CONTENTS

Acknowledgement	d
Abstract in Thai	e
Abstract in English	f
List of Figures	j
List of Figures	1
List of Abbreviations	0
List of Symbols	р
Statement of Originality in Thai	S
Statement of Originality in English	t
Chapter 1 Introduction	1
1.1 Rationale and Motivation	1
1.2 Problem Statement	2
1.3 Literature Review	2
1.4 Objectives	4
1.5 Scope of Work	4
1.6 Research Strategy	4
1.7 Thesis Overview ghts reserved	6
Chapter 2 Generation Reliability Assessment	7
2.1 Introduction	7
2.2 Power System Reliability Concept	7
2.3 Generation Reliability Concept	9
2.3.1 Generating Unit Model	10

2.3.2 Capacity Outage Probability Table	12
2.3.3 Load Duration Curve	15
2.4 Generation Reliability Indices	16
2.4.1 Loss of Load Probability	16
2.4.2 Loss of Energy Expectation/ Expected Energy Not Supplied	17
2.4.3 Effective Load Carrying Capability	18
2.5 Chapter Summary	19
Chapter 3 Renewable Energy Resources	20
3.1 Introduction	20
3.2 Renewable Energy Resources in Thailand	21
3.3 Variation in Generation of Renewable Energy Resources	28
3.4 Simplified Modeling of Renewable Energy Resources	31
3.4.1 Solar (Photovoltaic)	31
3.4.2 Wind	33
3.4.3 Small Hydro	36
3.4.4 Biomass	36
3.4.5 Biogas	37
3.5 Net Load and Load Duration Curve Concepts	38
3.6 Chapter Summary	40
Chapter 4 Reliability Contributions of Renewable Generation	41
4.1 Introduction	41
4.2 Capacity Credit	41
4.2.1 Equivalent Firm Capacity	42
4.2.2 Effective Load Carrying Capability	43
4.2.3 Equivalent Conventional Power Plant	43
4.2.4 Guaranteed Capacity	44
4.3 Effective Capacity	44
4.4 Chapter Summary	46
Chapter 5 Reliability Modeling of Renewable Energy Resources	47
5.1 Introduction	47

5.2 Reliability Modeling Evaluation	47
5.3 Modification of Reliability Modeling Evaluation	48
5.3.1 Modification of Forced Outage Rate	49
5.3.2 Modification of Generation Capacity	50
5.3.3 Modification of Forced Outage Rate and Generation Capacity	52
5.4 Chapter Summary	54
Chapter 6 Results and Discussion	55
6.1 Introduction	55
6.2 Impact of Renewable Generation on Electricity Demand Characteristics	55
6.2.1 Annual Impact	56
6.2.2 Seasonal Impact	58
6.2.3 Impact on Load Groups	61
6.3 Effective Capacity of Renewable Power Plant	65
6.3.1 Test Model	66
6.3.2 Effective Capacity Results	69
6.4 Reliability Evaluation Using Conventional Approach	72
6.4.1 Test Model	73
6.4.2 Reliability Evaluation Results	74
6.5 Reliability Evaluation Using Modified Approach	80
6.5.1 Test Model	80
6.5.2 Reliability Evaluation Results	83
6.6 Chapter summary	89
Chapter 7 Conclusions	92
7.1 Summary of Work Shits reserved	92
7.2 Recommendations	94
References	95
List of Publications	102
Appendix	103
Curriculum Vitae	106

LIST OF TABLES

Table 1.1 Renewable energy potential and target for electricity generation	
in Thailand during 2008-2022.	2
Table 2.1 State space of 3-unit system.	13
Table 3.1 Power generation comparison between renewable energy resources.	22
Table 3.2 Installed capacities and investments of renewable energy resources	
in Thailand during 2009-2011.	24
Table 3.3 Annual radiation of solar resource in Thailand.	28
Table 3.4 Annual speed and potential area of wind resource in Thailand.	29
Table 3.5 Installed capacity of small hydro resource in Thailand.	29
Table 3.6 Monthly availability of biomass resource in Thailand.	29
Table 3.7 Estimation of waste resource in Thailand.	29
Table 3.8 Contract capacities of renewable energy resources for electricity	
generation in Thailand as of 2012.	30
Table 3.9 Amount of bio-gas generated from animal wastes and agriculture	
residues.	38
Table 6.1 Comparison of load factors.	58
Table 6.2 Plant factors of renewable energy resources on a seasonal basis.	59
Table 6.3 Annual generations sorted by fuel type.	62
Table 6.4 Annual energy and duration of each load group.	62
Table 6.5 Seasonal generations sorted by fuel type.	62
Table 6.6 Seasonal energy and duration of each load group.	63
Table 6.7 LOLP and ELCC after adding renewable unit with 25-MW increment.	70
Table 6.8 LOLP and ELCC after adding renewable unit with 50-MW increment.	71
Table 6.9 Effective capacity of renewable unit with zero FOR.	72
Table 6.10 FOR and EFOR of generating units based on daily generation data	
in Thailand.	75

