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CHAPTER 4 

 

 

Risk Analysis in Asian Emerging Markets using Canonical Vine 

Copula and Extreme Value Theory   

 

 
This chapter is developed from the original article “Risk analysis in Asian emerging 

markets using canonical vine copula and extreme value theory”. The contents are   

extracted from the original article, which was published in “Special Issue (2014) on 

Copula Mathematics and Econometrics” of the Thai Journal of Mathematics, pp. 59-

72 and this article can be found in the appendix B. The methodology used in this 

study was explained in Chapter 2. 

 

4.1 Introduction 

 

Volatility implies uncertainty that has implications for investment decisions. Hence, 

investors can find opportunities in gaining benefit with the situation when they 

implement efficient information and tools. In the context of risk modeling, Engle 

(1982) and Bollerslev (1986) proposed the econometric modeling of volatility that 

assumes the conditional on variance, namely, GARCH, which is taking into account 

the conditional heteroskedasticity inherent in time series. The GARCH models are 

able to yield VaR and  estimates. The recent financial situation has experienced 

extreme risk or crises in the last two decades, such as the Asian financial crisis in 

1997, the U.S. Subprime crisis in 2007, and the EU debt crisis in 2009. Such studies 

conducted by McNeil and Frey (2000), Bali (2003) and Marimoutou et al. (2009) 

have applied EVT for an alternative effective framework to estimate the tail of a 

distribution. In the EVT based method, the GARCH models can estimate the volatility 

of the return series.  EVT is used to capture the tail of the standardized residual 

distribution of the GARCH models before estimating . Bali and Neftci (2003), 

Bystrom (2005), Fernandez (2005) and Chan and Gray (2006) also found that the 
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GARCH-EVT model had a more accurate estimation of  than that obtained from 

the parametric families. 

 

Bollerslev (1990) and Engle (2002) improved the GARCH models to estimate the 

conditional linear dependence of volatility in pattern of multivariate random series 

and assumed multivariate normality. Subsequently, Lee et al. (2006), Chiang et al. 

(2007), Syllignakis et al. (2011), Ayusuk (2012) and Hwang et al. (2013) applied this 

method in topics that were related to the international diversification from the 

perspective of market dependence. Gupta and Guidi (2012) suggested that the 

conditional correlations between India and Asian markets have increased especially 

during the periods of international crisis. If dependence is not limited to linear 

correlation, then the usual correlation of returns may not provide sufficient 

information. Sklar (1959) proposed the copulas function to describe the joint 

dependence of random uniform marginal distribution. Copulas are flexible to analyze 

the dependence structure more than Gaussian or t distribution. According to the 

studies of copula in financial, Embrechts et al. (2002) introduced copula in finance to 

relax the assumption of dependence structures between random returns. Patton (2009) 

explained an overview of copula based models in financial applications. Bedford and 

Cook (2001,2002) and Kurowicka and Cooke  (2006) developed graphical model to 

determine the copula networks which can be called pair copulas, then Aas et al.(2009) 

induced D and C-vine copula for inferential statistics. Subsequently, Nikoloulopoulos 

et al. (2012), Zhang (2014) and Sriboonchitta et al. (2014a) applied vine copula in the 

empirical studies for the international diversification of stock markets.  

 

According to Asian markets, Wang (2014) suggested that East Asian markets are less 

responsive to the shocks in the USA after the global financial crisis. The Chinese 

economy has been rapidly becoming one of the important role in the Asian market.  

Jayasuriya (2011), Zhou et al. (2012) and Glick and Hutchison (2013) found evidence 

that the Chinese market had an impact on the Asian market. To take advantage of the 

portfolio allocation for international diversification and making it an alternative 

choice for investment, we focused on portfolio diversification based on risk analysis 

in the application of the Asian emerging markets. 
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In this chapter, we focus on two aims. For the primary aim, we used conditional EVT 

or GARCH-EVT with canonical vine copula to study the dependence across Asian 

emerging markets. As for the secondary aim, we will compute the market risk and the 

international portfolio performance using  and  technique. The remainder of 

this chapter is organized as follows. We give more details about copula, EVT and 

portfolio optimization technique in methodology section. We exhibit the data 

selection, descriptive statistics and the results. In the last section a conclusion has 

been provided. 

 

4.2 Methodology 

 

Using a three stage approaches, we estimated AR-GARCH model for the conditional 

volatility in stage one. To create the GARCH residuals, this study used generalized 

Pareto distribution (GPD) to capture the standardized residuals in the extreme tails 

and Gaussian distribution in the interior. The vine copula is used for the analysis of 

the dependence structures between markets in stage two by using . Finally, We used 

simulation procedure to generate the dependent return series for calculating  and 

. 

