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CHAPTER 5 

 

Copula Based Volatility Models and Extreme Value Theory for 

Portfolio Simulation with an Application  

to Asean Stock Markets 

 
This chapter is developed from the original article namely, “Copula based volatility 

models and extreme value theory for portfolio simulation with an application to Asean 

stock markets”. The contents are extracted from the original article, which was 

accepted in “Causal Inference in Econometrics” Studies in Computational 

Intelligence, pp. 223-235 and this article can be found in the appendix C. The 

methodology used in this study was explained in Chapter 2.   

 

5.1 Introduction 

 

For asset allocation models, the risk-return characteristics are the most important issue 

for investors to consider. The conventional portfolio theory uses standard deviation 

and linear correlation coefficient to measure portfolio risk under multivariate normal 

distribution. To construct the optimal portfolio, this theory uses the risk return 

framework to allocate assets by minimizing the risk of the portfolio subject to the 

portfolio return being greater or equal to the risk free rate. 

 

The Value at Risk ( ) is one of the most important and popular tool to measure the 

financial risk. It measures the maximum amount of loss that is not exceeded on a 

given confidence interval. An alternatively risk measure is the condtional  

( ), which is used to estimate the expected loss from . Rockafellar and 

Uryasev (2000) showed a representation of  based approach to optimize 

portfolios. Moreover, Artzner et al. (1999) and Rockafellar and Uryasev (2002) 

explained that  is not coherence whereas  satisfies the properties of the risk 
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of a diversified portfolio, which are the sub-additive and convex properties. For these 

reasons,  has the advantages over . 

 

The most widely used econometric approach to volatility modeling is the family of 

autoregressive conditional heteroscedasticity (ARCH), which is introduced by Engle 

(1982). It assumes that the conditional variance takes into account the conditional 

heteroskedasticity inherent in time with the assumption of normally distributed 

innovations. Bollerslev (1986) then improved the ARCH to generalized ARCH 

(GARCH) model, which can yields  and  as well. 

 

In recent years, the EVT has been utilized to analyze financial data. It is a statistical 

tool to examine the extreme deviations from the median of probability distribution. It 

is very popular and useful for modeling in rare events. Hence, the EVT can be an 

alternative for an effective framework to estimate the tail of financial series when 

there are extreme financial events, such as the Asian financial crisis, Subprime crisis 

and European debt crisis. Embrechts et al. (1999) provided examples for applications 

of EVT in finance and insurance. Bali (2003), Wang et al. (2010), Ren and Giles 

(2010) and Jesús et al.[16] applied EVT to calculate  for risk management. 

 

The EVT based method combines ideas from the GARCH models with the tail of the 

innovations distribution using EVT to estimate  and . Exemplary works by 

McNeil and Frey (2000) introduced EVT based method (or conditional EVT models) 

to forecast . Karmakar (2013) applied this method to estimate  in different 

percentiles for negative and positive BSE India returns. Furio´ and Climent (2013) 

found that GARCH-EVT model is more accurate than the GARCH models assuming 

Gaussian or Students  distribution innovations for  simulation analysis. 

Meanwhile, Allen et al. (2013) used both unconditional and conditional EVT models 

to forecast . Marimoutou et al. (2009) found that this model performs better than 

other methods without EVT, such as conventional GARCH, historical simulation and 

filtered historical simulation. 
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To study the dependence among stock markets using traditional methods, Pearsons 

correlation has been the most commonly used in empirical works. However, Pearsons 

correlation used to measure the degree of linear dependence between multivariate 

normally distributed data. More precisely, Copulas can relax the dependence structure 

beyond normal distribution. Moreover, the copula is flexible as it can be used to 

analyze linear, nonlinear or tail dependence. In the context of the copula in financial 

studies, Embrechts et al. (2002) introduced copula in finance to relax the assumption 

of dependence structures between random returns. Patton (2009) explained an 

overview of copula based models for financial applications. In the study of 

multivariate copulas, Kole et al. (2007) and Wang et al. (2010) found that the 

multivariate  copula is the best measure of the dependence structure between 

multiple assets because it can capture the dependence both in the center and the tails. 

