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CHAPTER 4 

Results and Discussion 

This chapter reports and discusses the experimental results from the proposed 

algorithms. The results are divided into 2 main parts: data reduction in regression and in 

classification. For regression problems, support vector regression (SVR) was used as a 

tool to evaluate the performance of the data reduction and four-fold cross validation was 

used to select the best model by comparing root mean square errors (RMSE). For 

classification problems, 1NN was used to evaluate the performance of the data 

reduction. Besides 1NN, we also used the SVM and ANN in order to show how 

applicable the proposed algorithm was. The proposed methods were applied to both 

synthesized and real-world data sets, and also the performances were compared to the 

existing data reduction algorithms. 

4.1 Result of data reduction on regression problems 

The performance of the proposed algorithm was evaluated by using synthesized data, 

the data from the University of California, Irvine [27], and the electrocardiogram data 

from PhysioNet [28]. After applying the proposed algorithm to each data set to reduce 

the number of samples, the obtained result was used as a training set for SVR to 

generate a regression model. We chose SVR over ANN to form the regression model 

because ANN has too many parameters to control such as the number of hidden layers, 

the number of neurons on each hidden layer, the activation functions, the number of 

training epochs, the learning rate, and the momentum term. In contrast, SVR requires 

only three predefined parameters  ,C,   if the radial basis kernel function is selected. 

Among various parameters, the best SVR model was selected by 4-fold cross validation 

whose minimum root means square error (RMSE) was minimal.  

The experiment on data reduction for regression problems was conducted on 4 types of 

data. The first type was data with only one-dimensional input feature representing low 

complex data. The second type was data with 2-8 dimensional input features to show 
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the ability of the proposed method to reduce data with higher complexity. Both first and 

second data types were all synthesized data. Next is the third data type, which was the 

Automobile miles per gallon (MPG) data, representing a small real-world data set. 

Finally, the data called “1990 census in California” was used as the forth type to 

represent a large data set. Both third and fourth data types are examples of real-world 

data set.  

 4.1.1 One-dimensional synthesized data set 

In the first experiment, we tested our method with a basic function 

approximation problem with one-dimensional input and output  

0.6sin( ) 0.3sin(3 ) 0.1sin(5 )  y x x x                             (4.1) 

where [ 1,1]x  . We randomly generated two data sets with two hundred 

and four hundred samples. Each data set was then equally divided into 

training and testing samples.  

In the initialization of the reduction process, we did not split the training 

data (m = 1) because the sample size was not large. We used four different 

quantization levels (q = 10, 50, 100, 200) to observe the change in accuracy 

and reduction ratio in relation to the increase in the number of quantization 

levels. All weight values of the cluster validation indices in TOPSIS process 

was 0.2. Since the result from of each cluster validation indices differed 

depending on the characteristic of the data, and also the characteristic of the 

data is random and unpredictable, all weights were assigned to be equal. 

The result from the increase in quantization levels corresponding to the 

decrease in the data reduction ability is shown in Figure 4.1. Since the gap 

between each quantization level is narrower, the number of data and clusters 

in each quantized level is also decreased. This leads to the decrease in the 

performance of the reduction ratio. From the experimental result, the 

reduction rate is about 40% when the numbers of quantization levels are 100 

and 200. The proposed method could not further reduce the data by 

increasing the number of quantization levels because the data set has only 

127 distinct values from 200 samples. Therefore, the reduction ratio was 
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reduced and close to a certain value when the number of quantization levels 

was close to the number of data values.  

 

Figure 4.1 Relationship between data reduction rate and  

the number of quantization levels. 

On the other hand, when the number of partitions is smaller, the number of 

data converges to the original. In Figure 4.2, the RMSE will be close to the 

RMSE from the original data when the number of quantization levels 

increases over one hundred. Because the number of data points in each level 

using the smaller q was larger than the number of data point in each level 

using the higher q. Therefore, the computation time for the reduction 

process decreased when the number of quantization levels increased as 

shown in Figure 4.3. 

 

Figure 4.2 Relationship between RMSE and the number of quantization levels. 
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Figure 4.3 Relationship between computation time for  

the reduction process and the number of quantization levels. 

The reduced data from different quantization levels are presented in Figure 

4.4 with the original data in Figure 4.4 (a). Figure 4.4 (b) shows that the 

reduction result had many errors and small number of samples when the 

number of quantization levels was low at q = 10. If we increased the 

quantization level q to 50, the number of data increased but the error 

decreased (Figure 4.4 (c)). When we increased the number of quantization 

levels, the number of data and accuracy increased and were stable at some 

values as shown in Figure 4.4 (d-e) (q = 100, 200). 

    

                                     (a)                                                              (b) 

Figure 4.4 Plot of (a) original data, (b)-(e) reduction results from  

various quantization levels (q = 10, 50, 100, 200) (cont.). 
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                                     (c)                                                              (d) 

 

(e) 

Figure 4.4 Plot of (a) original data, (b)-(e) reduction results from  

various quantization levels (q = 10, 50, 100, 200). 

Table 4.1 shows the accuracy of the proposed method compared to the 

results from the methods in [23] and [29] which also used the same one-

dimensional function in equation (4.1) to evaluate the performance. The 

training and testing contain 100 samples. We found that our proposed 

algorithm gave a good result and low missed detection rate comparable to 

the result obtained from using the whole data set as a training data. 
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Table 4.1 Comparison between training and testing  

RMSE of proposed algorithm and two others. 

Models 
RMSE of  

training result 

RMSE of 

testing result 

Di Wang [23]      

(The number of input samples = 100) 
0.0809 0.1036 

W. Pedrycz [29]  

(The number of input samples = 100) 
0.0610 0.0680 

Proposed method  

(The number of input samples = 100) 
0.0561 0.0561 

Regression model from all training data  

(The number of input samples = 100) 
0.0557 0.0557 

 

 4.1.2 Two-dimensional synthesized data set 

The two sets of training and testing data were random sampled (100 and 800 

samples) from the two-dimensional input function  

 
2

2 1.5

1 21y x x                                           (4.2) 

where x1  [1, 5] and x2  [1, 5]. The output of the function is shown in 

Figure 4.5.  

 

Figure 4.5 Surface area of two-dimensional input function. 

We initialized the experimental parameters m = 1. The result from 4.1.1 

showed that higher quantization level increases accuracy. Therefore, we set 

the quantization level to 100 (q = 100), and set all weight values of cluster 

validation indices in TOPSIS to 0.2.  
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The support vector regression result is presented in Table 4.2-4.3 and the 

comparison of the performance with other algorithms is shown in Table 4.4.  

Table 4.2 Four-fold cross validation result (The number of input samples = 50). 

Training Testing 

Fold 
Number of 

training samples 
RMSE 

Number of 

testing samples 
RMSE MAE 

1 37 0.5462 50 0.2838 0.1998 

2 37 0.4596 50 0.2941 0.1951 

3 38 1.0073 50 0.3935 0.2521 

4 38 0.5656 50 0.3039 0.1923 

 

Table 4.3 Four-fold cross validation result (The number of input samples = 400). 

Training Testing 

Fold 
Number of 

training samples 
RMSE 

Number of 

testing samples 
RMSE MAE 

1 163 0.0925 400 0.0846 0.0693 

2 168 0.0946 400 0.0775 0.0652 

3 167 0.0925 400 0.0820 0.0697 

4 161 0.0925 400 0.0771 0.0655 

 

Table 4.4 Mean absolute errors from SVR for  

two-dimensional data set using different methods.  

