and Shafer theory (DST). This theory emphasized the 

process for combining the evidence from different sources. There are two important 

components applied in the mathematical probability to measure the degrees of belief 

for expressing the subjective judgments. The degrees of belief are combined by 

following Dempster’s rule. 

 

For the basic concept of this theory, let  be a frame of discernment, the mass 

function   (also called the basic probability assignment or belief mass assignment) 

is a mapping from subsets  of a frame of discernment into the interval between zero 

and one : , in which  and  .  is the 

degree of evidential support for focal element . To determine the upper and lower 

bound of an interval by following the mass function, there are two important measures 

called belief and plausibility functions. Belief refers the lower bound for a given set  

, which can be represented by  ,  and . 

Plausibility refers to the upper bound for a given set  , which is defined by  

 

 ,  and . 
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Definition of Dempster’s rule: let  and  are two mass functions that are the 

evidences from two different sources on  ,  is the operator of combination. The 

combination of two belief structures  can be defined as follows: 

 

 
 

(2.13) 

 

where  represents the degree of conflict between  and 

. If  is large value, the conflict between  and  is large size.  is 

normalization. 

 

Linear Belief Functions (LBF) 

Liu (1996), Liu (1999) and Liu,Shenoy and Shenoy (2003) introduced the linear 

belief function (also called Gaussian belief function), which is the extension of 

Dempster Shafer theory in case of continuous variables. LBF also is special type 

of belief function in the sense of focal element as parallel sub-hyperplanes over 

a hyperplane. In general, belief function is defined by the belief mass 

assignment (bma) over a class of focal element, In case of LBF, bma is the 

Gaussian distribution across the sub-hyperplanes. LBF represents the logical 

and uncertainty (probabilistic) knowledge. Logical knowledge is identified by 

linear equation, a certainty hyperplan. Uncertainty knowledge is identified by 

the Gaussian distribution across all parallel focal elements over the hyperplanes. 

For understanding, Suppose that there is the representation  for 

LBF in random variable space . where   is the certainty space,  is the 

belief space,  is the linear space,  is the covariance and  is the expectation. 

  and  are defined by a variable in  under Gaussian distribution. 

 where  and  are in the subspace of . The belief space is 

the combination between  and   (  ) where  is the uncertainty 

space.  in  is certain when the Gaussian distribution is zero variance for the 

variable in the certainty space. If nonzero variance in variable , then we can 
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call that  is variable in the uncertainty space . Therefore, Liu (1999) 

explained that the key of LBF is to identify the mean and variance-covariance of 

variables into the moment metrics for transforming a piece of evidence as 

follows; 

 

Example 1: Let  is a random variable of the normal distribution with 

mean (  and variance ( ), which can be represented by the moment 

matrix as:  .If there is the case of no uncertainty, then the 

variance is . the moment matrix is  

 

Example 2:  Let  and  are two random variables under the normal 

distribution with the mean  and variance-covariance . 

The moment matrix can be written as:  

 

 

 

(2.14) 

 

Example 3:  Let  is the liner equation. We can specify the 

linear equation in the term of partial moment matrix as:   

 

 

 

(2.15) 

Example 4:  Let  is the liner regression with 

.We can this regressions in the term of partial moment matrix 

as:   

 

 

(2.16) 
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Moreover, Liu (1996) showed that the combination rule in LBF of variable 

space was agreed with Demster (1990) for a combination in finite case that was 

replaced by Gaussian density function in LBF. Liu (1999) presented that matrix 

sweeping technique can be used alternatively for the Dempster’s rule of 

combination. The sweeping technique is composed of forward sweep and 

reverse sweep. This technique is used for combining the means, variance, 

residual covariance and regression coefficients. 

 

Suppose that  be a random return under the assumption of Gaussian 

distribution,  is expected mean,  is variance and 

 is covariance between market returns  and  . 

 is a moment matrix that presents the parameters in Gaussian 

distribution. Liu (1999) showed that the operation on moment matrices can be 

explained by the definitions below.      

       

Definition of Marginalization: Liu (1999), suppose  is the 

moment matrix for the random variables and  and  represents the 

marginal of  to  that is implies to the conditional moment 

matrix of linear regression coefficient as follows: 

 

     (2.17) 

 

Definition of Forward sweep: Liu (1999), suppose  is the 

moment matrices for the random variables  from  to  

matrices. To combine them, all moment matrices must be transformed to 

fully swept matrices   by using forward sweeping. 