Aas et al. (2009) introduced the flexible way to set the pair copula construction, 

namely, D and C-vine copula. The recent study such as Low et al. (2013), Hernandez 

(2014), Ayusuk and Sriboonchitta (2014), Mensi et al. (2015) have applied vine 

copula with applications to portfolio management.    

 

There are researchers on the effects of the subprime crisis. Hemche et al. (2014) found 

the dynamic linkages between the US and developed stock markets (as France, 

Mexico, Italy and the UK) with strong comovements in times of financial crisis. The 

correlation between the US and other markets (as China, Japan, Tunisia, Egypt and 

Morocco) were weak and thus they suggested that the investors should also invest in 

some emerging countries. Moralesa and Callaghan (2012) and Wang (2014) 

suggested that the US stock markets are less generating effects into the Asian stock 

markets. In 2015, Asean Economic Community (AEC) is set to be implemented. 

There will be free trade of goods, services, skilled labor and investment capital 

following the liberalization and most countries in AEC are still emerging economies. 

Hence, to take advantage of the portfolio allocation for international stock market, this 

study focused on  and  based on the econometric approaches with the 

application on the Asean stock markets during and post subprime crisis. 
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In this chapter, the primary objective is to compare the econometric approaches to 

portfolio simulation. These econometric approaches include the multivariate  copula 

GARCH-EVT, C-vine copula GARCH-EVT and D-vine copula GARCH-EVT. The 

secondary objectives to measure the dependence among Asean stock markets. 

 

The remainder of this chapter is organized as follows. In methodology section, we 

provide details about the GARCH model, EVT, copulas and the portfolio simulation 

procedure. In data section discuss the data by descriptive statistics. The result section 

shows the empirical work. In the final section, we present concluding remarks.  

 

5.2 Methodology 

 

5.2.1 Marginal Models 

Generally, data on market returns present conditional heteroscedasticity. Hence, 

this study focuses on the marginal returns through the autoregressive 

conditional heteroskedasticity model. To capture the asymmetry property under 

the sense that shocks not have the exact same impact on volatility in between 

negative and positive shocks, we used the GJR GARCH model that was 

proposed by Glosten et al. (1993).  

 

, (5.1) 

 (5.2) 

 

where   is a  market return at time ,  if  ,  if 

otherwise,  are parameters. For stationarity and positivity, the GJR 

GARCH model has the following properties: ,  

and ,  is residual returns,  is the volatility of the 

returns,  is standardized residuals that must satisfy independently and 
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identically distributed. Traditionally, the standardized residuals follow a normal 

distribution. 

 

5.2.2 The Distributions of Standardized Residuals 

In this study, we focus on EVT, which is an appropriate approach to define the 

behavior of extreme tail observations. We apply the semi parametric approach 

to generate the standardized residuals of the GJR GARCH model. To capture 

the extreme tails, we use the generalized Pareto distribution (GPD) to select the 

extreme tails that are peaks over the threshold. To capture the interior 

distribution, we define by using the Gaussian kernel distribution ( ). The 

distribution is given by 

 

 

(5.3) 

 

where , ,  are lower and upper thresholds,  is the standardized residuals 

that excess over the thresholds  and  are the number of observations that 

excess over lower and upper thresholds,  is the number of observation, and 

 are the scale parameters, and  are the shape parameters. 

 

5.2.3 Copula Approach  

A copula is a function that connects univariate marginals to construct the 

multivariate distribution with uniformly distributed marginals . 

It also can be used to portray the dependency of random variables in each event. 

This study used the copula approach for describing the dependence between 

international markets. Originally, Sklar (1959) introduced the important 

theorem for copula function as follows. 
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Theorem 5.1 Let  are random variables for . 

,…,  are the continuous marginal distributions and  be 

a multivariate distribution. Then,  -dimensional copulas 

can be defined by  

 

…,   (5.4) 

 

Inversely, equation 5.4 can be written as 

 

…,   (5.5) 

 

where  are the inverse distribution function of the marginals and 

. We can determine the copula density  by using  order 

partial derivative as follows:  

 

 
(5.6) 

 

According to the joint density function , it can be defined by  

order partial derivative of a multivariate distribution  as follows: 

 

 
(5.7) 

 

(5.8) 

 

(5.9) 
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Equation 5.9 shows that the joint density function is the combination between 

the copula density and the product of marginal densities. In the study of copulas, 