Models MAE 

Di Wang [23] 0.0012 

Proposed method (The number of input samples = 50) 0.1951 

Original data        (The number of input samples = 50) 0.1834 

Proposed method (The number of input samples = 400) 0.0655 

Original data        (The number of input samples = 400) 0.0601 

  

Mean absolute errors (MAE) used to evaluate the performance of these 

methods are shown in Table 4.4. The result from the proposed method is 

quite less than from the proposed method in [23] because the data used to 

training was insufficient. The accuracy of the proposed method increased 

when it received sufficient data or received the whole input-output data 

space. Therefore, when we increased the number of input samples to cover 

all output space, the reconstructed accuracy also increased. 



 

43 

 

Next, we evaluate the proposed method with higher dimensional synthetic 

function according to Equation 4.3-4.8 to show that the proposed method 

has an ability to reduce a data set with higher dimension. Figure 4.6 presents 

the comparison between the average of regression errors from 4-fold cross 

validation of the reduced data sets and the original data set. In each function, 

the accuracy of the reduced data set and the original data was slightly 

different. It was usual that when the dimension of the synthetic function 

increases, the regression model will be more complicated and the RMSE 

will also increase. The regression result from each synthetic function is 

shown in Figure 4.7. The gray thick line is the desired output and the black 

thin line is the regression output. 

 
2

2 1.5 1.5

3 1 2 31      y x x x                                            (4.3) 

 
2

2 1.5 1.5 1.5

4 1 2 3 41        y x x x x                                    (4.4) 

 
2

2 1.5 1.5 1.5 1.5

5 1 2 3 4 51          y x x x x x                            (4.5) 

 
2

2 1.5 1.5 1.5 1.5 1.5

6 1 2 3 4 5 61            y x x x x x x                     (4.6) 

 
2

2 1.5 1.5 1.5 1.5 1.5 1.5

7 1 2 3 4 5 6 71              y x x x x x x x               (4.7) 

 
2

2 1.5 1.5 1.5 1.5 1.5 1.5 1.5

8 1 2 3 4 5 6 7 81                y x x x x x x x x         (4.8) 

 
Figure 4.6 Regression result between the reduced and original data. 
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Figure 4.7 Comparison between the desired output and the regression 

result of each high dimensional function. 

 4.1.3 Real-world data set 1 

The first real-world data set used for the performance evaluation of the 

proposed method is the Automobile Miles Per Gallon (MPG) data, from 

ics.uci.edu [27]. The data set contained only 392 samples. The original data 

set was shuffled and divided 60% into the training set and 40% into the 

testing set. Because of the small number of data size, we did not divide the 

data set into smaller part (m = 1). We set all the weight of cluster validation 

indices to 0.2. In this experiment, the quantization was performed at seven 

different quantization values, linearly increasing with twenty-five levels per 

3y 4y

5y 6y

7y 8y

Samples Samples 

Samples Samples 

Samples Samples 
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step (q = 25, 50, 75, 100, 150, 175, 200). The experiments showed that the 

results from the real-world data set were similar to those from the 

synthesized data set, although the real-world data set has 8 features while 

the synthesized data set has only one feature. The data decreasing indices 

decreased as the number of the quantization levels increased. When the 

quantization level equals to 100, the data decreasing indices slightly 

fluctuate at around 45% of the data reduction rate, see Figure 4.8. 

Considering the output data set, we found that the number of values in the 

output data set is equal to 127 values that cause data reduction rate steady at 

45%, although the quantization level was increased. 

 

Figure 4.8 Relationship of number of quantization levels, q and data reduction rate. 

Since the data set used was a real-world data set and the data in 4-fold cross 

validation was random, the best training result is not necessary to be derived 

from the data reduction with high quantization levels. This makes the 

number of samples close to the original as shown in Figure 4.9 where the 

minimum RMSE exists at the quantization level of 75.  
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Figure 4.9 Minimum RMSE from four-fold cross validation  

at various quantization levels. 

The average RMSE of 4-fold cross validation from the training results was 

against expectations where the number of quantization levels should 

increase while the RMSE should decrease. This is because the testing data 

in each experiment was random. However, the average RMSE of 4-fold 

cross validation from the testing results was still as expected because the 

blind test data set was the same data. Even though some of the results 

slightly increased (at q = 125 and 150), the general trend was still downward 

as shown in Figure 4.10. The dotted line indicates the average RMSE of 4-

fold cross validation from the testing results and the bold line shows the 

average RMSE of 4-fold cross validation from the training results. 

 
Figure 4.10 Average RMSE from four-fold cross validation  

at various quantization levels.  
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Table 4.5 shows that the RMSE from the reduced data by the proposed 

method is quite similar to the one from the original data. We found that our 

proposed method gave a little greater RMSE than the one belongs to the 

original for 0.08.  

Table 4.5 Root-mean-square errors obtained by using  

original data and our proposed method. 

Models RMSE (Training) RMSE (Testing) 

Original data 2.4076 2.9429 

Proposed method (q = 75) 2.6966 3.0216 

 

 4.1.4 Real world data set 2 

The second real-world data set is the 1990 census in California. The data 

have 9 variables (nine input dimensions) with 20,640 samples. We used 

10,000 samples for training and 10,640 for testing. This data set was used to 

compare the reconstructed result and data decreasing with different number 

of small parts (m = 1, 4, 10). The quantization level was set to two hundreds 

(q = 200) and the weight of cluster validation indices was 0.2. 

Figure 4.11 provides example histograms of the original data and the small 

parts. It shows the similarity of the histogram shape between the original 

and those small parts. The five histograms below illustrates that the amount 

of data in every figure is divided almost evenly. 
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Figure 4.11 Histogram of (a) original data and (b - e) four small parts. 

When we increase the number of small parts, the number of training data 

also increases because the number of data in each quantization level 

decreased as in Figure 4.12. Figure 4.13 presents the regression accuracy 

which increased following the number of small parts because the splitting 

data into small parts affected and increased the fineness of clustering.  

 

Figure 4.12 Data reduction rate versus the number of small parts. 

(a) (b) (c) 

(d) (e) 
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Figure 4.13 Plot between RMSE and the number of small parts. 

We present the comparison of the regression result from the proposed 

method, the other method, and the original data in Table 4.6. It is obvious 

that the proposed methods give the better result than the other methods. If 

we increase the number of small parts, the regression accuracy converges to 

the regression result from the original data. Also from the table, the 

processing time of the splitting data to ten parts was faster than the 

processing with the whole data but the reduction ratio was lower. In this 

case, the user must consider the accuracy, the reduction ratio, the reduction 

time, and the training time in practice.  

Table 4.6 Root-mean-square errors from SVR for real  

data set 1 using different methods. 

Models 
RMSE 

(Training) 

RMSE 

(Testing) 

Data 

reduction 

rate (%) 

Reduction 

time 

(Second) 

ECSFS [30] 0.3087 0.3760 - - 

Di Wang [23] 0.2860 0.3708 - - 

Proposed method  (one part) 0.1372 0.1383 86.70 43,589 

Proposed method  (four parts) 0.1356 0.1360 74.65 15,193 

Proposed method  (ten parts) 0.1275 0.1295 56.75 8,837 

Original data  0.1203 0.1234 0.00 - 
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 4.1.5 Real world data set 3 

This experiment applied the proposed method to reduce the training data set 

of four ECG signals for training with support vector regression. The 12-lead 

ECG signals used in this research were obtained from physionet.org. The 

data set was recorded from 75 patients. However, only 14 patients were 

used because there were missing data in some lead signals of some patients. 