Forward sweeping of   on  can be represented by 

 as follows: 
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(2.18) 

 

Where 

 

 

 

 

 

 

Definition of Reverse sweep: Liu (1999), suppose  is fully 

swept matrices for the random variables  from  to  

matrices. Conversely, the fully swept matrices can be transformed to the 

moment matrices by using reverse sweeping. Reverse sweeping of 

  on  can be represented by  as 

follows: 

 

 
 

(2.19) 

 

Where 
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Definition of The combined linear belief function: Liu (1999), suppose 

 and  are fully swept matrices. The 

combination of  linear belief function is the direct sum of fully 

swept matrices as follows: 

 

 

 
(2.20) 

 

2.3 Time Series Models 

 

2.3.1 Vector Autoregressive Model 

To consider the relationships between the variables in the case of multivariate 

time series, a vector autoregressive (VAR) model can be described for this 

situation. The reduced form VAR can be defined as  

 

  (2.21) 

 

where  is a  vector of intercept parameters,  are the  

coefficient matrices for lag  and the optimal lag length is conducted by 

AIC, SIC and HQ.   is  a vector of market returns at time  

, ,…,  are  the vectors of market returns at time , 

and  is a  vector of  white noise process. Additionally,  is assumed to 

be  with following ,   (no serial 

correlation) and  is the variance-covariance matrix of the white 

noise process. The simplest VAR can be determined by  

 

  (2.22) 
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where  , X  ,  and . The 

VAR parameters can be estimated by multivariate least squares (MLS) method 

for  yields 

 

  (2.23) 

 

2.3.2 Conditional Heteroscedastic Models 

To estimate the volatility of a time series in financial data, Engle (1982) 

proposed a non-linear model that describes the risk under unstable condition 

namely the autoregressive conditional heteroskedasticity (or called ARCH) 

model. Bollerslev (1986) extended the ARCH model to allow the conditional 

volatility on the past value of itself namely generalized autoregressive 

conditional heteroskedasticity (or called GARCH) model. The basic GARCH 

(p,q) model can be specified by 

 

  (2.24) 

 

where  is the residuals, which are equal to the conditional variance ( or 

volatility) and the standardized residuals. Generally,   is i.i.d (0,1) random 

variables. , ] is the parameter set of the GARCH model that requires 

the stationary condition as , ,  and  .  

The positive and negative returns in the standard GARCH model are given the 

same volatility, but in a general situation it may not appear to be presented in 

such a format. Then, Glosten et al. (1993) extended the standard GARCH model 

that takes into account the asymmetries of volatility process namely the GJR-

GARCH model.   

 

 

 

(2.25) 
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where is leverage terms that represents the term of the asymmetric 

volatility,  if  for negative shock and  for otherwise. 

, , ] is the parameter set of the GJR-GARCH model with the 

stationary condition as follows:    

 

 
 

and  . 
 

 

In estimating all parameters of the GARCH models given the distribution  

of the standardized residuals, we can be fitted by using maximum log-likelihood 

(MLL).  

 

 

 

(2.26) 

 

where  is mean residuals and  are the parameter sets to be 

estimated. 

 

2.4 Copula Approach 

 

From the previous section, the dependence between two variables can be measured by 

Pearson’s correlation coefficient; however there are some restrictions such as 

measuring the linear dependence between two variables under normal distribution, 

where the financial data have been tail-dependence between variables for some time. 

Alternatively, copulas are useful method for describing the dependence structures 

between elements of random vectors and it can provide a specific dependence 

structure to simulate the data. Copulas are the joint distribution functions into one 

dimensional marginal distribution function as  
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 Definition of Copula: Let  is set of random variables and a - 

dimensional copula is a multivariate CDF of  with standard uniform marginal 

distribution  . The multivariate distribution of copulas is represented by 

 that   is a mapping from:  from a unit 

hypercube into the unit interval.  

 

Sklar provided the theorem for the dependence between the joint distributions for 

representing a copula. 

 

Sklar’s Theorem (1959): Consider  be vector of random variables for  

  with a joint - dimensional distribution function  and marginal 

distributions  . There is an unique copula   that can be written by 

 

 …,  (2.27) 

 

and equation 2.27 can be written  

 

 …, , (2.28) 

 

where  is the inverse distribution function of the marginal  and  In 

equation 2.27, we can write the copula density function  by partial  differentiation. 