Mashal and Zeevi (2002), Breymann et al. (2003), Kole et al. (2007) and Wang 

et al. (2010) suggested that  copula is the better measure of the dependency 

structure for multiple assets. Hence, this study considered  copula for 

measuring the market dependence. We can define a multivariate  copula for   

dimensional as follows: 

 

 (5.10) 

 

where   is the distribution function of multivariate  copula,  is a 

correlation matrix and  is the degree of freedom. Moreover, this study also 

applied C and D-vine structures with  copula to determine the market 

dependence. The two vine copulas were introduced by Aas et al. (2009). In  

dimensions,  is the number of pair copula,  is the number of trees 

in vine copulas and  is the number of possible tree structures. To select the 

tree structures, this study determines the appropriate ordering of the tree 

structures by choosing the maximum of absolute empirical Kendall’ s tau 

values for all bivariate copula. C and D-vine density functions can be defined 

by 

 

 

(5.11) 

 

 

(5.12) 

 

where  and ,  is the tree in vine copulas, 

 is the edge in each tree,    in equation 5.11 and 

 in equation 5.12 are bivariate copula densities. In order to 
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compute the conditional distribution functions  in equation 5.11 and 5.12 

by following Joe (1996) as in equation 5.13 

 

 

 

(5.13) 

 

where the vector  is the vector  that excludes the component .  is 

the bivariate copula distribution between  and  that is taken conditional on 

. The estimated dependence parameters of various copulas are obtained by 

maximum likelihood (see Aas et al. (2009)). 

 

5.2.4 Portfolio Simulation 

We forecast one-day-ahead for ,  based on  copula GARCH-EVT at 

95% and 99% confidence level with the procedures as follows: 

 

(1) We estimate the parameters of the GARCH model for each market return 

series. We obtain the standardized residuals over the threshold follow the 

generalized Pareto distribution (GPD), because GPD can capture the upper and 

lower tails. Additionally, we also use the Gaussian kernel estimation for the 

interior part. 

 

(2) We transform each standardized residuals  of each univariate 

distribution to approximate i.i.d. uniform data  on  by using empirical 

distribution functions and then fit  copula for estimating its parameter. 

 

(3) Given the parameters of copula function, we simulate the uniform series 

100,000 dimensional time series and obtain the standardized residuals by using 

the inverse functions of the estimated marginals. 
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(4) We converse the standardized residuals from step (3) into the returns at 

, calculate the empirical one-day-ahead ,  at 95% and 99% 

confidence level, and optimize the portfolio based on  minimization 

problem at 99% confidence level (or  ) by following the 

procedure of Rockafellar and Uryasev (2000,2002) 

 

5.3 Data 

 

We used the daily data of five main stock market indices in Asean countries from 

DataStream: The indices composed of SET index (Thailand:TH), Straits Times index 

(Singapore:SP), KLSE Composite index (Malaysia:MS), JSX Composite index 

(Indonesia:ID) and PSE Composite(the Philippines:PP). We defined the market 

returns by . Following Horta et al. (2014) and Lee et al. 

(2014), this study focuses on subprime crises period and then we divide it into sub 

periods: the subprime crisis period (1 August 2007 to 29 December 2009) and the post 

subprime crisis period (4 January 2010 to 29 December 2014). 
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Table 5.1 Descriptive measures for Asean markets 

Index TH SP MS ID PP 

A: crisis period 

Mean -0.000221 -0.000341 -9.38E-05 0.000210 -0.000220 

Max 0.086167 0.102705 0.057165 0.190719 0.083854 

Min -0.085892 -0.129279 -0.102374 -0.257802 -0.136399 

S.D. 0.018798 0.020622 0.012513 0.026211 0.019945 

Skewness -0.104720 -0.034376 -0.873542 -1.404863 -0.687729 

Kurtosis 6.331662 8.140576 13.30447 27.81636 9.093367 

Jarque-Bera 
243.3070 

[0.0000] 

577.0605 

[0.0000] 

2384.952 

[0.0000] 

13618.47 

[0.0000] 

851.9586 

[0.0000] 

ADF 

statistics 

-20.55669 

[0.0000] 

-21.93688 

[0.0000] 

-21.54766 

[0.0000] 

-22.41699 

[0.0000] 

