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CHAPTER 2 

Transient State Estimation Algorithm 

State Estimation (SE) is a technique that uses partial measured data to estimate the 

state of power system. Estimation techniques have been extended from steady-state to 

transient phenomena call Transient State Estimation (TSE). There are two main parts of 

TSE which are system modeling and state estimation. The system modeling is a set of 

state equation used for measurement equation. State estimation is a technique used for 

solving the measurement equation.  

For measurement equation, the system modeling part will build the combination 

of each component model (i.e. generator, transformer, transmission line and load) 

forming the power network. There are several transmission models that can represent 

transmission line. PI model is one of the popular models. However, longer transmission 

line needs to consider distributed parameters that corresponding to travelling wave 

theory for more accurate estimation.  

2.1 The Basis of State Estimation  

A general linear measurement system used in power system state estimation can 

be written as [1-2,4-5] 

 z H x                        (2.1) 

where  z    is a vector of measurement values collected from monitoring equipment, 

x    is a vector of state variables to be estimated, 

 H   is a measurement matrix, 

   is a measurement error vector. 
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The problem of solving SE equation, equation (2.1), can be categorized as over-

determined, completely-determined or under-determined depending on the rank of  H . 

An over-determined system consists of redundant measurements that can mitigate the 

effect of any bad data. In general, the method for solve SE problem are the Weighted 

Least Squares (WLS) [2]. It is a best estimator in the maximum likelihood sense when 

the errors have Gaussian nature. However, it does not exhibit an inherent capability of 

filtering bad data. There are essentially four different approaches to solve the WLS 

problem: the normal equation method, the orthogonal transformation method, the 

augmented matrix method, and the pseudo-inverse method. Another approach called the 

Weighted Least Absolute Value (WLAV) method is said to perform well in filtering bad 

data. It can be solved using the linear programming, the simplex method, or the interior 

point method. Since WLAV method is computational intensive, a technique to improve 

its speed is required when using in a real-time system. 

2.2  Normal Equation Method 

The SE problem without constraints of a power system can be solved using the 

weighted least squares (WLS). The solution to the state estimation problem can be 

formulated as a minimization of following objective function [2],  
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where iz  is a vector of i-th measurement values, iH  is i-th measurement matrix, m is 

number of measurements and R  is a diagonal measurement covariance matrix [2,4], 
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where i  is the standard deviation of the i-th measurements, m is the number of 

measurements. Normally, the covariance of the measurements are unknown and often 

assumed to be an identity matrix since the same instrumentation is used to obtain the 

data. 
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Equation (2.2) represents the summation of the squares of the measurement 

residuals weighted by their respective measurement error covariance. This can be 

rewritten as [2], 

   1
( )

T
J x z Hx R z Hx


   .   (2.4) 

The minimum of this objective function is when its derivative becomes zero, i.e. 

( )
0

dJ x

dx
 .     (2.5) 

The yields the normal equation is obtained by [2,4] 

1 1ˆ Tx G H R z     ,    (2.6) 

where x̂  is the estimated state and 
1TG H R H     is called gain matrix.  

2.3  State Variable Formulation 

 The system network used in TSE can be expressed as [5,10] 

   

   

x A x B u

y C x D u

 

 
     (2.7) 

where x is the state vector or state variable measurement data, x
 
is the vector of state 

variable derivatives with respect to time and y is the vector of output variables or 

dependent variable measurement data. [A], [B], [C] and [D] value are coefficient 

matrices with proper dimensions, and u represents the vector of inputs. Moreover, the 

measurements in relation to the state variables are [5] 

State variable measurement data: 

 1measuredx x .    (2.8) 

Derivative of measured state variables: 

   measuredx A x B u  .    (2.9) 
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Dependent variable measurement data: 

   measuredy C x D u  .    (2.10) 

Derivative of measured dependent variable: 

   measuredy C x D u  ,    (2.11) 

  
       C A x C B u D u   . 

The measurement equation are built up from rows of measurement equation 

corresponding to the selected measurement point and selecting from equations (2.8) to 

(2.11). The measurement equation is then solved using the weighted least squares 

equation in (2.6). Once the state variables are known, dependent variables can be 

calculated and the complete knowledge of the system can be determined. 