 

4.2.1 The GARCH-EVT model 

We use the simplified AR-GARCH model with mean equation as a first 

autoregressive process and the conditional variance equation as a GJR-GARCH 

(1,1) for modeling asymmetric volatility collecting. 

 

  (4.1) 

  and   (4.2) 

 

where  if  ,  if  ,   

is a  market return vector at time ,  are 

parameters,  is return residuals and  is standardized residuals and 
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it must satisfies independently and identically distributed, then the marginal 

distribution of standardized residuals can define as Gaussian distribution 

is  for general situations and GPD to select the extreme situations 

that are peaks over threshold (POT). 

 

 

(4.3) 

 

for    that given a threshold , where  is the number of observation, and 

 is the number of observations that excess over the threshold ,  is the scale 

parameter ,  is the shape parameter that can estimated by maximum likelihood. 

For , this distribution close to the Gumbel distribution, for , the 

distribution close to the Weibull distribution, for , the distribution belongs 

to the heavy-tailed distribution. 

 

4.2.2 The Vine Copula 

Sklar (1959) proposed the copula theory, which is a function that links 

univariate marginal to their multivariate distribution and it can also be the 

models for the dependence between random variables by copulas. Let 

 be random variables for , the continuous marginal 

distributions are ,…,  and  be a multivariate 

distribution, then a n-dimensional copula  can defined 

by  

 

F ( ,…,  (4.4) 

 

then we can write 

 

,…,  (4.5) 
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Let  is continuous and strictly increasing. The probability density function of  

can be defined as   

 

 

(4.6) 

 

We can write left hand side (4.6) as 

 

 (4.7) 

 

where  is the copula density and  are the corresponding 

marginal pdf. Bedford and Cooke (2001, 2002), who introduced canonical (C) 

and drawable (D) vines. Chollete et al. (2009), Sriboonchitta et al. (2014b) 

suggested that C-vine copula dominate alternative dependence structures. 

 

 

 

 

 

Figure 4.1 Five dimensional canonical vine construction 

 

For this study we used a five-dimensional variable which has 240 options to 

design the possible pair copula constructions. Let us consider the five 

dimensional using C-vines, the density function which can be expressed as the 

following: 
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(4.8) 

 

Aas and Berg (2011) showed that the conditional distribution functions are 

computed by using partial derivatives of the bivariate copulas at the previous 

level as the following: 
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(4.9) 

 

4.2.3 Value at Risk, Conditional Value at Risk and Portfolio Optimization 

In this section, we present the portfolio analysis determined by the risk measure. 

In classical work, Markowitz (1952) provided a quantitative procedure for 

measuring risk and return that used mean returns and variances to derive an 

efficient frontier where an investor could either maximize the expected return 

for a given variance as well as minimize the variance for a given expected 

return. Over the past decade, the  is a very popular model [see Duffie and 

Pan (1997), RiskMetrics (1996), Gourieroux et al.(2000) and etc.] to measure 

risk; it means the maximum amount of loss that are not exceed on a given 

confidence level ( ) over a time horizon. We can perform the following 

equation 4.10 
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 (4.10) 

Let  is the confidence level, the probability of  not 

exceeding   a given threshold , An alternative method which is defined risk by 

the expected loss of , it called the conditional value at risk (or expected 

short fall) that calculated by 

 

 

(4.11) 

 

Rockafellar and Uryasev (2000) introduced the optimization portfolio problem 

using  minimizing, which is able to be simplified as the following 

formulas:  

 

 
(4.12) 

 

4.3 Data 

 

We collected daily data from January of 2008 to December of 2013 from the 

DataStream. With regards to the literature review, we considered a portfolio problem 

from five attractive markets in Asian emerging countries, which are China (the 

Shanghai composite index: SC), India (the Bombay stock exchange: BE),  Korea 

(Korea exchange: KE) , Taiwan (the Taiwan stock exchange: TE) and Thailand (the 

stock exchange of Thailand: SET). The stock return series are generated by 

 

 

 

 

 

 



 

47 

Table 4.1 Descriptive measures for return series 

 SC BE KE TE SET 

Min -0.080437 -0.116044 -0.148764 -0.067351 -0.110902 

Max 0.090343 0.159900 0.202302 0.065246 0.075487 

Mean -0.000588 0.000022 0.000021 0.000022 0.000278 

S.D. 0.016770 0.016805 0.025203 0.013533 0.014206 

Skewness -0.179702 0.271395 0.544274 -0.293334 -0.662498 

Kurtosis 6.960423 11.98158 15.06218 6.173628 9.822351 

Jarque-

Bera 

1023.306 

[0.0000] 

5239.008 

[0.0000] 

9491.497 

[0.0000] 

674.0081 

[0.0000] 

3125.418 

[0.0000] 

ADF 

statistics 

-39.94339 

[0.0000] 

-37.57615 

[0.0000] 

-42.45914 

[0.0000] 

-37.55748 

[0.0000] 

-38.26316 

[0.0000] 

            

Table 4.1 reports the descriptive statistics for daily returns. The mean daily return is 

mostly positive, mostly negative skewness and the non-normality of all distribution 

which rejected the null hypothesis by the high Jarque-Bera statistics. The ADF test 

confirmed that all return series are stationary at level. 

