CONTENTS

Acknowledgement	c
Abstract in Thai	d
Abstract in English	f
List of Tables	k
List of Figures	1
List of Abbreviations	р
Chapter 1 Introduction	1
1.1 Background	1
1.2 Research Objective	2
1.3 Research Scopes	2
1.4 Educational Advantage	2
1.5 Thesis Organization	2
AI UNIVERS	
Chapter 2 Literature Reviews and Related Literatures	3
2.1 Basic Knowledge of Ultrasound Physics	3
2.1.1 Image Creation	4
2.2. Ultrasound Scanning of Fetal Heart	5
2.3 Cardiomegaly	8
2.4. Hemoglohin Bart's Disease	9
2.5. Related literature	0
	7
Chapter 3 Related Theories	11
3.1. Digital Image Conversion	11

3.2. Morphological Image Processing	11
3.2.1 Dilation	12
3.2.2 Erosion	13
3.2.3 Opening	14
3.2.4 Closing	14
3.2.5 Labeling Connected Components	15
3.3. Thresholding	16
3.4. Image Rotation	17
3.5. Optical Flow	17
3.6. Optimal Thresholding	20
3.7. Median Filtering	21
3.8. Possibilistic C-means Algorithm	21
3.9. Patch-Base Possibilistic C-means	23
	24
Chapter 4 Research Designs and Methods	24
4.1 Finding the Heart Reference Position	26
4.2 Ribs' Position Determination	27
4.3 Transverse Diameter (Td) Measurement	28
4.4 Find Frames within End-diastolic and End-systolic Stage	29
4.5 Heart Structure Segmentation	31
4.6 Cardiac Diameter (Cd) Measurement	33
Chapter 5 Results and Discussion	38
5.1 Result of Finding Heart Reference Position	38
5.2 Result of Ribs' Position Determination	39
5.3 Result of Transverse Diameter (Td) Measurement	40
5.4 Result of Frames Selection within End-diastolic and End-systolic	
Stage	46
5.5 Result of Heart Structure Segmentation	51
5.6 Result of the Biggest Heart Frame Selection	57
5.7 Result of Cardiac Diameter (Cd) measurement	61

5.8 Result of Cardiothoracic Ratio (CT ratio)	66
5.9 Result of Cardiomegaly Diagnosis	70
Chapter 6 Conclusion	80

References

83

87

List of Publications

Curriculum Vitae

88

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Table 5.1	Results of Transverse diameter (Td) compared with 2 experts	40
Table 5.2	Result of selected frames in end-diastolic and end-systolic stages	47
Table 5.3	Example of end-diastolic frames differently selected by our proposed	
	method compare with expert's selected frames	50
Table 5.4	Example result of heart structure determination on the selected frames	
	within end-diastolic and end-systolic stages	51
Table 5.5	Segmentation error (Eseg)	53
Table 5.6	Result of the biggest heart frame number selection compared with	
	2 experts	57
Table 5.7	Result of cardiac diameter of our proposed method compared with	
	2 experts	62
Table 5.8	Result of CT ratio compared with 2 experts	67
Table 5.9	Confusion matrix of cardiomegaly detection from 99 patients	
	compared to expert 1	71
Table 5.10	Confusion matrix of cardiomegaly detection from 75 patients	
	compared to expert 2	71
Table 5.11	Result of cardiomegaly diagnosis compared with 2 experts	71
Table 5.12	The result of CT ratio and cardiomegaly diagnosis after new	
	calculation to improve the value of Td and Cd	75
1	All rights reserved	

LIST OF FIGURES

Page

Figure 2.1	Ultrasound device function by changing electrical signals to	
	mechanical vibration and from mechanical vibration to electrical	
	signals	4
Figure 2.2	Traveling of wave in human tissues	4
Figure 2.3	Acoustic impedance reflex from different density of objects	5
Figure 2.4	Standardized transverse scanning planes for fetal echocardiography	6
Figure 2.5	Four-chamber view of the fetal heart	7
Figure 2.6	Four-chamber view (FCV) of a normal fetus heart showing the	
	positions of cardiac diameter (Cd), and transverse diameter (Td)	7
Figure 3.1	Dilation methodology, (a) rectangular object in the original image,	
	(b) structuring element, (c) structuring element moved and	
	translated to all 1-value pixel locations on the image, (d) output	
	image	12
Figure 3.2	Erosion methodology, (a) original image with rectangular object,	
	(b) structuring element, (c) structuring element translated to several	
	locations on the image, (d) output image	13
Figure 3.3	Opening methodology, (a) set A and disk structuring element B , (b)	
	translation of B that fits completely within set A , (c) the complete	
0	opening (gray color)	14
Figure 3.4	Closing methodology, (a) set A and structuring element B , (b)	
	translation of B outside A , (c) the complete closing (gray color)	15
Figure 3.5	Connected components, (a) four objects of 4- connected components,	
	(b) two objects of 8-connected components, (c) label matrix result by	
	using 4-connectivity, (d) label matrix result by using 8-connectivity	16
Figure 3.6	Choosing a threshold (T) by visually analyzing a bimodal histogram	17
Figure 3.7	The partial derivatives of image brightness at the point (i, j)	18
Figure 3.8	The diagram of patch-based PCM	23