Table 6.11 Impact of penetration levels of renewable energy resources	
at 800-MW peak demand.	76
Table 6.12 Impact of penetration levels of renewable energy resources with	
reduction of conventional resource at 800-MW peak demand.	77
Table 6.13 ELCC of generating units given three loading conditions.	80
Table 6.14 Case II: LOLP evaluation in each approach.	83
Table 6.15 All possible LOLPs statistic values.	86
Table 6.16 Impact of maximum power generation changing on LOLPs in	
each approach.	87
Table 6.17 Impact of generation duration changing on LOLPs in each approach.	88
Table 6 18 Case III: I OI Ps of each approach	89

LIST OF FIGURES

Figure 1.1 Research strategy.	5
Figure 2.1 Category of power system reliability and reliability indices.	9
Figure 2.2 Elements of generation reliability assessment.	10
Figure 2.3 Two-state model.	11
Figure 2.4 State space diagram of the unit with de-rated state.	12
Figure 2.5 Load duration curve and inverted load duration curve (normalized form).	15
Figure 2.6 Illustration of LOLE calculation.	17
Figure 2.7 Illustration of EENS calculation.	18
Figure 2.8 Illustration of ELCC calculation.	19
Figure 3.1 Monthly generation of renewable energy resources in Thailand during	
2009-2011	25
Figure 3.2 Comparison of hourly generations in Thailand in 2011.	25
Figure 3.3 Peak demand and renewable capacity of Thailand.	26
Figure 3.4 Generation capacity of Thailand sorted by fuel type.	27
Figure 3.5 Generation capacity of Thailand sorted by plant type.	27
Figure 3.6 Estimation of renewable power output based on contract capacities	
of all renewable energy resources in 2012.	30
Figure 3.7 Simplified characteristic of daily irradiance of Thailand.	31
Figure 3.8 PV cell characteristic.	32
Figure 3.9 Illustration of fill factor.	32
Figure 3.10 Irradiation dependence and temperature dependence of I_{SC} and V_{OC} .	33
Figure 3.11 Simplified characteristic of daily wind speed in Thailand.	34
Figure 3.12 Linear power speed curve of a wind turbine.	34
Figure 3.13 Simplified characteristic of daily biogas rate in Thailand.	38
Figure 3.14 Illustration of daily load and net load on 24 April 2007.	39

Figure 4.1 Illustration of equivalent firm capacity.	42
Figure 4.2 Illustration of effective load carrying capability.	43
Figure 4.3 Illustration of Illustration of guaranteed capability.	44
Figure 4.4 Effective load carrying capability.	45
Figure 5.1 Generation profile of the renewable energy unit.	48
Figure 5.2 Illustration of equivalent generation profile of approach II.	50
Figure 5.3 Illustration of equivalent generation profile of approach III.	52
Figure 6.1 Comparison of annual power duration curves of renewable energy resources.	57
Figure 6.2 Comparison of annual load duration curve and annual net-load duration curve.	57
Figure 6.3 Comparison of seasonal power duration curves of renewable energy resources.	59
Figure 6.4 Comparison of seasonal load duration curve and seasonal net-load	
duration curve.	60
Figure 6.5 Normalized load duration curves.	66
Figure 6.6 Comparison of loss of load probabilities under various generation	
capacities and peak-demand conditions.	67
Figure 6.7 Comparison of loss of load probabilities under various forced outage	
rates of the renewable unit and peak-demand conditions.	67
Figure 6.8 Comparison of loss of load probabilities under various maximum	
capacities and forced outage rates of the renewable unit.	68
Figure 6.9 Comparison of loss of load probabilities under various capacity sizes	
and forced outage rates of the renewable unit.	68
Figure 6.10 Effective capacity of renewable unit with 25-MW increment.	71
Figure 6.11 Effective capacity of renewable unit with 50-MW increment.	71
Figure 6.12 Load duration curve of the test system.	74
Figure 6.13 Comparison of LOLPs under various loading conditions.	75
Figure 6.14 Comparison of LOLPs under various penetration levels of	
renewable energy resources.	77
Figure 6.15 Comparison of LOLPs under various penetration levels of renewable	
energy resources with reduction of conventional resource.	78

Figure 6.16 Impact of penetration level of renewable energy resources on LOLP.	79
Figure 6.17 Generation profiles of the renewable energy unit with changing	
maximum power output.	81
Figure 6.18 Generation profiles of the renewable energy unit with changing	
operation duration.	82
Figure 6.19 Simplified generation profiles of each renewable energy resource.	82
Figure 6.20 Variation of LOLPs with different renewable energy unit's generation	
profiles and peak demand in each approach.	85
Figure 6.21 All possible LOLP Ranges.	86