-21.35143 

[0.0000] 

B: after-crisis period 

Mean 0.000667 0.000141 0.000304 0.000651 0.000818 

Max 0.057515 0.029001 0.047228 0.070136 0.055419 

Min -0.058119 -0.037693 -0.026757 -0.092997 -0.069885 

S.D. 0.011965 0.008567 0.006207 0.012800 0.011732 

Skewness -0.367571 -0.423877 0.108370 -0.822461 -0.500209 

Kurtosis 6.294566 4.813557 8.424547 10.33282 6.756750 

Jarque-Bera 
509.4336 

[0.0000] 

179.1765 

[0.0000] 

1317.675 

[0.0000] 

2524.951 

[0.0000] 

675.7222 

[0.0000] 

ADF 

statistics 

-30.01431 

[0.0000] 

-30.38082  

[0.0000] 

-29.13288 

[0.0000] 

-22.97933 

[0.0000] 

-22.97933 

[0.0000] 

Note: The values reported in parentheses are p-value for testing the null hypothesis 

Table 5.1 shows summary statistics. We found that almost all markets of the average 

yield (mean of market return) are negative during the subprime crisis. SP has the most 

negative returns. After the subprime crisis, the average yield has a positive sign in 

every market and the standard deviation (SD) is less than a period of the subprime. 

The Jarque-Bera rejects the null hypothesis which indicated that returns of the 

markets are not following the normality assumption. The ADF test approved the 

stationary property of all markets. 
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5.4 Empirical Results 

 

Table 5.2 shows GJR GARCH parameter estimation. The mean equation is in the 

simplest form of first autoregressive . The Q-statistics confirm that the 

marginals mostly accept the null hypotheses which suggested that there are no serial 

correlations and satisfy an i.i.d. assumption for almost all the markets. Then, we 

transform standardized residuals into the uniform  by using the empirical 

distribution functions. The Kolmogorov-Smirnov test (KS-test) is used to test the null 

hypothesis that the transformed data are uniformly distributed, because all data series 

support the null hypothesis and use this result to carry out the copula procedure. 

Jarque-Bera statistics suggested that the standardized residuals of are non-normality 

distribution. These findings from statistical testing confirm that the GJR GARCH 

model can apply EVT to handle on the standardized residuals. 

 

Table 5.2 Parameter Estimates for AR(1)-GJR GARCH-EVT models 

 TH SP MS ID PP 

A: crisis period 

Mean equation 

 
0.000549 

[0.000665] 

0.000135     

[0.000651] 

0.000199      

[0.000392] 

0.000541     

[0.000688] 

0.000142      

[0.000678] 

 
0.009793      

[0.045931] 

0.001870       

[0.046813] 

0.065287 

[0.044449] 

0.11054       

[0.046162] 

0.086547 

[0.046992] 

Variance equation     

 
1.69e-005 

[8.32e-006] 

3.22e-006 

[3.16e-006] 

1.17e-005 

[5.24e-006] 

0.000137    

[3.16e-005] 

7.79e-005    

[2.59e-005] 

 
   0.83871        

[0.051076] 

0.91095        

[0.023375] 

0.80145         

[0.059008] 

0.38876         

[0.083337] 

0.57183        

[0.097427] 

 
0.045528       

[0.036726] 

0.035349       

[0.020904]      

0.018407              

[0.028609] 

0.000000              

[0.040953] 

0.063385       

[0.048436] 

 
0.13214        

[0.064542] 

0.1004 

[0.040892]          

0.23656        

[0.095621] 

0.88391       

[0.25269] 

0.30257      

[0.12236] 
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Table 5.2  (continued) 

 TH SP MS ID PP 

Q(2) 9.0621 

[0.0108] 

0.8644 

[0.6491] 

0.8474 

[0.6546] 

4.3689 

[0.1125] 

0.3434 

[0.8423] 

Q(6) 16.4338 

[0.0116] 

13.7795 

[0.0322] 

3.5713 

[0.7345] 

6.9328 

[0.3271] 

5.8217 

[0.4435] 

KS-statistics 0.0027 

[0.4771] 

0.003 

[0.3156] 

0.003 

[0.3438] 

0.0036 

[0.1599] 

0.0032 

[0.2709] 