Figure 4.1	Flowchart of automatic cardiomegaly detection algorithm	25
Figure 4.2	Original fetal heart ultrasound image (a) and the diagram shows	
	the details in the image (b)	26
Figure 4.3	Image of each step for finding heart reference position and ROI1,	
	(a) example of magnitude velocity field, (b) additional result of all	
	binarized magnitude velocity field images, (c) detected heart reference	
	position, (d) ROI1 in a circular area and (e) ROI1 in ultrasound	
	image background	27
Figure 4.4	Rib1 and Rib2 of the same ultrasound image shown in figure 4.2(a)	28
Figure 4.5	Method of Td measurements, (a) fitted circle to ribs, (b) determined	
	arc lines and center of them, (c) found center and angle of line	
	between center of the arc lines, (d) rotated line between center of	
	arc lines to horizontal plane and measured Td	28
Figure 4.6	Graph of average magnitude velocity fields inside ROI1 of a 20	
	frames/second ultrasound video.	29
Figure 4.7	Images show steps of heart structure determination, (a) positions	
	of d_1 , d_2 and ROI2 on ultrasound image back ground, (b) gray color	
	density clustered by PCM in ROI2, (c) image of noise around heart	
	structure, (d) heart structure after removing noise, (e) centroid position	
	of the heart structure	32
Figure 4.8	Method of finding average IVS line (a) image of degree template,	
	(b) example of heart structure, (c) template angle which do not overlap	
(to heart structure, (d) biggest part after cut around center and the	
Δ	middle angle, (e) IVS line of each heart structure, (f) adding IVS	
	angle plus 180 degree, a new IVS line, (g) Cd length in arrow line	34
Figure 5.1	Example result of finding heart reference position, (a) an original first	
	frame, (b) addition result of all binarized magnitude velocity field	
	images, (c) heart reference position, (d) ROI1 is an area inside the	
	circle, (e) ROI1 on original image frame	39

Figure 5.2	Example results of ribs' position determination, (a) objects left after	
	threshold, (b) rib 1 and rib 2 positions, (c) Td position and (d) selected	
	ROI2	40
Figure 5.3	Td error from video number 44, (a) original ultrasound image and	
	rib position, (b) the result of adaptive threshold following method from	
	section 4.2, (c) the incomplete ribs selected by the program, (d) wrong	
	Td position on incomplete ribs, (e) wrong Td position on ultrasound	
	image and (f) Td position from expert	44
Figure 5.4	Td error from video number 98, (a) original ultrasound image,	
	(b) result of adaptive threshold following method from section 4.2,	
	(c) program selected other object as ribs, (d) Td position from wrong	
	ribs, (e) wrong Td position on ultrasound image and (f) Td position	
	from expert	45
Figure 5.5	Td error from video number 65, (a) original ultrasound image,	
	(b) result of adaptive threshold following method from section 4.2,	
	(c) program selected other object as ribs, (d) Td position from wrong	
	ribs, (e) wrong Td position on ultrasound image and (f) Td position	
	from expert	46
Figure 5.6	Example of heart structure segmentation result in the biggest heart	
	frame compare with expert, (a) expert segmentation result, (b) our	
	proposed method segmentation result, (c) non-heart structure from	
	expert segmentation but our proposed method assigns them to heart	
	structure, (d) heart structure from expert segmentation but our	
	proposed method assigns them to non-heart structure	52
Figure 5.7	Example of error of heart structure segmentation from video	
	number 70, (a) original ultrasound image, (b) our proposed	
	method segmentation result, (c) expert segmentation result,	
	(d) non-heart structure from expert segmentation but our proposed	
	method assigns them to heart structure, (e) heart structure from	
	expert segmentation but our proposed method assigns them to	
	non-heart structure	56

n

- Figure 5.8 Example of bigger atrium at end-systolic stage than ventricle at end-diastolic stage of patient number 58, (a) size of atrium in frame number 46 at end-systolic stage , (b) size of ventricle in frame number 35 at end-diastolic stage
- Figure 5.9 Example of position of IVS, Cd and Td on original image (a) IVS positioned by expert, (b) IVS position indicated by proposed method, (c) Td and Cd positions indicated by expert, (d) Td and Cd positions indicated by proposed method
- Figure 5.10 An example of patient number 54 with small Cd, (a) small heart size (in dashed circle) in the image, (b) result of heart structure before removing noise and (c) small heart structure after removing noise 66
- Figure 5.11 An example of patient number 41 with too big Cd, (a) original ultrasound image, (b) result of heart structure before removing noise and (c) high Cd value due to un-remove noise

66

61

61

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF ABBREVIATIONS

- CT ratio Cardiothoracic Ratio
- Cd Cardiac Diameter
- Td Transverse Diameter
- IVS Interventicular Septum
- **Region of Interest** ROI
- Possibilistic C-means PCM

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved