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CHAPTER 3 

 Related Theories 

This chapter provides an overview of related theories used in our research. 

3.1 Digital image conversion [17, 18] 

In digital image processing, an image can be defined as a two-dimensional 

function ( , )f x y , where x and y are spatial coordinates, and the amplitude of f  at any 

pair of coordinates (x, y) is called the intensity of the image at that point. The gray level 

is a term frequently used to refer to the intensity of monochrome images. A combination 

of individual 2-D images does create a color image. For example, for the RGB color 

system, its color image contains red, green, and blue, as the individual components of 

the image. 0s and 1s are logical arrays of a binary image. We implement the following 

theories in our research. 

Color conversion to gray scale was frequently used in this study. The conversion from 

RGB to gray image (I) can be denoted by 

( , ) 0.2989 ( , ) 0.5870 ( , ) 0.1140 ( , )I x y R x y G x y B x y= + +
                     (3.1)

 

3.2 Morphological Image Processing [17] 

Morphology is the word generally denotes a branch of biology that concerns the 

structure and form of animals and plants. However, we use the word mathematical 

morphology as a tool for extracting image components, in representation and 

description of region shape such as boundaries, skeletons, and the convex hull.  

Morphological Image Processing used in our research consists of dilation, erosion, 

opening, closing and labeling. The principles of them are as follows.
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3.2.1  Dilation  

Dilation is an algorithm that thickens objects in a binary image. The 

thickening of the object is controlled by a shape called a structuring 

element. Figure 3.1 shows how dilation works. Figure 3.1(a) presents a 

simple binary image consisting of a rectangular object. Figure 3.1(b) is a 

structuring element and in this case is a five-pixel-long diagonal line. Figure 

3.1(c) shows dilation as a process that translates the origin of the structuring 

element throughout the domain of the image and find the overlaps with 1-

valued pixels. The output image in figure 3.1(d) is the result of placing the 

structural element by the center of its overlapped on each 1 value pixels in 

the input image. The dilation of A by B, denoted A B⊕ , is defined as 

�( ){ }
z

A B z B A⊕ = ∩ ≠ ∅                                              (3.2) 

  where   A is the binary image. 

  B is the structuring element. 

                                 

                               (a)                                                                   (b) 

                     

                                (c)                                                                   (d) 

Figure 3.1 Dilation methodology, (a) rectangular object in the original image,  

(b) structuring element, (c) structuring element moved and translated to all 1-value pixel 

locations on the image, (d) output image. 
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3.2.2 Erosion 

Erosion shrinks objects in a binary image. As in dilation, shrinking is 

controlled by a structuring element. Figure 3.2 shows the erosion process. 

Figure 3.2(a) is similar to figure 3.1(a). Figure 3.2(b) is the structuring 

element which is a short vertical line. Figure 3.2(c) show erosion as a 

process for translating the structuring element of the image domain and find 

out where it fits with the image foreground. The output image in Figure 

3.2(d) has the value of 1 at all location of the origin of the structuring 

element, such that only 1-valued pixels of the input image is overlapped by 

the element. The erosion of A by B, denoted A ϴ B, is defined as 

A ϴ B �( ){ }c

z
z B A= ∩ ≠ ∅                                              (3.3) 

                             

                                (a)                                                                  (b) 

          

                                (c)                                                                   (d) 

Figure 3.2 Erosion methodology, (a) original image with rectangular object,  

(b) structuring element, (c) structuring element translated to several locations  

on the image, (d) output image. 

  



 

14 

3.2.3  Opening 

The morphological opening of A by B, denoted A B� , is commonly erosion 

of A by B and then dilation of the result by B 

A B�  = (A ϴ B) B⊕                                                      (3.4) 

  An alternative mathematical equation of opening is  

{ }( ) ( )z zA B B B A= ∪ ⊆�                                               (3.5) 

 where {}∪ ⋅  is the union of all sets inside the braces, and ( )zB A⊆  means  

that (B)z is a subset of A. 

Figure 3.3 illustrates the result of opening operation. Figure 3.3(a) illustrates 

a set A and structuring element B in a disk-like shape. Figure 3.3(b) 

illustrates the amount of translation of B that fits completely within A. The 

union of all translations is the gray region in figure 3.3(c). The white regions 

are not part of the opening. Morphological opening is generally used for 

breaking thin connections, smoothening object contours, and removing thin 

protrusions. 

 

                           (a)                                  (b)                                    (c) 

Figure 3.3 Opening methodology, (a) set A and disk structuring element B, (b) 

translation of B that fits completely within set A, (c) the complete opening (gray color). 