Jarque-Bera 82.0629 

[0.0000] 

85.3962 

[0.0000] 

789.3312 

[0.0000] 

1316.8 

[0.0000] 

231.8684 

[0.0000] 

B: after crisis period 

Mean equation 

 
0.001186 

[0.000282] 

0.000277 

[0.000210] 

0.000306     

[0.000146] 

0.000988           

[0.000289] 

0.000791 

[0.000293] 

 
0.027503     

[0.033591] 

0.010368        

[0.032322] 

0.083798      

[0.028665] 

0.004194        

[0.03082] 

0.085756      

[0.032237]          

Variance equation     

 
5.95e-006        

[1.68e-006] 

8.02e-007    

[3.40e-007] 

1.97e-006    

[6.75e-007] 

6.29e-006     

[1.99e-006] 

8.96e-006    

[2.63e-006] 

 
0.83591        

[0.029077] 

0.92912        

[0.015984] 

0.85629        

[0.03229] 

0.87223        

[0.027457] 

0.81495 

[0.036924] 

 
0.035536      

[0.024681] 

0.014864      

[0.018464] 

0.024771                     

[0.021801] 

0.019357              

[0.025768] 

0.020671       

[0.025987] 

 
0.16857       

[0.041524] 

0.085624   

[0.0243] 

0.14827        

[0.043269] 

0.125         

[0.04037] 

0.18828         

[0.048925] 

Q(2) 3.0135 

[0.2216] 

0.2932 

[0.8636] 

2.4969 

[0.2870] 

4.1248 

[0.1271] 

0.7148 

[0.6995] 

Q(6) 6.5855 

[0.3609] 

7.2224 

[0.3008] 

3.3907 

[0.7585] 

24.2223 

[0.0005] 

8.8284 

[0.1835] 

KS-statistics 0.0161 

[0.945] 

0.0164 

[0.9339] 

0.0227 

[0.6376] 

0.0208 

[0.7443] 

0.0154 

[0.9651] 
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Table 5.2  (continued) 

 TH SP MS ID PP 

Jarque-Bera 114.0268 

[0.000] 

40.9454 

[0.000] 

1319.4 

[0.000] 

  968.1900 

[0.000] 

160.1151 

[0.000] 

Note: In parentheses are standard errors of the coefficient estimates 

In parentheses of Q-statistics, KS-statistics and Jarque-Bera-statistics are p-

value   for testing the null hypothesis 

 

Table 5.3 shows parameter estimation of extreme value theory, we use the GPD in our 

study where  ,  are the scale parameter and the shape parameter and we fixed the 

threshold value  at 10% level of confidence. Figure 5.1 is a sample of the CDF by 

using semi-parametric form of Singapore market, in the subprime period, obviously, 

the valued of upper tail was higher than the after-crisis period. 

 

Table 5.3 GPD estimation of each market’s residuals 

 TH SP MS ID PP 

A: crisis period 

 1.1663 1.2225 1.1225 1.1281 1.1864 

 0.4929 0.7693 0.5947 0.5580 0.4916 

 0.1237 -0.0712 0.1764 0.1827 0.1447 

 -1.3113 -1.3290 -1.1794 -1.2537 -1.2979 

 0.4835 0.4938 0.3622 0.6470 0.6831 

 0.0875 0.0625 0.4554 0.2680 -0.0168 

B: after-crisis period 

 1.2222 1.2172 1.0998 1.0367 1.1718 

 5405.0 54...0 54.55. 54...0 54.5.. 

 5450.0 -0.0380 540505 545050 540..5 

 -1.3012 -1.2407 -1.1444 -1.1542 -1.2279 

 .054..  54.5.. 54.055 54.500 540.00 

 -0.0715 -0.1496 5455.5 540.50 545505 
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Figure 5.1 Semi-parametric CDFs of Singapone residuals 

 

Table 5.4 The matrixes of the Kendall’s rank correlation from the multivariate  copula 