We preprocessed by using fifth-order low pass digital Butterworth filter 

with the cut-off frequency of 0.5 Hz to eliminate the offset voltage in order 

to bring ECG signals to the baseline voltage all the time. The training data 

consisted of four heartbeats from 14 patients and the length of data was 

10,945 samples. We applied the four-fold cross validation to select the 

suitable parameter in each support vector regression model with 8,209 

training and 2,736 testing samples. 

We separated the training data into three different small parts (m = 1, 5, 10), 

the quantization level was two hundreds (q = 200) and the weight of cluster 

validation indices was 0.2.  

As in the previous experiment, the RMSE of V2 ECG signal was reduced 

when we increased the number of small parts. The regression accuracy of 

the proposed method converged to the original accuracy result as in Table 

4.7 and Figure 4.14. The reduction ratio when splitting the data set into ten 

parts was reach to 80% which higher than the real world data set 2 

experiment. The reduction ratio of this experiment is better than the 

experiment from real world data set 2 because the output of ECG signals 

training data set has more close and redundant data as a periodic signal. The 

sorting and quantizing process were a good process to cluster the 

redundancy data or the periodic data.  
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 Table 4.7 V2 ECG signal reconstructed result. 

Number of 

small parts 

Number of 

training 

samples 

Number of 

testing 

samples 

RMSE 
Data reduction 

rate (%) 

1 8,209 2,736 0.1035 95.38 

5 8,209 2,736 0.0831 87.19 

10 8,209 2,736 0.0717 80.93 

Original 8,209 2,736 0.0683 0.00 

 

                                      
Figure 4.14 V2 ECG signal reconstructed result. 

The regression result of V2 ECG signal is presented in Figure 4.15. The 

shape of the reconstructed signal was similar to the original data.  

 
Figure 4.15 (Top) Original V2 chest lead signal,  

(Bottom) Reconstructed V2 chest lead signal. 
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From the regression result of V3 ECG signal, we found that the reduction 

ratios of the split data into five parts and ten parts were similar because the 

properties of V3 ECG signal that need to split the data just five parts to get 

an accuracy nearly close to the original data as shown in Table 4.8 and 

Figure 4.16. The regression result of V3 ECG signal is presented in Figure 

4.17. 

Table 4.8 V3 ECG signal reconstructed result. 

Number of 

small parts 

Number of 

training 

samples 

Number of 

testing 

samples 

RMSE 
Data reduction 

rate (%) 

1 8,209 2,736 0.1762 96.59 

5 8,209 2,736 0.1132 81.00 

10 8,209 2,736 0.1108 80.80 

Original 8,209 2,736 0.0940 0.00 

 

                            
Figure 4.16 V3 ECG signal reconstructed result. 
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Figure 4.17 (Top) Original V3 chest lead signal, 

(Bottom) Reconstructed V3 chest lead signal. 

From the regression result of V4 ECG signal, the RMSE of the split data  

into ten parts was lower than the RMSE from the original data result 

because the data in 4-fold cross validation was randomly selected data. In 

this case, the split data into ten parts can form the regression model that 

gave a better RMSE than the original data set as shown in Table 4.9 and 

Figure 4.18. The regression result of V4 ECG signal is presented in Figure 

4.19. 

Table 4.9 V4 ECG signal reconstructed result. 

Number of 

small parts 

Number of 

training 

samples 

Number of 

testing 

samples 

RMSE 
Data reduction 

rate (%) 

1 8,209 2,736 0.1244 96.29 

5 8,209 2,736 0.1116 89.14 

10 8,209 2,736 0.0960 81.95 

Original 8,209 2,736 0.1029 0.00 
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Figure 4.18 V4 ECG signal reconstructed result. 

 

Figure 4.19 (Top) Original V4 chest lead signal,  

(Bottom) Reconstructed V4 chest lead signal. 

From Table 4.10 and Figure 4.20, the RMSE of the split data into five parts 

was better than the RMSE of the split data into ten parts due ot the same 

reason as the regression result of V4 ECG signal, i.e. the data in 4-fold cross 

validation was randomly selected data. The regression result of V5 ECG 

signal is presented in Figure 4.21. 
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Table 4.10 V5 ECG signal reconstructed result. 

Number of 

small parts 

Number of 

training 

samples 

Number of 

testing samples 
RMSE 

Data reduction 

rate (%) 

1 8,209 2,736 0.1007 96.29 

5 8,209 2,736 0.0735 89.48 

10 8,209 2,736 0.0750 83.57 

Original 8,209 2,736 0.0613 0.00 

 

                           

Figure 4.20 V5 ECG signal reconstructed result. 

 

Figure 4.21 (Top) Original V5 chest lead signal, 

(Bottom) Reconstructed V5 chest lead signal. 
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 4.1.6 Concerning issues of the proposed method for regression problems 

1) The proposed method cannot reduce the data if the outputs of the data are 

not redundant or close to each other. 

2) The reduction ratio is low if the input data in each quantization levels are 

not close to each other. 

3) If the input data in each quantization level are spread, the reduction ratio 

is lower. 

4) The reduction ratio depends on the properties of training data set. The 

more data redundancy, the more reduction ratio becomes. 

 4.1.7 Setting the number of small parts and quantization levels  

The computational complexity of the proposed method is 3O(( ) )m . 

Therefore, the higher m reduces the computing time and the accuracy of 

regression result reach to the original data set but the reduction ratio is 

decreasing. Besides, the number of quantization levels should be selected by 

considering the value and the range of the output data. The round-off error 

of the output data is also to be considered because after achieving input data 

clustering, the output data in each quantization level will be approximated 

by the mean. Therefore, before selecting parameter q, we should specify an 

acceptable error. 

4.2 Result of instance reduction of classification problem 

In this section, the performance of the instance reduction for classification with 

synthesized data and the public data set were evaluated. The synthesized data was used 

to approve the reduction method and the public data set was used for performance 

evaluation.  

 1.2.4  Two-dimensional problem: two-class synthesized data set 

In the first experiment, a two-dimensional given two-class synthesized data 

set was used for presenting the procedure of the proposed method. The 

visualization of the 2D output results proved that the proposed method 

maintained the sample points near the decision boundary and reduced the 
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redundant sample points that were far from the decision boundary. The 

result of each procedure is shown in Figure 4.22 (a) – (e).  

From the original data in Figure 4.22 (a), we found that the synthesized data 

present overlapping area between two classes that may cause by noises or 

real data so that make the difficulty to define the data boundaries. After 

noises and overlapping data were removed using 1NN clustering, the data 

boundaries of two classes are obviously observed in Figure 4.22 (b). Then, 

the reduced data set ( ) was initialized and represented by black squares 

and big white dots, see Figure 4.22 (c). However, due to the limitation of 

1NN, some overlapping areas still remain. After extract data procedure, the 

number of data points near the decision boundary increases as shown in 

Figure 4.22 (d). The data pruning was performed in order to remove 

unnecessary data points. The outcome of pruning step was the necessary 

data points which were used for classification system training (Figure 4.22 

(e)). 

Figure 4.23 presented the voronoi diagram of original data set and reduced 

data set. The overlapping area in the orignal data was removed and the 

boundary of these classes was clearly separated. Therefore, the proposed 

method can reduce the classification data set and maintain the important 

data at the boundary of each class. 
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(a)                                                                (b) 

  

(c)                                                                (d) 

  

(e) 

Figure 4.22 Scatter plots of two-dimensional data for two class problem. 

