

หัวข้อวิทยานิพนธ์	การนับลิมโพไซต์ชนิด CD4+ โดยใช้ลักษณะเด่นของพิกเซลในภาพฟลูออเรสเซนส์และภาพพื้นหลังส่วนความละเอียดคำ		
ผู้เขียน	นางสาวอุษณีย์ อภิจันทรากุร		
ปริญญา	วิศวกรรมศาสตรมหาบัณฑิต (วิศวกรรมชีวการแพทย์)		
คณะกรรมการที่ปรึกษา	รศ.ดร. นิพนธ์ ชิรอุมาพน	อาจารย์ที่ปรึกษาหลัก	
	ศ.ดร. ชัชชัย ตะยาภิวัฒนา	อาจารย์ที่ปรึกษาร่วม	

บทคัดย่อ

ที่ผ่านมาเครื่องนับลิมโพไซต์ชนิด CD4+ แบบอัตโนมัติโดยใช้รูปภาพได้ออกขายสู่ตลาด เครื่องมือนี้เป็นแบบตั้งโต๊ะซึ่งมีราคาสูงกว่าเครื่องตรวจมาตรฐาน เช่นเครื่องโพลิไซโตร์ซึ่งลิมโพไซต์ชนิด CD4+ นี้ถูกนับโดยการคูภาพฟลูออเรสเซนต์ที่ติดสองสี อย่างไรก็ตาม การนับเซลล์โดยใช้เพียงภาพฟลูออเรสเซนต์มีข้อจำกัดเนื่องจากไม่มีการยืนยันว่าสีที่ปรากฏนั้นเป็นเซลล์ ในการศึกษานี้ ได้แก่ปัญหาโดยการใช้ภาพพื้นหลังส่วนที่สัมพันธ์กันเพื่อเป็นการยืนยันความน่าเชื่อถือของวิธีการตรวจ โดยลิมโพไซต์ชนิด CD4+ จะถูกย้อมด้วยเทคนิคอิมูโนฟลูออเรสเซนส์และสามารถมองเห็นได้ในภาพฟลูออเรสเซนต์สีเขียวและสีแดง พื้นที่ที่ทับซ้อนกันระหว่างเม็ดเลือดขาวในภาพพื้นหลังส่วนที่สัมพันธ์กันจะถูกสีในภาพฟลูออเรสเซนส์สีเขียวและสีแดงที่สัมพันธ์กันนั้นคือลิมโพไซต์ชนิด CD4+ เราได้นำเสนอวิธีการที่ไม่มีการเรียนรู้แบบอัตโนมัติในการตรวจหาเซลล์ในภาพพื้นหลังส่วนที่สัมพันธ์กันเพื่อที่จะนับลิมโพไซต์ชนิด CD4+ วิธีการตรวจหาเม็ดเลือดขาวในภาพพื้นหลังส่วนนั้นถูกพัฒนาโดยคำนึงถึงสัมฐานของเซลล์ที่มีขอบและค่าสีที่เด่นชัด การแบ่งส่วนเซลล์ได้ทำเป็นจำนวนสองครั้งเพื่อที่จะลดความผิดพลาดในการตรวจหาที่เกิดจากการเจอน้ำหนัก นอกจากนี้ วิธีการแยกเซลล์ที่ติดกันก็ได้นำมาใช้ด้วย จากนั้นเซลล์เม็ดเลือดขาวจะถูกเลือกโดยใช้รูปร่าง วิธีการตรวจหาเซลล์เม็ดเลือดขาวในภาพพื้นหลังส่วนนั้นพบว่ามีความไวและถูกต้องมากกว่าที่ได้สำหรับการตรวจหาเซลล์ในภาพฟลูออเรสเซนส์ เราได้ใช้การแปลง top-hat หลายขนาดในการปรับค่าความเข้มสีของภาพ ค่าเทอร์โไฮลด์ตั้งแต่ 0 ถึง 255 จะถูกใช้ในการสร้างกราฟ ROC เพื่อประเมินประสิทธิภาพของวิธีการตรวจหาลิมโพไซต์ชนิด CD4+ กราฟ ROC ของภาพฟลูออเรสเซนส์สีเขียว และสีแดงที่ได้นับพบว่ามี TPR สูงขณะที่ FPR ต่ำ ค่าเทอร์โไฮลด์ที่ดีที่สุดจากแต่ละกราฟจะถูกใช้เพื่อ

ประเมินประสิทธิภาพในการนับ และทราบว่าผลการนับนั้นแสดงค่าความไวและค่าทำนายผลบวกเป็นที่น่าพอใจ อย่างไรก็ตามควรพัฒนาความถูกต้องให้เพิ่มขึ้นเพื่อให้สามารถนำไปใช้ประโยชน์ทางการแพทย์ได้จริง

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่
Copyright© by Chiang Mai University
All rights reserved

Thesis Title	CD4+ Lymphocyte Counting Using Pixel-Based Features in Low Resolution Fluorescence and Bright Field Images		
Author	Ms. Usanee Apijuntarangoon		
Degree	Master of Engineering (Biomedical Engineering)		
Advisory Committee	Assoc. Prof. Dr. Nipon Theera-Umpon	Advisor	
	Prof. Dr. Chatchai Tayapiwatana		Co-advisor

ABSTRACT

Recently, automatic image-based CD4+ lymphocyte counting instrument is available in the market. This instrumentation consists of a portable bench-top, which cheaper than the standard counting machine, flow cytometer. CD4+ lymphocytes are counted via the bi-color fluorescence image. However, counting cell using only fluorescence image has certain limitations since no guarantee that the color spots are cells. In this study, this problem is solved by using a corresponding bright field image to guarantee the reliability of detection method. CD4+ lymphocytes are stained by immunofluorescence technique and they can be seen in both green and red fluorescence image. The overlapped region between the white blood cells (WBCs) in bright field image and color spots on corresponding green and red fluorescence images are CD4+ lymphocyte. We proposed the automatic unsupervised method for cell detection in bright field and fluorescence images in order to count CD4+ lymphocytes. The WBCs detection method in bright field image was developed based on the cells morphology which represents the outstanding edge and intensity information. The segmentation was done twice in order to reduce false detection caused by background. Besides, the classical method for separating adhere cells was implement. Then, the roundness was used to select the WBCs based on shape. The WBCs detection approach gave a good sensitivity and positive predictive value (PPV). For cells detection in fluorescence approach, we used a multi-scale top-hat transform as an intensity enhancement. The thresholding values from 0 to 255 were applied to generate ROC curve in order to

evaluate the performance of the CD4+ lymphocyte detection algorithm. The obtained ROC curves of green and red fluorescence images show the high true positive rate (TPR) while low false positive rate (FPR). The best thresholding value from each ROC was applied in order to evaluate the counting performance and we found out that counting result shows a good sensitivity and PPV. However, the accuracy should be further improved for the real medical application.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่
Copyright[©] by Chiang Mai University
All rights reserved