 

 

 

(2.29) 

 

and we can write the joint density function  as follows: 

 

 

 

(2.30) 
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(2.31) 

 

(2.32) 

 

In equation 2.32 shows that the joint density function is composed of the copula 

density function and the marginal densities.   

 

2.4.1 The Multivariate  -Copula 

The most popular copulas based on the multivariate -distribution, the standard 

-copula is used to measure symmetric dependence and it can handle fatter tails 

dependence than Gaussian copula. The -copula in - dimensional distribution 

is defined by 

 

 
 

(2.33) 

 

where  denotes the CDF of the multivariate -distribution with correlation 

matrix  and degree of freedom .  denotes an CDF of inverse univariate 

-distribution. Similarly, the multivariate -copula can also be written as 

 

 

 

 

 

(2.34) 

 

For estimating the parameters in the -copula, we used the density function in 

equation 2.34.  
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(2.35) 

 

where  is the gamma function,   is the vector of 

inverse univariate -distribution. We use the density function in equation 2.35 to 

construct the log-likelihood function and maximize the log likelihood function 

with respect to  and .  

 

 

 

(2.36) 

 

2.4.2 Vine Copulas 

In the previous section give the detail has been given about the multivariate 

copulas. This section illustrates the alternative the method for determining the 

dependence structures for the high dimensional variables (or more than two 

variables) based on pair copula constructions (PCC). Bedford and Cooke (2001, 

2002) introduced PPC that the multivariate copulas are determined by various 

bivariate copulas and nested tree structure and it is also called the regular vine 

copulas. Subsequently, Aas et al. (2009) extended special structure of regular 

vine copulas, namely the canonical (C)-vine copula and the drawable (D)-vine 

copula. This thesis focuses on two vine copulas. Let  is set of 

random variables for -dimensions. There are the number of trees  and 

bivariate copula densities  in the vine structures. ! is the possible 

vines. The density function  of C-vine can be expressed as follows:  

 

 

(2.37) 
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where  is the marginal density of ,  is the bivariate copula density 

with the parameters   that also represent the pair-copulas,  

and  are the conditional distribution function on . 

the density function  of D-vine can be expressed as follows: 

 

 

(2.38) 

 

Where , is the bivariate copula density with the parameters  

.  and  are the conditional distribution 

function on   ,  represents the trees and  represents the 

edge in each tree. Regarding the conditional distribution in equation 2.37 and 

2.38, we can compute it according to Joe (1996) as  

 

 

 

(2.39) 

 

where   be the bivariate copula distribution between  and  with 

conditional on   and  is the vector  that not obtain the component . In 

figure 2.1 and 2.2, we give the examples of C and D-vines for 5 dimensions. 

There are  possible vines for estimation. Hence, this study uses the 

maximum of the absolute empirical Kendel’s tau values from all bivariate 

copulas to order the possible vines. 
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Figure 2.1 Five dimensions of C-vine structure 

 

 

 

 

 

            

 

 

 

Figure 2.2 Five dimensions of D-vine structure 

 

After we got the appropriate vine structure, we use the maximum likelihood 

method to estimate the parameters of copulas in the vine structures as follows: 

 

 

(2.40) 

 

 

(2.41) 

 

where  and  are the bivariate copula densities in 

equation 2.37 and equation 2.38. 
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2.5 Extreme Value Theory 

 

Lastly, this methodology is the combination between the probability theory and 

mathematical statistics for analyzing about rare events. Normally, there are two 

important methods for identifying in extreme data, namely the peak over threshold 

method (POT) and block maxima method (BM). The first approach observes the 

extreme data that exceeds over a given threshold. The second approach selects the 

extreme data from maximum value of data per period. With regards to the study by 

Embrechts et al (1997), McNeil and Frey (2000), this thesis applies EVT with 

econometric model in high frequency data (financial data) that focuses on POT 

method. The popular one of POT method to approximate the excess tail events in 

financial context is the Generalized Pareto Distribution as below. 

 

Definition of Generalized Pareto Distribution (GPD): Let  are random 

data that satisfy the property of independent identically distributed. The 

Generalized Pareto distribution function can be defined as 

 

 

 

(2.42) 

 

where  ,  if  and    are the condition of GPD.  

and   are scale and shape parameters,  is the exceedance over  a 

given threshold .  

 

Definition of Generalized Pareto probability density function: it can be defined 

by the function  as 
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(2.43) 

 

where . To find the optimal parameters in GPD, we maximize 

the log likelihood function of the  observations as follows: 

 

 

 

 

(2.44) 

 