 (a) The original data, (b) Preprocessed with removal of noise and overlap data,  

(c) Initialized the reduced data set ( ), (d) Extracted the instance  

data near the decision boundary, (e) The results from pruning the . 
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Figure 4.23 Voronoi diagram of the original data set (Left),  

Voronoi diagram of the reduced data set (Right). 

 4.2.2 Two-dimensional problem: multiclass synthesized data set 

The experimental results of different procedures are shown in Figure 4.24. 

The original data consisted of 4-class data sets which were represented by 

white circle, gray square, black circle, and star, respectively, as in Figure 

4.24 (a). After the operation with 1NN classification, some noises and the 

overlapping data were removed (Figure 4.24 (b)). The result from extracted 

samples in Figure 4.24 (d) is similar to initialized  in Figure 4.24 (c). 

Because the synthesized data are well-separated, the data from initialized 

 is sufficient to be the boundary data points. At last, the pruning step 

was applied to remove similar data points and maintained essential data 

points according to Figure 4.24 (e).  

The voronoi diagram of the reduced data set was similar to the voronoi 

diagram of the original data set as shown in Figure 4.25. This experimental 

result approved that the proposed method could be applied to multiclass data 

sets. 
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(a)                                              (b) 

   

  (c)                                          (d) 

 

(e) 

Figure 4.24 Scatter plots of two-dimensional data for 4-class problem. (a) The original 

data, (b) Preprocessed with removal of noise and overlapping data, (c) Initialized the 

reduced data set ( ), (d) Extracted the instance data near the decision boundary,  

(e) The results from pruning the . 
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Figure 4.25 Voronoi diagram of the original data set : four-classes (Left),  

Voronoi diagram of the reduced data set : four-classes (Right). 

 1.2.3 Public data sets from sci2s.ugr.es : small data sets 

We compared accuracy which was measured by 1NN as well as the data 

reduction ratio of our proposed method and the proposed method in [31]. 

The other prototype selection methods that were used to compare the 

performance with the proposed method are shown in Table 4.11.  

In addition, the product of classification accuracy and reduction ratio 

parameter, the multi-criteria result from TOPSIS and the percentage 

improvement were also used in the performance comparison. All parameter 

values were received from the average of 10-fold cross validation. 

In Table 4.12, we categorized the prototype selection method into three 

types (e.g., condensation method, edited method, and hybrid method 

followed by the type of selection). Each type can be separated into three 

subgroups (e.g., filter, batch, and wrapper followed by the evaluation of 

search). According to the procedure of the proposed method in Chapter 3, 

we can assign the proposed method in Hybrid–filter group as shown in 

Table 4.12. 
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Table 4.11 List of prototype selection methods. 

Complete name Abbreviate Name 

All-k NN AllKNN [32] 

Class Conditional Instance Selection CCIS [33] 

CHC Evolutionary Algorithm CHC [34] 

Condensed Nearest Neighbor CNN [35] 

Cooperative Coevolutionary Instance Selection CoCoIS [36] 

C-Pruner Cpruner [37] 

Decremental Reduction Optimization Procedure 3 DROP3 [21] 

Edited Nearest Neighbor  ENN [38] 

Edited Nearest Neighbor Estimating Class Probabilistic and Threshold ENNTh [39] 

Edited Normalized Radial Basis Function ENRBF [40] 

Explore Explore 

Fast Condensed Nearest Neighbor FCNN [41] 

Generalized Condensed Nearest Neighbor GCNN [42] 

Generational Genetic Algorithm GGA [43,44] 

Hit Miss Network Edition Iterative HMNEI [45] 

Instance Based 3 IB3 [46] 

Iterative Case Filtering ICF [47] 

Intelligent Genetic Algorithm IGA [48] 

Improved KNN IKNN [49] 

Modified Condensed Nearest Neighbor MCNN [50] 

Minimal Consistent Set MCS [51] 

Modified  Edited Nearest Neighbor  MENN [52] 

Mutual Neighborhood Value MNV [53] 

Model Class Selection MoCS [54] 

Modified Selective Subset MSS [55] 

Multiedit Multiedit [56] 

Nearest Centroid Neighbor Edition NCNEdit [57] 

Noise Removing based on Minimal Consistent Set NRMCS [58] 

Patterns by Ordered Projections POP [59] 

Prototype Selection Based on Clustering PSC [15] 

Prototype Selection using Relative Certainty Gain  PSRCG [60] 

Reconsistent Reconsistent [61] 

Random Mutation Hill Climbing RMHC [62] 

Relative Neighborhood Graph Editing RNG [63] 

Reduced Nearest Neighbor  RNN [64] 

Shrink Shrink [65] 

Selective Nearest Neighbor SNN [66] 

Steady-State Memetic Algorithm SSMA [67] 

Support Vector based Prototype Selection SVBPS [68] 

Tomek Condensed Nearest Neighbor TCNN [69] 

Template Reduction for KNN TRKNN [70] 

Variable Similarity Metric VSM [71] 
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Table 4.12 Groups of prototype selection methods. 

PS Method 

Condensation Edition Hybrid 

Filter Wrapper Filter Wrapper Filter Wrapper 

CNN - ENN - CCIS Explore 

GCNN  ENRBF  Cpruner GGA 

MCS  ENNTh   DROP3 IGA 

MSS  MENN   HMNEI CHC 

MNV  Multiedit   IB3 SSMA 

MCNN  NCNEdit   ICF CoCoIS 

PSC  RNGE   NRMCS RMHC 

RNN   AllKNN   PSRCG   

SNN   MoCS   SVBPS   

Shrink      VSM   

TCNN 

IKNN 

POP 

Reconsistent 

TRKNN 

     Proposed  

 

 

We divided the data used in this research into 3 types: small, medium, and 

large in order to enable the comparison between the results presented in [22] 

and ours. The first group of data sets used to evaluate the performance is the 

small data sets. These data sets contained 24 data sets, each of which has the 

length less than 2,000 samples as shown in Table 4.13. The table also 

presents the detail of the data, i.e., the name, the number of instances, the 

number of features, and the number of classes. The variation of features and 

classes can evaluate the generalization of the proposed method. 
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Table 4.13 List of small data sets. 

Data sets Number of instances Number of features Number of classes 

appendicitis 106 7 2 

bupa 345 6 2 

cleveland 303 13 5 

contraceptive 1,473 9 3 

dermatology 366 34 6 

ecoli 336 7 8 

glass 214 9 7 

haberman 306 3 2 

hayes-roth 160 4 3 

heart 270 13 2 

iris 150 4 3 

led7digit 500 7 10 

monks 432 6 2 

newthyroid 215 5 3 

pima 768 8 2 

sonar 208 60 2 

spectfheart 267 44 2 

tae 151 5 3 

vehicle 846 18 4 

vowel 990 13 11 

wine 178 13 3 

wisconsin 699 9 2 

yeast 1,484 8 10 

zoo 101 16 7 

 

The performances of all prototype selection methods from Table 4.12 are 

presented in Table 4.14, including the proposed method with the average of 

accuracy, reduction ratio, the product of accuracy and reduction ratio, and 

the result from TOPSIS. The result from the methods that is based on 

hybrid-wrapper methods was better than the result from condensation and 

edition methods because the performance of the reduced data set from 

condensation and edition methods cannot be better than the original data. 

The hybrid-wrapper method applied the optimization algorithm to select the 

important prototype and reduce the unnecessary data so that the 

performance of this method is better than using the original data. Thus, we 

consider only the prototype selection methods that are based on 

condensation and edition method (omit the hybrid-wrapper method) as 

implemented by our proposed method. The result of our proposed method 
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using only condensation and edition compared to other methods is shown in 

Table 4.15.  