 TH SP MS ID PP 

A: crisis period 

TH 1     

SP 0.4410 1    

MS 0.3524 0.4289 1   

ID 0.3970 0.4866 0.3741 1  

PP 0.2306 0.2808 0.3498 0.2721 1 

B: after-crisis period    

TH 1     

SP 0.3435 1    

MS 0.2520     0.3291     1   

ID 0.3206     0.3831 0.3550     1  

PP 0.2274     0.2574 0.2662 0.2890     1 

Table 5.4 shows the values of Kendall’s rank correlation, which were computed by 

using the parameter of the multivariate  copula function from equation 5.10. The 

results show that five markets have a monotonic relationship because of the Kendall’s 

tau is more than zero. During the crisis, the highest relationship is SP & ID, SP & TH 

and SP & MS, respectively. While, PP & ID has the weakest relationship. After the 
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crisis, the strongest relationship is still SP & ID, ID & MS and SP & MS, 

respectively. While, TH & PP has the weakest relationship. 

 

Table 5.5 The matrixes of the Kendall’s rank correlation from C and D vine copula 

A: crisis period B: after-crisis period 

C-vine copula D-vine copula C-vine copula D-vine copula 

 0.2501  0.4024  0.2386  0.2654 

 0.3101  0.3668  0.2681  0.3262 

 0.3685  0.2500  0.2760  0.2681 

 0.2749  0.3101  0.2965  0.2760 

 0.2851  0.3876  0.1931  0.2676 

 0.3307  0.2094  0.2676  0.2836 

 0.2826  0.1817  0.2865  0.1522 

 0.3100  0.3007  0.2447  0.2448 

 0.2655  0.2548  0.2057  0.1488 

 0.2627  0.1576  0.1892  0.1886 

Note: 1 = TH, 2 = SP, 3 = MS, 4 = ID, 5 = PP 

 

Table 5.5 shows the values of Kendall’s tau that compute by using the parameter of 

vine copula function follow equation 5.11 and 5.12. In table 5.5, we found that five 

markets have a positive dependence. The highest relationship is ID & TH by D-vine 

copula in during and after the crisis period. 
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Table 5.6 Portfolio risk of the equally weighted market strategy 

 the multivariate  

copula GARCH 

EVT 

C-vine copula 

GARCH-EVT 

D-vine copula 

GARCH-EVT 

crisis period 

VaR0.95 -0.0146 -0.0150 - 0.0150 

VaR0.99 -0.0250 -0.0255 - 0.0253 

CVaR0.95 -0.0214 -0.0220 -0.0220 

CVaR0.99 -0.0342 -0.0353 -0.0353 

after-crisis period 

VaR0.95 -0.0135 -0.0135 -0.0138 

VaR0.99 -0.0219 -0.0219 -0.0224 

CVaR0.95 -0.0188 -0.0188 -0.0192 

CVaR0.99 -0.0276 -0.0275 -0.0281 

 

Table 5.6 shows the simulation results of one step ahead forecasting in portfolio risk 

using the multivariate  copula GARCH-EVT, C-vine copula GARCH-EVT and D-

vine copula GARCH-EVT under the same strategies for all markets. The simulation 

results found that  and  values during the crisis are higher than after crisis 

at 0.95 and 0.99 significant levels. In the crisis period, the multivariate  copula 

GARCH-EVT gives the values of  higher than both vine copula GARCH-EVT 

and D-vine copula GARCH-EVT gives the values of  and  higher then C-

vine copula GARCH-EVT. Then we also found that the computational of  and 

 using D-vine copula GARCH-EVT gives higher value than the multivariate  

copula GARCH-EVT and the C-vine copula GARCH-EVT after the crisis period. 
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(a)                                                               (b) 

 

 

 

Figure 5.2  Efficient frontier from minimizing CVaR at 99% confidence level 

 

Figure 5.2 shows the efficient frontier of Asean portfolio by minimizing portfolio risk. 

A subfigures (a) is the efficient frontier during the crisis period and a subfigure (b) is 

the efficient frontier after the crisis period. From the figure 2, we can conclude that at 

the same level of , D-vine copula GARCH-EVT generates portfolio return 

higher than the multivariate  copula GARCH-EVT and C-vine copula GARCH-EVT 

during the crisis period. After the crisis period, D-vine copula GARCH-EVT gives 

portfolio return higher than C-vine copula GARCH-EVT and the multivariate  

copula GARCH-EVT at the same level of . Finally, We calculate the optimal 

weights of the portfolio at the efficient frontier as Table 5.7. All three approaches 

generate the return and  of the portfolio in the crisis period higher than the post 

crisis period. 