 

4.4 Empirical Results 

 

Table 4.2 shows the estimated parameters for mean and variance equations of AR(1) 

GJR-GARCH with Gaussian kernel and generalized Pareto distribution, that is called 

the "semi-parametric" distribution. Figure 4.2 presents the in-sample conditional 

volatility that is calculated by equation 4.2 and it is noticed that the five markets were 

highly volatile during the global financial crisis. For the diagnostics test in Table 4.3, 

the standardized residuals are non-normality distribution from the high Jarque-Bera 

statistics. Meanwhile, the standardized residuals satisfy the i.i.d. assumption because 

the Q-statistics accept the null hypothesis which implied that each series are not 

serially correlated. These findings confirm that the GARCH model should apply EVT 

on the standardized residuals. We transform the standardized residuals into uniform 

[0,1] based on empirical processes, then we also use Kolmogorov-Smirnov (KS) 

statistics to confirm that the data are uniformly distributed. 
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Table 4.2 Parameter Estimates for AR(1)-GJR GARCH-EVT models 

 SC BE KE TE SET 

Mean equation      

 
-0.000134 

[0.000301] 

4.62e-06 

[0.000274] 

0.000371     

[0.000382] 

0.00040783     

[0.000241] 

0.001011      

[0.000255] 

 
-0.018851     

[0.023660] 

0.03723       

[0.02703] 

-0.039035      

[0.026614] 

0.041258       

[0.026476] 

0.0095189      

0.027025 

Variance equation     

 
3.80e-07    

[3.48e-07] 

2.29e-06   

[6.82e-07] 

3.65e-06    

1.24e-06] 

5.01e-07   

[2.94e-07] 

4.27e-06    

[1.15e-06] 

 
0.9795        

[0.00479] 

0.9139        

[0.012078] 

0.9324         

[0.011657] 

0.95462        

[0.008196] 

0.86876        

[0.018241] 

 
0.0061551      

[0.007331] 

0.006155      

[0.007331] 

0.000000              

[0.012735] 

0.000000              

[0.009873] 

0.047426       

[0.018295] 

 
0.025594       

[0.009471] 

0.025594       

[0.009471] 

0.11359        

[0.021114]] 

0.078569       

[0.014977] 

0.11959        

[0.028061] 

Extreme value threshold     

 0.0177 0.0182 0.0230 0.0143 0.0145 

 -0.0006  0.1155 -0.1087 0.0373 0.0397 

 0.5559  0.5173 0.5886 0.4166 0.4737 

 -0.0194 -0.0181 -0.0248 -0.0163 -0.0166 

 0.0147    -0.059 -0.0198 -0.0177 -0.0438 

 0.7031  0.5953 0.6851 0.6471 0.6845 

Note: In parentheses are standard errors of the coefficient estimates. 
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Table 4.3 Diagnostic statistics 

 SC BE KE TE SET 

Jarque-Bera 1288.063 

[0.000] 

926.236 

[0.000] 

1912.282 

[0.000] 

1215.095 

[0.000] 

414.347 

[0.000] 

Q(3) 4.1238 

[0.248] 

1.8630 

[0.601] 

2.3566 

[0.652] 

0.7779 

[0.855] 

4.1495 

[0.246] 

Q(6) 6.0856  

[0.414] 

4.3268 

[0.633] 

2.5839 

[0.859] 

4.6500 

[0.589] 

7.1647 

[0.306] 

KS test 0.0315 

[0.0922] 

0.0222 

[0.4277] 

0.0146 

[0.8935] 

0.0370 

[0.1215] 

0.0305 

[0.112] 

Note: In parentheses are the p-value of the test statistics. 
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Figure 4.2 Estimated conditional volatility of SC, BE, KE, TE, SET in sample period 
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Table 4.4 Estimated parameters for five dimensional C- vine copula decomposition 

Copula 

Family 

Margin                     Kendall’s        

tau 

AIC 

  
0.265650 

[0.023600] 
- 

0.171173 

 

-103.17465 

  
0.239088 

[0.024060] 
- 

0.153697 -82.96829 

  
0.355066 

[0.050364] 

1.100088 

[0.027343] 