Table 4.14 Result of small data sets from different methods. 

Accuracy Reduction ratio 
Accuracy  

Reduction ratio 
TOPSIS 

CHC 

SSMA 

GGA 

ENN 

RNG 

NCNEdit 

RMHC 

AllKNN 

ModelCS 

Explore 

ENNTh 

HMNEI 

POP 

MENN 

RNN 

CoCoIS 

Proposed 

MSS 

Multiedit 

TCNN 

FCNN 

CNN 

MCS 

MNV 

DROP3 

IB3 

MCNN 

IKNN 

IGA 

TRKNN 

Reconsistent 

GCNN 

PSRCG 

NRMCS 

PSC 

ICF 

ENRBF 

CCIS 

SVBPS 

VSM 

CPruner 

SNN 

Shrink 

0.7541 

0.7516 

0.7505 

0.7476 

0.7444 

0.7424 

0.7421 

0.7411 

0.7396 

0.7380 

0.7330 

0.7277 

0.7249 

0.7234 

0.7205 

0.7150 

0.7133 

0.7125 

0.7086 

0.7032 

0.7029 

0.7011 

0.6990 

0.6944 

0.6942 

0.6937 

0.6918 

0.6914 

0.6873 

0.6800 

0.6779 

0.6751 

0.6709 

0.6641 

0.6580 

0.6579 

0.6504 

0.6503 

0.6483 

0.6423 

0.6360 

0.5975 

0.4674 

Explore 

CHC 

NRMCS 

SSMA 

GGA 

CPruner 

RNN 

IGA 

RMHC 

MCNN 

CCIS 

Proposed 

CoCoIS 

DROP3 

SNN 

ICF 

IB3 

PSC 

SVBPS 

Shrink 

TCNN 

FCNN 

MNV 

CNN 

Reconsistent 

MCS 

HMNEI 

VSM 

PSRCG 

TRKNN 

MENN 

ENNTh 

GCNN 

MSS 

IKNN 

Multiedit 

AllKNN 

ENRBF 

ENN 

RNG 

NCNEdit 

ModelCS 

POP 

0.9741 

0.9662 

0.9637 

0.9511 

0.9365 

0.9201 

0.9143 

0.9080 

0.9018 

0.8971 

0.8949 

0.8449 

0.8327 

0.8207 

0.7501 

0.7118 

0.6965 

0.6917 

0.6742 

0.6551 

0.6449 

0.6399 

0.5998 

0.5704 

0.5623 

0.5593 

0.5520 

0.5340 

0.5118 

0.5043 

0.4892 

0.4681 

0.4668 

0.4632 

0.3696 

0.3649 

0.3612 

0.3394 

0.2633 

0.2458 

0.2239 

0.1296 

0.0967 

CHC 

Explore 

SSMA 

GGA 

RMHC 

RNN 

NRMCS 

IGA 

MCNN 

Proposed 

CoCoIS 

CPruner 

CCIS 

DROP3 

IB3 

ICF 

PSC 

TCNN 

FCNN 

SNN 

SVBPS 

MNV 

HMNEI 

CNN 

MCS 

Reconsistent 

MENN 

PSRCG 

ENNTh 

VSM 

TRKNN 

MSS 

GCNN 

Shrink 

AllKNN 

Multiedit 

IKNN 

ENRBF 

ENN 

RNG 

NCNEdit 

ModelCS 

POP 

0.7286 

0.7189 

0.7149 

0.7028 

0.6692 

0.6588 

0.6400 

0.6241 

0.6207 

0.6027 

0.5953 

0.5852 

0.5820 

0.5697 

0.4832 

0.4683 

0.4552 

0.4535 

0.4498 

0.4482 

0.4371 

0.4165 

0.4017 

0.3999 

0.3909 

0.3812 

0.3539 

0.3433 

0.3432 

0.3430 

0.3429 

0.3300 

0.3151 

0.3062 

0.2677 

0.2586 

0.2555 

0.2208 

0.1968 

0.1830 

0.1662 

0.0959 

0.0701 

CHC 

SSMA 

GGA 

Explore 

RMHC 

RNN 

IGA 

MCNN 

NRMCS 

Proposed 

CoCoIS 

DROP3 

CCIS 

CPruner 

IB3 

ICF 

PSC 

TCNN 

FCNN 

SNN 

SVBPS 

MNV 

HMNEI 

CNN 

MCS 

Reconsistent 

MENN 

ENNTh 

TRKNN 

PSRCG 

VSM 

MSS 

GCNN 

Shrink 

AllKNN 

Multiedit 

IKNN 

ENN 

RNG 

ENRBF 

NCNEdit 

ModelCS 

POP 

0.8316 

0.8272 

0.8234 

0.8228 

0.8089 

0.7993 

0.7775 

0.7771 

0.7760 

0.7723 

0.7686 

0.7520 

0.7518 

0.7501 

0.6951 

0.6842 

0.6746 

0.6734 

0.6706 

0.6693 

0.6611 

0.6457 

0.6353 

0.6333 

0.6265 

0.6184 

0.6005 

0.5937 

0.5893 

0.5890 

0.5871 

0.5826 

0.5679 

0.5591 

0.5446 

0.5329 

0.5276 

0.5044 

0.4961 

0.4953 

0.4867 

0.4525 

0.4365 
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Table 4.15 presents the result of the proposed methods is little less than the 

result obtained from the best method around 0.05 for the product of 

accuracy and reduction ratio and 0.03 for TOPSIS. 

Table 4.15 Result of small data sets from different  

methods without hybrid-wrapper algorithm. 