 3.2.4  Closing 

  The morphological closing of A by B, denoted A Bi which is a dilation 

followed by an erosion can be written in the form 
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( )A B A B= ⊕i  ϴ B                                                     (3.6)                                                    

  where A Bi  is the complement of the union of all translation of B that does 

not overlap A. Figure 3.4(b) shows the translation of B that does not overlap 

A. By taking the union complementation of all translation, we get the gray 

region if figure 3.4(c) is a complete closing. 

 

 

                 (a)                                            (b)                                            (c) 

Figure 3.4 Closing methodology, (a) set A and structuring element B, (b) translation of 

B outside A, (c) the complete closing (gray color). 

  Similar to opening, closing morphology tends to smooth the contours of 

objects. Opposite to opening, it fills long thin gulfs, commonly joins narrow 

breaks together, and fills holes smaller than the structuring element. 

 3.2.5  Labeling Connected Components 

  The connected component was called a path, and the definition of a path 

depends on adjacency. So that the nature of a connected component depends 

on which form of adjacency is chosen (commonly with 4- and 8-adjacency). 

Figure 3.5(a) illustrates a binary image with four 4-connected components. 

Figure 3.5(b) illustrates that choosing 8-adjacency can reduces the number 

of connected components to two. 

A 

B Translates of B Outside A A• B 
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(a)                                                (b) 

          
                                         (c)                                                     (d) 

Figure 3.5 Connected components, (a) four objects of 4- connected components,  

(b) two objects of 8-connected components, (c) label matrix result by using 4-

connectivity, (d) label matrix result by using 8-connectivity. 

3.3 Thresholding [17] 

In the case of the intensity histogram shown in figure 3.6 is related to an image, ( , )f x y , 

consisted of light objects on a dark background, such that object and background pixels 

have intensity levels that can be separated into two dominant modes. The objects can be 

extracted from the background by selecting a threshold T that separates these modes. 

Then any point (x, y) for which ( , )f x y T≥  is called an object point; otherwise, the 

point is called a background point. In another way, the thresholding image ( , )g x y  is 

defined as  

1 if ( , )
( , )

0 if ( , )

f x y T
g x y

f x y T

≥
= 

<
                                             (3.7) 

Pixels labeled 1 are the objects, whereas pixels labeled 0 are the background. 
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Figure 3.6 Choosing a threshold (T) by visually analyzing a bimodal histogram. 

One technique to select a threshold is visual inspection of the image histogram. There 

are two distinct modes that can be observed by the histogram in figure 3.6. In such case, 

it is easy to choose a threshold T. Another method to select T is by trial and error which 

randomly chooses different thresholds until a good result is found as judged by the 

observer.  

3.4 Image Rotation 

In case that an image f is defined over a ( , )w z coordinate system, undergoes geometric 

distortion to produce an image g defined over an ( , )x y  coordinate system. This 

transformation (of the coordinates) can be shown as 

{ }( , ) ( , )x y T w z=                                                         (3.8) 

where T is an affine matrix.  

For image rotation, the affine matrix is 

cos sin 0

sin cos 0

0 0 1

T

θ θ 
 = − θ θ 
  

                                                   (3.9) 

Then, the coordinate equation is 

cos sin

sin cos

x w z

y w z

= θ− θ

= θ+ θ
                                                   (3.10) 

3.5 Optical Flow [19], [20] 

This methodology is based on a differential technique computed by using a gradient 

constraint (brightness constancy) with global smoothness to obtain an estimated 

velocity field (Horn and Schunck 1981).  

T 
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There are two processes for the implementation of the HS methodology. The first one is 

an estimation of partial derivatives and the second one is a minimization of the 

summation of the errors by an iterative process to obtain the motion vector. 

 1)  Estimation of Partial Derivatives 

  Estimate the derivatives of brightness from the discrete set of image 

brightness measurement available. The brightness of each pixel ( ,x yE E , 

and tE ) is constant. 

  Estimate ,x yE E , and tE  using equation (3.11) at a point in the center of a 

cube as shown in figure 3.7.  

  The three partial derivatives of image brightness at the center of the cube are 

single estimated from the average of first different along the four parallel 

edges of the cube. 