 

Table 5.7 The optimal portfolio weights in efficient frontier for Asean markets 

Portfolios TH SP MS ID PP Return CVaR0.99 

A. crisis period  by  the multivariate t  copula GARCH-EVT 

1 0.0483 0.0483 0.6923 0.1032 0.1080 0.0343 0.0257 

2 0.1129 0.1129 0.4703 0.1306 0.1734 0.1507 0.0268 

3 0.1752 0.1752 0.2400 0.1801 0.2295 0.2671 0.0289 

4 0.2646 0.2646 0.0000 0.0000 0.4709 0.4417 0.0343 
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Table 5.7 (continued) 

Portfolios TH SP MS ID PP Return CVaR0.99 

B. crisis period  by C-vine copula GARCH-EVT 

1 54005. 0.0000 540.00 545555 545000 54505. 545500 

2 540.05 54500. 540..0 545555 540..0 54000. 5455.0 

3 5450.5 54005. 540.05 545555 54..00 545..0 5455.. 

4 0.0000 540005 545555 545555 ..554.  54.5.. 5450.0 

C. crisis period  by D-vine copula GARCH-EVT 

1 0.2902 0.1128 545555 545555 0.5969 0.0781 0.0240 

2 0.2700 0.2532 0.0784 545555 0.3984 0.1966 0.0264 

3 0.2566 0.3569 0.1833 545555 0.2032 0.3152 0.0300 

4 0.0083 0.5311 0.4606 545555 0.0000 0.5524 0.0376 

D. after crisis period  by  the multivariate t copula GARCH-EVT 

1 0.0000 0.0000 0.5158     0.3826     0.1016     0.0006 0.0250 

2 0.0000 0.0000 0.3575     0.5084     0.1341     0.0007 0.0258 

3 0.0000 0.0000 0.1997     0.6349     0.1654     0.0008 0.0272 

4 0.0000 0.0000 0.0000 0.8604 0.1396     0.0010 0.0302 

E. after crisis period  by C-vine copula GARCH-EVT 

1 54000. 545..5 54000. 545.5. 0.0000 54555. 5455.0 

2 54.0.0 540000 540.5. 545.0. 0.0000 54555. 5455.. 

3 54..05 54505. 5455.. 545..0 0.0000 54555. 5455.. 

4 54.50. 540.05 0.0000 545050 0.0000 545500 5455.. 

F. after crisis period  by D-vine copula GARCH-EVT 

1 0.4440 0.0423 0.3284 0.0000 0.1853 54555. 0.0236 

2 0.2887 0.1340 0.3893 0.0000 0.1880 54555. 0.0244 

3 0.1309 0.2273 0.4455 0.0000 0.1964 54555. 0.0259 

4 0.0000 0.4152 0.5826 0.0000 0.0022 545500 0.0299 
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5.4 Conclusions  
 

 

In this study, we adopt copula based volatility models to measure the dependence 

between Asean stock markets and then we used a semi-parametric approach from 

extreme value theory to capture the tail distribution of standardized residuals from the 

data in the context of the subprime crisis. We examine the portfolio simulation 

produced by each model and emphasize comparing three models. The models consist 

of the multivariate  copula GARCH-EVT, C-vine copula GARCH-EVT and D-vine 

copula GARCH-EVT. Regarding dependence, all copulas provide evidence of 

positive dependence in every pair. The dependences are mostly strong between 

Singapore and other markets by the multivariate  copula, which may imply that 

Singapore market plays an important role in Asean markets. Meanwhile, the risk 

measure was simulated with equally weighted strategy. This result indicates that D-

copula GARCH model-EVT can be estimates  and  greater than C-copula 

GARCH model-EVT and the multivariate  copula GARCH-EVT in the post 

subprime crisis period. The values of  and  during the subprime crisis are 

higher than those after the subprime crisis. Moreover, the results of the portfolio 

optimization problem using  objective show that D-vine copula GARCH-EVT 

is a more efficient tool to simulate the portfolio optimization. Finally, the optimal 

portfolio weights suggest that the international investors should concentrate on the 

Malaysian market at the high risk and return, and should invest in Thailand market at 

the low portfolio risk and return after the subprime crisis. 

 