Accuracy Reduction 
Accuracy  

Reduction ratio 
TOPSIS 

ENN 

RNG 

NCNEdit 

AllKNN 

ModelCS 

ENNTh 

HMNEI 

POP 

MENN 

RNN 

Proposed 

MSS 

Multiedit 

TCNN 

FCNN 

CNN 

MCS 

MNV 

DROP3 

IB3 
MCNN 

IKNN 

TRKNN 

Reconsistent 

GCNN 

PSRCG 

NRMCS 

PSC 

ICF 

ENRBF 

CCIS 

SVBPS 

VSM 

CPruner 

SNN 

Shrink 

0.7476 

0.7444 

0.7424 

0.7411 

0.7396 

0.7330 

0.7277 

0.7249 

0.7234 

0.7205 

0.7133 

0.7125 

0.7086 

0.7032 

0.7029 

0.7011 

0.6990 

0.6944 

0.6942 

0.6937 

0.6918 

0.6914 

0.6800 

0.6779 

0.6751 

0.6709 

0.6641 

0.6580 

0.6579 

0.6504 

0.6503 

0.6483 

0.6423 

0.6360 

0.5975 

0.4674 

NRMCS 

CPruner 

RNN 

MCNN 

CCIS 

Proposed 

DROP3 

SNN 

ICF 

IB3 

PSC 

SVBPS 

Shrink 

TCNN 

FCNN 

MNV 

CNN 

Reconsistent 

MCS 

HMNEI 

VSM 

PSRCG 

TRKNN 

MENN 

ENNTh 

GCNN 

MSS 

IKNN 

Multiedit 

AllKNN 

ENRBF 

ENN 

RNG 

NCNEdit 

ModelCS 

POP 

0.9637 

0.9201 

0.9143 

0.8971 

0.8949 

0.8449 

0.8207 

0.7501 

0.7118 

0.6965 

0.6917 

0.6742 

0.6551 

0.6449 

0.6399 

0.5998 

0.5704 

0.5623 

0.5593 

0.5520 

0.5340 

0.5118 

0.5043 

0.4892 

0.4681 

0.4668 

0.4632 

0.3696 

0.3649 

0.3612 

0.3394 

0.2633 

0.2458 

0.2239 

0.1296 

0.0967 

RNN 

NRMCS 

MCNN 

Proposed 

CPruner 

CCIS 

DROP3 

IB3 

ICF 

PSC 

TCNN 

FCNN 

SNN 

SVBPS 

MNV 

HMNEI 

CNN 

MCS 

Reconsistent 

MENN 

PSRCG 

ENNTh 

VSM 

TRKNN 

MSS 

GCNN 

Shrink 

AllKNN 

Multiedit 

IKNN 

ENRBF 

ENN 

RNG 

NCNEdit 

ModelCS 

POP 

0.6588 

0.6400 

0.6207 

0.6027 

0.5852 

0.5820 

0.5697 

0.4832 

0.4683 

0.4552 

0.4535 

0.4498 

0.4482 

0.4371 

0.4165 

0.4017 

0.3999 

0.3909 

0.3812 

0.3539 

0.3433 

0.3432 

0.3430 

0.3429 

0.3300 

0.3151 

0.3062 

0.2677 

0.2586 

0.2555 

0.2208 

0.1968 

0.1830 

0.1662 

0.0959 

0.0701 

RNN 

MCNN 

NRMCS 

Proposed 
DROP3 

CCIS 

Cpruner 

IB3 

ICF 

PSC 

TCNN 

FCNN 

SNN 

SVBPS 

MNV 

HMNEI 

CNN 

MCS 

Reconsistent 

MENN 

ENNTh 

TRKNN 

PSRCG 

VSM 

MSS 

GCNN 

Shrink 

AllKNN 

Multiedit 

IKNN 

ENN 

RNG 

ENRBF 

NCNEdit 

ModelCS 

POP 

0.7993 

0.7771 

0.7760 

0.7723 
0.7520 

0.7461 

0.7378 

0.6951 

0.6843 

0.6746 

0.6734 

0.6706 

0.6693 

0.6611 

0.6457 

0.6353 

0.6333 

0.6265 

0.6184 

0.6006 

0.5937 

0.5893 

0.5890 

0.5871 

0.5826 

0.5679 

0.5592 

0.5447 

0.5329 

0.5276 

0.5044 

0.4961 

0.4954 

0.4867 

0.4525 

0.4365 
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The percentage improvement (PI) applied to evaluate the performance 

between the proposed method and other prototype selection methods in 

Table 4.15. We report the PI of accuracy and reduction ratio in Table 4.16. 

The boldfaced characters note that the proposed method has a better result 

than those methods. 

Table 4.16 Percentage improvement between the proposed method  

and other methods using small data sets.  

Data sets Accuracy Reduction 
PI (%) 

Accuracy Reduction 
  Proposed 0.7133 0.8449 - - 

  ENN 0.7476 0.2633 -4.59 220.88 

  RNG 0.7444 0.2458 -4.18 243.69 

  NCNEdit 0.7424 0.2239 -3.92 277.30 

  AllKNN 0.7411 0.3612 -3.76 133.91 

  ModelCS 0.7396 0.1296 -3.56 551.74 

  ENNTh 0.733 0.4681 -2.70 80.49 

  HMNEI 0.7277 0.552 -1.98 53.06 

  POP 0.7249 0.0967 -1.60 773.35 

  MENN 0.7234 0.4892 -1.40 72.70 

  RNN 0.7205 0.9143 -1.01 -7.59 

  MSS 0.7125 0.4632 0.11 82.39 

  Multiedit 0.7086 0.3649 0.66 131.52 

  TCNN 0.7032 0.6449 1.43 31.03 

  FCNN 0.7029 0.6399 1.47 32.05 

  CNN 0.7011 0.5704 1.74 48.12 

  MCS 0.699 0.5593 2.04 51.07 

  MNV 0.6944 0.5998 2.71 40.86 

  DROP3 0.6942 0.8207 2.75 2.95 

  IB3 0.6937 0.6965 2.81 21.31 

  MCNN 0.6918 0.8971 3.10 -5.82 

  IKNN 0.6914 0.3696 3.17 128.62 

  TRKNN 0.68 0.5043 4.90 67.54 

  Reconsistent 0.6779 0.5623 5.22 50.25 

  GCNN 0.6751 0.4668 5.66 81.01 

  PSRCG 0.6709 0.5118 6.32 65.09 

  NRMCS 0.6641 0.9637 7.41 -12.33 

  CCIS 0.6628 0.8532 7.61 -0.97 

  PSC 0.658 0.6917 8.39 22.15 
  ICF 0.6579 0.7118 8.41 18.70 

  ENRBF 0.6504 0.3394 9.67 148.93 

  SVBPS 0.6483 0.6742 10.01 25.33 

  VSM 0.6423 0.534 11.05 58.23 

  Cpruner 0.6345 0.8784 12.41 -3.81 

  SNN 0.5975 0.7501 19.37 12.65 

  Shrink 0.4674 0.6551 52.59 28.98 
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We sort the methods by the PI of accuracy values. The PI of accuracy values 

in Table 4.16 of our proposed methods is lower than ENN, RNG, NCNEdit, 

AllKNN, ModelCS, ENNTh, HMNEI, POP, and MENN methods (the 

maximum is 4.59%). However, the PI of reduction is better than all of these 

methods. The MCNN and NRMCS methods gave a better reduction ratio 

result but the proposed method gave a better accuracy result. Even though, 

the RNN method showed both accuracy and reduction ratio being better 

than the proposed method 1 and 7% but it consumed too much cost of 

computation in both time and memory than the other methods. The 

proposed method provided a better performance in both accuracy and 

reduction ratio than 21 methods. 

Figure 4.26 shows the scatter plot of the average of normalized accuracy 

and reduction ratio. We present the top ten TOPSIS results from Table 4.17. 

The position of the best method must be close to (1,1) and the worst method 

must be close to (0,0). In this case, the proposed method is the second from 

all of 36 methods. It is the second in accuracy performance and the fourth in 

reduction performance. 

 
Figure 4.26 Average of normalized accuracy and reduction ratio of small data sets. 

The accuracy of each data set is different in range, thus we want to present 

the position of the proposed method accuracy between the maximum and 

minimum of the other prototype selection method accuracy from each small 

data set. The mark ‘-’ is the proposed method’s accuracy and the vertical 
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line is the range between the maximum and minimum accuracy from other 

prototype selection methods as show in Figure 4.27. All of the accuracy 

results are nearly close to the maximum value except for Cleveland, heart, 

tae, and wine data sets that have accuracy lower than half of the range. 

 

Figure 4.27 Range of average accuracy of each data in small data sets. 

 1.2.4 Public data sets from sci2s.ugr.es : medium data sets 

Medium-sized data sets are a data set which contains sample points between 

2,000 and 20,000 samples, the number of features between 2 to 85, and the 

number of classes from 2 to 11. The detail of the medium data sets is shown 

in Table 4.17. 

Table 4.17 List of medium data sets. 

Data sets Number of instances Number of features Number of Classes 

banana 

coil2000 

magic 

marketing 

page-blocks 

pen based 

phoneme 

ring 

sat image 

segment 

spam base 

texture 

thyroid 

titanic 

two norm 

5,300 

9,822 

19,020 

8,993 

5,472 

10,992 

5,404 

7,400 

6,435 

2,310 

4,597 

5,500 

7,200 

2,201 

7,400 

2 

85 

10 

13 

10 

16 

5 

20 

36 

19 

57 

40 

21 

3 

20 

2 

2 

2 

9 

5 

10 

2 

2 

7 

7 

2 

11 

3 

2 

2 
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In this experiment, we did not select all prototype selection method from 

Table 4.12 but we used some of them that showed a good result from the 

small data set experiment to evaluate the performance with the proposed 

method. The experimental result is presented in Table 4.18.   