0.228032 -222.21381 

  
1.119008 

[0.030929] 

0.259820 

[0.039628] 

0.164719 -116.32319 

  
0.313743 

[0.023594] 

19.780978 

[10.003315] 

0.203166 -146.38576 

  
0.111484 

[0.041479] 

1.142413 

[0.026810] 

0.170877 -120.53664 

  
0.431295 

[0.020672] 

15.560217 

[6.296301] 

0.283887 -295.95646 

  
1.624721 

[0.158124] 
- 

0.175962 -103.67280 

  
0.938040 

[0.158465] 
- 

0.1033231 -33.06613 

  
0.207901 

[0.023890] 
- 

0.1333264 -65.88185 

Total     -1290.18 

Note: 1 = SC , 2 = BE, 3 = KE, 4 = TE , 5 = SET and  in parentheses are standard 

errors of the coefficient estimates. 

 

To model the dependence structures of Asian emerging markets, we considered using 

canonical vine model from CDVine package to analysis. Table 4.4 shows the 

dependence structures between the markets. We selected the best fitting copula family 

by the Akaike information criterion (AIC). The result shows that the copula families, 
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which are Gaussian and t copula in the linear sense as   and 

 for other copula, are far away from normality and difficult to compare with the 

results.  From this information, we used the copula parameter to approximate the rank 

correlation as the Kendall’s tau coefficient. This coefficient has a range between 

. If markets are fully independent, then the coefficient takes value close to 

zero. The result shows that there are highest conditional dependencies between the 

markets in India and Thailand, China and Taiwan. 

 

Table 4.5  and  estimation in each market 

 SC BE KE TE SET 

N = 10000 

 
0.028919 0.026666 0.026291 0.026943 0.028389 

 
0.016419 0.015650 0.015684 0.015883 0.016463 

 
0.035704 0.034472 0.033570 0.033629 0.034859 

 
0.023938 0.022782 0.022298 0.022747 0.023549 

N = 20000 

 
0.027537 0.026911 0.027432 0.026676 0.026897 

 
0.016219 0.015914 0.016185 0.015950 0.016202 

 
0.034268 0.033979 0.034437 0.034330 0.033916 

 
0.023273 0.022688 0.023099 0.022632 0.022907 

Note: N = number of simulated data 

 

Table 4.6 Optimal portfolio with  minimization 

Confidence 

level 

SC BE KE TE SET 
 

N = 10000 

99% 0.1857 0.2171 0.2034 0.1841 0.2097 0.0136 

95% 0.1850 0.2099 0.2082 0.1982 0.1986 0.0097 

N = 20000 

99% 0.1829 0.2104 0.2036 0.2107 0.1924 0.0132 

95% 0.1982 0.2032 0.1947 0.2044 0.1995 0.0096 

Note: N = number of simulated data 
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Given the copula parameters in Table 4.4, we used algorithms belong to Aas et al. 

(2009) in CDVine package to generate 10,000 and 20,000 dependent uniform random 

variables over a holding period of one day. After generating the data, we converse the 

uniform series into the returns of each market and then we computed the risk measure 

with the daily data. Table 4.5 reports the value at risk and conditional value at risk for 

different confidence interval. The  are used to measure the maximum possibility 

loss of the market value over a holding period of one day. The  is computed as 

0.028919 at 99% confidence interval, which implies the daily loss will not exceed 

2.8919% in the Chinese market. Simultaneously, the  is estimated as 0.035704 

at 99% confidence interval, which implies that the expected loss at 3.5704% would be 

exceed the VaR at 99% confidence interval. The Chinese market has the highest  

and  based on comparison with the overall market. Table 4.6 shows the results 

of portfolio optimization in Asian emerging markets. The optimal weights suggest 

that investors should focus on Indian and Taiwan markets more than the other markets 

that are involved in the big picture. 

 

4.5 Conclusions 

 

We examined an empirical study of China, India, Korea, Taiwan and Thai in Asian 

emerging stock markets from the period of 2008 to 2013 that covered the global 

financial crisis. Methodologically, we applied conditional EVT to capture the tails of 

the standardized residuals in each market return which are over the threshold when 

the tails have high risk. Then, we used C-vine copula to analyze the dependence of 

diversification measures. Empirically, the results show that the five stock markets 

have a positive dependence. The two highest dependences are the Indian and Thai 

markets as well as the Chinese and Taiwanese markets, respectively. Moreover, we 

have extended C-vine copula by applying the Monte Carlo simulation to generate 

series for measuring the  and  in each markets. The results suggested that 

the Chinese market has the highest risk. For performing portfolio optimization, the 

results suggested that investors should pay attention to the Indian and Taiwanese 

markets. 