{ }

{ }

, 1, , , 1, 1, 1, , , 1, 1 , , 1 1, 1, 1 1, , 1

1, , , , 1, 1, , 1, 1, , 1 , , 1 1, 1, 1 , 1, 1

, , 1 , , 1, , 1

1

4

1

4

1

4

x i j k i j k i j k i j k i j k i j k i j k i j k

y i j k i j k i j k i j k i j k i j k i j k i j k

t i j k i j k i j k

E E E E E E E E E

E E E E E E E E E

E E E E

+ + + + + + + + + + + +

+ + + + + + + + + + + +

+ + +

= − + − + − + −

= − + − + − + −

= − + −{ }1, , , 1, 1 , 1, 1, 1, 1 1, 1,i j k i j k i j k i j k i j kE E E E E+ + + + + + + + ++ − + −

  (3.11) 

   Here, the unit of length is the grid spacing interval in each image frame and 

the unit of time is the image frame sampling period. 

 

 

 

 

 

Figure 3.7 The partial derivatives of image brightness at the point ( ),i j
 

i  

1i +

j  1j +  k
1k +  

j  corresponds to the x direction in image  

i  is row index to the y direction  

k  is the time direction. 
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 2)  Minimization 

The problem then is to minimize the summation of the errors in the equation 

for the rate of change of image brightness, 

                                

0x y tuE vE Eε = + + =                                                       (3.12) 

  where u  and v  are the horizontal and vertical motion vector of optical flow, 

respectively. 

One cannot expect ε  to be zero. The problem is to minimize the summation 

of error in the equation for the rate of change of image brightness as near as 

0. Therefore, the smoothness weight (α ) is iteratively presented as 

                         

1

2 2 2

1

2 2 2

,

,

n n

x x y tn n

x y

n n

y x y tn n

x y

E E u E v E
u u

E E

E E u E v E
v v

E E

α

α

+

+

 + + = −
+ +

 + + = −
+ +

                                      (3.13) 

  where     

{ }

{ }

{ }

, , 1, , , 1, 1, , , 1,

1, 1, 1, 1, 1, 1, 1, 1,

, , 1, , , 1, 1, , , 1,

1, 1, 1, 1, 1, 1, 1, 1

1

6

1
          

12

1

6

1
          

12

i j k i j k i j k i j k i j k

i j k i j k i j k i j k

i j k i j k i j k i j k i j k

i j k i j k i j k i j

u u u u u

u u u u

v v v v v

v v v v

− + + −

− − − + + + + −

− + + −

− − − + + + + −

= + + + +

+ + +

= + + + +

+ + +{ },k

                     

(3.14)

 

where 
ku  and 

kv denote horizontal and vertical neighborhood averages 

( ku and kv ) which initially are set to zero and then weighed the average of 

the value at neighboring points based on the kernel [1/12 1/6 1/12; 1/6 -1 

1/6; 1/12 1/6 1/12].  

The smoothness weight (α ) plays an important role where the brightness 

gradient is small, for which the suitable value should be determined.  

In our proposed method, we use n = 50, where n = number of iterations and 

50α = . 
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3.6 Optimal Thresholding [21] 

Otsu’s method is a well-known measure used in statistical discriminant analysis. The 

idea of the method is that well-threshold classes should be distinguished from the 

intensity values of their pixels. In terms of their intensity values, a threshold which 

gives the best separation between classes would be the optimum threshold. 

Let { }0,1, 2,..., 1L − denote L  distinct intensity levels in a M N× digital image and let 

in  denote the number of pixels with intensity i . Then the total number of pixels in this 

image is 0 1 2 1... LMN n n n n −= + + + +  and the normalized histogram has 

components i
i

n
p

MN
= . 

Suppose we select a threshold ( ) ,0 1T k k k L= < < − and classify the input image into 

two classes, 1C and 2C , where 1C  consists of all pixels in the image with intensity values 

in the range [ ]0,k  and 2C  consists of all pixels in the image with intensity value in the 

range [ ]1, 1k L+ − . 

From the aforementioned details, Otsu’s threshold can be calculated by the following 

steps: 

1) Compute the normalized histogram of the input image. Denote the 

components of the histogram by ip , for 0,1, 2,..., 1i L= − . 

2) Compute the cumulative sums, ( )1P k , for 0,1, 2,..., 1k L= − , by 

                                    
( )1

0

k

i

i

P k p
=

= ∑                                             (3.15) 

where ( )1P k = the probability that a pixel is assigned to class 1C . 

3) Compute the cumulative means, ( )m k , for    0,1, 2, ,  1k L= … −   by 

                                    0

( )
k

i

i

m k ip
=

= ∑                                              (3.16) 

where ( )m k = the mean intensity value of the pixels assigned to class 2C . 

 4) Compute the global intensity mean, Gm   by 
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1

0

L

G i

i

m ip
−

=

= ∑                                                (3.17) 

where Gm = the average intensity of the entire image. 