Table 4.18 Result of medium data sets from different methods. 

Accuracy Reduction ratio 
Accuracy  

Reduction ratio 
TOPSIS 

RMHC 

SSMA 

RNG 

ModelCS 

HMNEI 

CHC 

GGA 

RNN 

AllKNN 

POP 

MSS 

Proposed 

IB3 

FCNN 

CNN 

TCNN 

MENN 

Cpruner 

NREMCS 

DROP3 

Reconsistent 

CCIS 

MCNN 

ICF 

0.8712 

0.8670 

0.8638 

0.8612 

0.8571 

0.8534 

0.8503 

0.8498 

0.8483 

0.8433 

0.8413 

0.8399 

0.8397 

0.8300 

0.8241 

0.8203 

0.8198 

0.8198 

0.8055 

0.7941 

0.7779 

0.7417 

0.7234 

0.6941 

CHC 

MCNN 

SSMA 

CCIS 

RNN 

NRMCS 

Proposed 

GGA 

DROP3 

RMHC 

CPruner 

ICF 

IB3 

FCNN 

TCNN 

CNN 

Reconsistent 

MSS 

HMNEI 

MENN 

AllKNN 

RNG 

POP 

ModelCS 

0.9949 

0.9909 

0.9859 

0.9580 

0.9560 

0.9550 

0.9201 

0.9097 

0.9075 

0.9001 

0.8875 

0.8399 

0.7655 

0.7620 

0.7529 

0.7466 

0.6927 

0.6042 

0.5290 

0.2880 

0.1925 

0.1263 

0.0984 

0.0644 

SSMA 

CHC 

RNN 

RMHC 

GGA 

Proposed 

NRMCS 

CPruner 

DROP3 

MCNN 

CCIS 

IB3 

FCNN 

TCNN 

CNN 

ICF 

Reconsistent 

MSS 

HMNEI 

MENN 

AllKNN 

RNG 

POP 

ModelCS 

0.8547 

0.8490 

0.8124 

0.7842 

0.7736 

0.7728 

0.7693 

0.7276 

0.7206 

0.7168 

0.7106 

0.6428 

0.6325 

0.6176 

0.6152 

0.5830 

0.5389 

0.5083 

0.4534 

0.2361 

0.1633 

0.1091 

0.0830 

0.0555 

SSMA 

CHC 

RNN 

RMHC 

GGA 

Proposed 

NRMCS 

CPruner 

DROP3 

CCIS 

MCNN 

IB3 

FCNN 

TCNN 

CNN 

ICF 

Reconsistent 

MSS 

HMNEI 

MENN 

AllKNN 

RNG 

POP 

ModelCS 

0.9075 

0.8994 

0.8910 

0.8849 

0.8769 

0.8744 

0.8622 

0.8505 

0.8423 

0.8224 

0.8159 

0.8000 

0.7939 

0.7847 

0.7828 

0.7594 

0.7331 

0.7084 

0.6717 

0.5419 

0.5143 

0.4968 

0.4813 

0.4773 

 

Table 4.19 presents the experimental result except for the prototype 

selection method based on the hybrid–wrapper method. The proposed 

method had the average accuracy less than the best result from RNG method 

for about 2%, and the reduction ratio less than MCNN for about 7%, but the 

Accuracy reduction ratio and the TOPSIS were better than these methods. 

The proposed method was the second from twenty methods when compared 

with TOPSIS. 
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Table 4.19 Result of medium data sets from different 

 methods without hybrid-wrapper algorithm. 

Accuracy Reduction ratio 
Accuracy  

Reduction ratio 
TOPSIS 

RNG 

ModelCS 

HMNEI 

RNN 

AllKNN 

POP 

MSS 

Proposed 

IB3 

FCNN 

CNN 

TCNN 

MENN 

CPruner 

NRMCS 

DROP3 

Reconsistent 

CCIS 

MCNN 

ICF 

0.8638 

0.8612 

0.8571 

0.8498 

0.8483 

0.8433 

0.8413 

0.8399 

0.8397 

0.8300 

0.8241 

0.8203 

0.8198 

0.8198 

0.8055 

0.7941 

0.7779 

0.7417 

0.7234 

0.6941 

MCNN 

CCIS 

RNN 

NRMCS 

Proposed 

DROP3 

CPruner 

ICF 

IB3 

FCNN 

TCNN 

CNN 

Reconsistent 

MSS 

HMNEI 

MENN 

AllKNN 

RNG 

POP 

ModelCS 

0.9909 

0.9580 

0.9560 

0.9550 

0.9201 

0.9075 

0.8875 

0.8399 

0.7655 

0.7620 

0.7529 

0.7466 

0.6927 

0.6042 

0.5290 

0.2880 

0.1925 

0.1263 

0.0984 

0.0644 

RNN 

Proposed 

NRMCS 

CPruner 

DROP3 

MCNN 

CCIS 

IB3 

FCNN 

TCNN 

CNN 

ICF 

Reconsistent 

MSS 

HMNEI 

MENN 

AllKNN 

RNG 

POP 

ModelCS 

0.8124 

0.7728 

0.7693 

0.7276 

0.7206 

0.7168 

0.7106 

0.6428 

0.6325 

0.6176 

0.6152 

0.5830 

0.5389 

0.5083 

0.4534 

0.2361 

0.1633 

0.1091 

0.0830 

0.0555 

RNN 

Proposed 

NRMCS 

CPruner 

DROP3 

CCIS 

MCNN 

IB3 

FCNN 

TCNN 

CNN 

ICF 

Reconsistent 

MSS 

HMNEI 

MENN 

AllKNN 

RNG 

POP 

ModelCS 

0.8910 

0.8744 

0.8622 

0.8505 

0.8423 

0.8224 

0.8159 

0.8000 

0.7939 

0.7847 

0.7828 

0.7594 

0.7331 

0.7084 

0.6717 

0.5419 

0.5143 

0.4968 

0.4813 

0.4773 

 

The ranges of PI were between -2.77% to 21% for the accuracy and the PI 

of reduction ratio were -7.14% to 1,328%. The RNN method was the only 

one that had a better value than the proposed method but the reduction time 

of RNN that reported in [22] was longest (The summary was about 400,000 

second). The PI values are presented in Table 4.20. 

Figure 4.28 shows the scatter plot of the average of normalized accuracy 

and reduction ratio. From this graph, the accuracy of the proposed method is 

the second. The reduction ratio of the proposed method is the third if we 

focus only on the method which had accuracy better than 0.7.  

From Figure 4.29, all of the accuracy results from each data set are nearly 

close to the maximum value except for the magic, spambase, and twonorm 

data sets whose accuracy are lower than half of the range. 
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Table 4.20 Percentage improvement between the proposed method  

and other methods using medium data sets. 