LIST OF ABBREVIATIONS

CC	Capacity Credit
CF	Capacity Factor
COPT	Capacity Outage Probability Table
EC	Effective Capacity
ECPP	Equivalent Conventional Power Plant
EENS	Expected Energy Not Supplied
EFC	Equivalent Firm Capacity
EFOR	Equivalent Forced Outage Rate
ELCC	Effective Load Carrying Capability
ELDC	Equivalent Load Duration Curve
FOH	Forced Outage Hour
FOR	Force Outage Rate
GC	Guaranteed Capacity
ILDC	Inverted Load Duration Curve
LDC	Load Duration Curve
LOLE	Loss of Load Expectation
LOLP	Loss of Load Probability
LPT	Load Probability Table
MTTF CONS	Mean Time to Failure
MTTR opyrigh	Mean Time to Repair
PV	Photovoltaic
SH	Service Hour
STC	Standard Test Condition

LIST OF SYMBOLS

η_C	Cell efficiency
η_G	Generator efficiency
η_I	Inverter efficiency
η_T	Turbine efficiency
η_{TH}	Thermal efficiency of a power plant
λ	Expected failure rate
μ	Expected repair rate
v S	Wind speed
V _I	Cut-in wind speed
vo 582	Cut-out wind speed
VR	Rated wind speed
ρ_A	Air density
$\rho_{\rm W}$	Water density
9	Cell temperature
\mathcal{G}_{STC}	Cell temperature at standard test condition
Α	Unit availability
A_p	Panel area
As adans	Swept area of the rotor
AM _{STC}	Air mass at standard test condition
C AII r	Generation capacity of unit
C_i	Capacity outage of state <i>i</i> for the unit being added
C_p	Performance coefficient of wind turbine
${}^{n}C_{nr}$	Number of combination of nr items from n items
СК	Installed capacity of the benchmark unit
D	Power demand
E_k	Energy curtailed of the k-th outage

EC_I	Effective capacity (Definition I)
EC_{II}	Effective capacity (Definition II)
EL	Equivalent load
f	Cycle frequency
F	Feed rate
F(ullet)	Old cumulative distribution of load level
F'(ullet)	New cumulative distribution of load level
FF	Fill factor
g	Gravitational acceleration
G_{BG}	Output power of biogas unit
G _{BM}	Output power of biomass unit
G _H	Output power of small hydro unit
G _{PV}	Output power of PV panel
Gw	Output power of wind turbine
G_W^{rated}	Rated power of wind turbine
Н	Water head
I _r	Solar irradiance density
I _{SC}	Short circuit current
I _{r,STC}	Solar irradiance density at standard test condition
m	Mean time to failure (MTTF)
n	Number of unit states
O_k adams	Magnitude of the <i>k</i> -th outage in the system
<i>p</i> _i	Probability of existence of the unit state <i>i</i>
p_k	Probability of a capacity outage of magnitude
P_{nr} A I I	Probability of <i>nr</i> units in the down state
P_{MPP}	Power at maximum power point
P(X)	Cumulative probability of capacity outage state of <i>X</i> MW
	after the unit is added.
P'(X)	Cumulative probability of capacity outage state of <i>X</i> MW
	before the unit is added.
Q	Water flow rate
r	Mean time to repair (MTTR)

R	Risk of power deficit
RK	Installed capacity of the unit of interest
S	System capacity
Т	Cycle time
U	Unit unavailability, FOR
V	Heating value of fuel
V _{OC}	Open circuit voltage
X	Capacity outage state
X	Equivalent load of all units except unit of interest which has
	the same risk of power deficit (Only in Chapter 4)
XI	Capacity level that will be exceeded with R of ELDC of all
5	units.
X2	Capacity level that will be exceeded with R of ELDC of all
Subscripts	units except unit of interest.
i	Unit state
j Y	Index of Unit
k	The order of outage in the system
1	Index of discretized capacity available in generation system
Ν	Number of identical units
^{nr} ลิปสิทธิ	Number of units in the failed state
IA Convright	Approach IA hiang Mai University
IB	Approach IB
IC ALL F	Approach IC

Superscripts

N

Number of units

ข้อความแห่งการริเริ่ม

- แบบจำลองผลิตไฟฟ้าของแหล่งพลังงานหมุนเวียนถูกนำเสนอเพื่อใช้ในการประเมินความ เชื่อถือได้ของการผลิตไฟฟ้าและการวางแผนผลิตไฟฟ้า
- วิธีการประเมินค่าถูกกำหนดเพื่อหาสัดส่วนผลิตไฟฟ้าที่เหมาะสมของแหล่งพลังงานหมุนเวียน ในระบบผลิตไฟฟ้า
- เกณฑ์ความเชื่อถือได้และการวางแผนผลิตไฟฟ้าได้รับการทบทวนเมื่อมีแหล่งพลังงาน หมุนเวียนรวมอยู่อย่างมีนัยสำคัญ

STATEMENTS OF ORIGINALITY

- 1) The generation models of renewable energy resources are proposed for using in generation reliability assessment and generation planning.
- Evaluation method is proposed to determine proper penetration level of renewable energy resources in generation system.
- 3) The generation reliability and planning criteria are reviewed under the significant presence of renewable energy resources.