5) Compute the between-class variance, ( )2

B kσ , for   0,1, 2, ,  1k L= … −  by 

  ( )
( ) ( )

( ) ( )

2

12

1 11

G

B

m P k m k
k

P k P k
σ

−  =
−  

                                  (3.18) 

 6) Obtain the Otsu’s threshold, *,k  as the value of k  for which ( )2

B kσ is the 

maximum. If the maximum is not unique, obtain  *k  by averaging the value 

of  k  corresponding to the various maxima detected. 

3.7 Median Filtering [22] 

Median filtering smoothes images by utilizing the median of the neighborhood. Tukey 

was the first who proposed the concept of a median filter in 1971. After that Pratt 

applied this method to image processing in 1978. 

The algorithm is replaced the value of a pixel by the median of the intensity levels in the 

neighborhood of that pixel: 

         ( )
( )

( ){ }
,

, ,
xys t S

f x y median g s t
∈

=
⌢

                                (3.19) 

The value of the pixel at ( ),x y  is included in the computation of the median. The 

method of the median filter can be done following the 3 steps below: 

1)  Select a mask n n×   ( n  = odd number)  

2)  All pixels in the neighborhood of the pixels in the original image which are 

identified by the mask are sorted in the ascending order. 

3) The median of the sorted values is computed and is chosen as the pixel 

value for the processed image. 

3.8 Possibilistic C-means Algorithm (PCM) [20] 

The objective function of PCM can be described as follow: 

Let { }1 2, ,..., Nx x x x=
� � �

 be a set of data points  
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{ }1 2, ,..., Cv v v v=
� � �

  be a set of centers  

( ) ( ) ( )( ) ( )
2

1 1 1 1

, ; , 1
C N C N

m m

m ij j i i ij

i j i j

J U V X d x vµ η µ
= = = =

= + −∑∑ ∑ ∑� �
               (3.20) 

1

0
N

ij

j

Nµ
=

< ≤∑  , 1, 2,...,i C=  and 1, 2,...,j N=  

where ij C N
µ

×
=U  denotes the possibilistic partition matrix. 

ijµ  denotes the possibilistic membership of the i th cluster center to j  data. 

N  denotes the number of data. 

iη  denotes resolution or scale parameter. 

m  denotes the Fuzziness index [ ]1,m∈ ∞ . 

C  denotes the number of cluster centers. 

( ),j id x v
� �

  denotes the distance between cluster center i  and j . 

 ijµ , iv
�

  can be updated using the following (3.21) and (3.22): 

1
1/( 1)

2

1

m

ij

ij

i

d
µ

η

−−  
 = +                                                              

(3.21) 

1

1

N
m

ij j

j

i N
m

ij

j

x

v

µ

µ

=

=

=
∑

∑

�
,  1, 2,...,i C=  and 1, 2,...,j N=                   (3.22) 

where iη  denotes a scale parameter and it is suggested to be: 

( )2

1

1

,
N

m

ij j i

j

i N
m

ij

j

d x v

K

µ
η

µ

=

=

 
× 

 =
 
 
 

∑

∑

� �

                                              (3.23) 

where 0K >  (in general 1K = ). The update stops when ijµ
 

and iη  which 

minimize J  value are found. PCM relaxes the sum constraint column of the 

membership matrix in FCM so that the sum of each column of PCM partition 

matrix satisfies the looser constraint.  
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3.9 Patch-Base Possibilistic C-means  

This technique was used in our heart structure segmentation method. The method of this 

technique started by applying 5x5 median filter to reduce the intensity inconsistency in 

an ultrasound image. Then PCM is used to over segment the filtered image. In our 

algorithm, we set the number of clusters equal to 20 and parameter m equal to 1.5. A 

group of pixels in each cluster is called a patch. The similar patches are then combined 

into two regions: heart structure and background. Heart structure (heart chamber area) is 

a dark area inside the heart which differs from other organs around it. The remaining 

area in the ultrasound image is grouped as the background area. The condition used in 

our algorithm to combine patches is to combine low gray level value patches together. 

The equation and details of calculation will be explained in detail in chapter 4, section 

4.5. 

The patch-based PCM methods are illustrated in the following diagram. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 The diagram of patch-based PCM 

Image in gray scale 

5x5 median filter 

Group => 2 clusters by 

combine patches 

(Explained in Chapter 4 

section 4.5) 

Noise removal 

(Explained in Chapter 4 

section 4.5) 

PCM => 20 clusters 