Data sets Accuracy Reduction 
PI (%) 

Accuracy Reduction 

Proposed 0.8399 0.9201 - - 
RNG 0.8638 0.1263 -2.77 628.39 

ModelCS 0.8612 0.0644 -2.48 1,328.87 

HMNEI 0.8571 0.5290 -2.01 73.94 

RNN 0.8498 0.9560 -1.17 -3.75 

AllKNN 0.8483 0.1925 -0.99 377.87 

POP 0.8433 0.0984 -0.40 834.74 

MSS 0.8413 0.6042 -0.17 52.28 

IB3 0.8397 0.7655 0.02 20.2 

FCNN 0.8300 0.7620 1.19 20.75 

CNN 0.8241 0.7466 1.92 23.24 

TCNN 0.8203 0.7529 2.39 22.21 

MENN 0.8198 0.2880 2.44 219.47 

CPruner 0.8198 0.8875 2.45 3.67 

NRMCS 0.8055 0.9550 4.26 -3.66 

DROP3 0.7941 0.9075 5.77 1.39 

Reconsistent 0.7779 0.6927 7.96 32.82 

CCIS 0.7417 0.9580 13.23 -3.96 

MCNN 0.7234 0.9909 16.10 -7.14 

ICF 0.6941 0.8399 21.00 9.54 

 

 

 

Figure 4.28 Average of normalized accuracy and reduction ratio of medium data set. 
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Figure 4.29 Range of average accuracy of each data in medium data sets. 

 4.2.5  Public data sets from sci2s.ugr.es : large data sets 

A large-sized data set is the data set which has sample points between 

40,000 and 300,000 samples, the number of features between 9 and 42, and 

the number of classes from 2 to 8. The details of large data sets are shown in 

Table 4.21.  

Table 4.21 List of large data sets. 

Data sets 
Number of 

instances 

Number of 

features 

Number of 

Classes 

Adult 

census 

connect-4 

fars 

shuttle 

48,842 

299,285 

67,557 

100,968 

58,000 

14 

41 

42 

29 

9 

2 

2 

3 

8 

7 

 

Due to the limitation of the computational resources as well as the 

experimental result from the proposed method being better than some 

prototype selection methods for small and medium data sets, we did not 

evaluate the performance with all the methods. The prototype selection 

methods that we were able to compare with the proposed method are CCIS, 

DROP3, FCNN, HMNEI, MCNN, RMHC, RNG, and SSMA, i.e. we 

compare the performance of the proposed method with all of these methods.  

From Table 4.22, the proposed method could operate with the large data sets 

and it had average accuracy less than the best result from RNG method for 
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about 4%, and the reduction ratio less than MCNN for about 8%; however 

the Accuracy reduction ratio and the TOPSIS had better than these 

methods. The best result is SSMA, which is based on hybrid–wrapper 

method. The experimental result from the proposed method is lower than 

the result from SSMA for about 0.09 and 0.04. 

Table 4.22 Result of large data sets from different methods. 

Accuracy Reduction AccuracyReduction TOPSIS 
RNG 

SSMA 

RMHC 

HMNEI 

CCIS 

DROP3 

Proposed 

FCNN 

MCNN 

0.8421 

0.8401 

0.8358 

0.8187 

0.8120 

0.8113 

0.8037 

0.7918 

0.6401 

MCNN 

SSMA 

CCIS 

Proposed 

RMHC 

DROP3 

FCNN 

HMNEI 

RNG 

0.9992 

0.9875 

0.9225 

0.9156 

0.9006 

0.8926 

0.7178 

0.6489 

0.1871 

SSMA 

RMHC 

CCIS 

Proposed 

DROP3 

MCNN 

FCNN 

HMNEI 

RNG 

0.8296 

0.7527 

0.7491 

0.7358 

0.7242 

0.6396 

0.5683 

0.5313 

0.1575 

SSMA 

RMHC 

CCIS 

Proposed 

DROP3 

MCNN 

FCNN 

HMNEI 

RNG 

0.8899 

0.8649 

0.8580 

0.8508 

0.8475 

0.7673 

0.7529 

0.7256 

0.5102 

 

The PI of accuracy has a range between -4.6% and 25%, and the PI of 

reduction ratio are from -8.4% to 389%. The SSMA and CCIS methods are 

the only two methods that have better PI values than the proposed method. 

The PI values are presented in Table 4.23. 

Table 4.23 Percentage improvement between the proposed method  

and other methods using large data sets. 

Data sets Accuracy Reduction 
PI (%) 

Accuracy Reduction 

Proposed 0.8037 0.9156 - - 

RNG 0.8421 0.1871 -4.57 389.45 

SSMA 0.8401 0.9875 -4.33 -7.28 

RMHC 0.8358 0.9006 -3.85 1.66 

HMNEI 0.8187 0.6489 -1.83 41.09 

CCIS 0.8120 0.9225 -1.02 -0.76 

DROP3 0.8113 0.8926 -0.94 2.57 

FCNN 0.7918 0.7178 1.5 27.56 

MCNN 0.6401 0.9992 25.55 -8.37 

 

Due to the limitation of the cost of computation, the data set used to 

evaluate the performance was not enough to indicate the robustness of the 

proposed and others methods. Then, the performance was not similar to the 

experimental result from small and medium data sets. However, the 
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performance of the proposed method is still in the group that gave the best 

result as shown in Figure 4.30. Finally, the accuracy of three large data sets 

was close to the maximum accuracy (Figure 4.31).  

 

Figure 4.30 Average of normalized accuracy and reduction ratio of large data set. 

 

Figure 4.31 Range of average accuracy of each data in large data sets. 
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 6.2.4 Evaluation of reduced data sets in model-based classifiers 

In this section, the comparison of the average accuracy between 3 super 

vised learning of 40-fold cross validation classified by supervised learning 

algorithms, i.e., SVM, ANN, and 1-NN classifications, is shown in Table 

4.24. The real-world data sets used in this experiment were obtained from 

sci2s.ugr.es. The data set consists of two classes with various features 

between 2 are 85, and the number of sample points was between 106 and 

19,020 samples. From the average accuracy result, we found that 1NN 

clustering provided the highest accuracy because the proposed method 

applied 1NN to process the training data set. However, the average accuracy 

of ANN and SVM were also close to 1NN so the proposed method could, 

therefore, provide the reduced data sets to the other supervised learning 

algorithms.    

Table 4.24 Testing accuracy result from supervised learning and 1NN rule. 

Data sets SVM ANN 1NN 

coil2000 0.9394 0.8916 0.921 

Haberman 0.7320 0.6439 0.700 

Monks 0.9773 0.9727 0.9416 

Spectfheart 0.7905 0.7001 0.7019 

Banana 0.8874 0.8966 0.8877 

Bupa 0.5789 0.6408 0.6272 

Heart 0.563 0.7185 0.6704 

Magic 0.6496 0.8503 0.7772 

Spambase 0.6419 0.8908 0.7775 

Twonorm 0.7258 0.9641 0.9211 

Appendicitis 0.7273 0.7464 0.7625 

Phoneme 0.8294 0.7948 0.8677 

Pima 0.6511 0.6627 0.6819 

Ring 0.4951 0.7766 0.8593 

Sonar 0.7876 0.7362 0.8203 

Titanic 0.5670 0.5403 0.6770 

Wisconsin 0.7313 0.8952 0.9311 

Average 0.7220 0.7836 0.7956 
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 4.2.7  Concerning issues of the proposed method for classification problems 

  1) The proposed method has low data reduction efficiency when the data set 

has only boundary data.  

  2) The values in the data set must be numerical or reasonably labeled 

because the propose method reduces data based on the distance. 

  3) The computational complexity of the proposed method is 2 3o(3 )c  

where c is the ratio of the sample points located in the class to the total 

number of sample points in each class boundary with 0 1c  . The 

proposed method will process even faster if the number of sample points 

located in the class boundary is smaller.   

 