2.4  System Modeling 

 The components in a power system are the generator, transformer, transmission 

line and load. The selection of the component model should be done properly to obtain 

accurate estimation. Generally, lumped RLC elements are often used for short and 

simple transmission lines and constructed by cascaded connection of T, π or L sections 

[8]. If the transmission lines are sufficiently long, the traveling time will be greater than 

the solution time step. Figure 2.1 shows  a decision tree for the selection of the 

appropriate transmission line model. For example, in the case of a general solution time 

step,t of 50 µs, the minimum limit for travelling time is length/c where the c is the 

speed of light (c = 3108 m/s), therefore line over 15 km can be represented by the 

Bergeron model [16]. 
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Figure 2.1 Decision tree for select the transmission line model [20]. 

 Figure 2.2 shows propagation of a wave on a transmission line which distributed 

parameter where  and c  are line inductance and line conductance per unit length 

parameters, respectively. 



 ,v x t

 ,i x t
k m

0x  x l

ki mi

 

Figure 2.2 Propagation of a wave on a transmission line [20]. 

 The wave travel along the transmission line from bus k to bus m. The telegraph 

equation is used to describe the relationship between the voltage and current along the 

transmission line, both voltage and current are function of position, x and time, t. The 

gradient of voltage ( , )v x t  in equation (2.12) is related to the time derivative of the 

current through the cable inductance. Similarly in equation (2.13), the gradient of 
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current ( , )i x t  is related to the time derivative of the voltage. Therefore, the propagation 

equation for transmission line are 

( , ) ( , )v x t i x t

x t

 
 

 
,     (2.12) 

( , ) ( , )i x t v x t
c

x t

 
 

 
.     (2.13) 

General solutions in forward and backward travelling wave are 

1( , ) ( , ) 2 ( )C Cv x t Z i x t Z f x t   ,    (2.14) 

2( , ) ( , ) 2 ( )C Cv x t Z i x t Z f x t    ,    (2.15) 

where 1( )f x t is function of ( )x t  and represents a wave travelling at velocity 

in forward direction (from bus k to bus m). Therefore, 2 ( )f x t  is function of ( )x t  

and represents a wave travelling at velocity  in backward direction (from bus m to k  

bus). The surge impedance, CZ  and the phase velocity,    is given by [10,20]. 

0CZ
c

  ,     (2.16) 

1
0

c
   .     (2.17) 

 If l is length of transmission line, the travelling time,  between bus k and m is 

l
l c


  .                 (2.18) 

 The line can be modeled by an equivalent network consisted of current sources 

and impedance element follow the figure 2.3. The current sources Ik and Im in equation 

(2.19) and (2.20) are calculated from the past history at time ( )t  [10,20], 

 ( ) 1 ( ) ( ),k C m mI t Z v t i t           (2.19) 

 ( ) 1 ( ) ( ).m C k kI t Z v t i t           (2.20) 
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Figure 2.3 Equivalent two-port network for a lossless line [20]. 

 The effective series resistance of the line can be represented by lumped resistors, 

and the effect of the line attenuation is approximated by adding half of the total line 

resistance, R rl  at the ends of line, where r is line resistance per unit length and l is 

length of transmission line, or for more accurately by adding / 4R at the terminals and 

/ 2R in the middle of the line. In this case, CZ  in figure 2.3 is replaced by / 4CZ R  

and the past history current can be calculated by equation (2.23) and (2.24). 

 

Figure 2.4 Bergeron transmission line model [20]. 

 The Bergeron equivalent two-port network is shown in figure 2.4. The 

transmission line between the sending bus and receiving bus has a traveling time,

(subscript k and m denotes the sending and the receiving-end, respectively). In this 

study, each Bergeron transmission line construct refer to [10]. There is transient 

simulation for transmission lines based on the concept of travelling waves by using state 

equation. It is driven by a bus voltage assumed as a voltage source (vs). Its state 

variables for [10] use current pass through a series inductor L connect with source and 

voltage across parallel RC load as shown in figure 2.5. 
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Figure 2.5 Single line view with termination [10]. 

 The Bergeron model is used for transmission line which sufficiently long and 

yield the travelling wave theory models representation. The set of differential equations 

can express by choosing the inductor current and capacitor voltage as the state variables. 

The state equations for single-phase are shown below [10]. 

 
 
 

1
0 0

1 1
0 0 0

k
s

k

k

mm

m

Zdi Z v t
iLdt L L

I t
Z R vdv

I t
C ZR Cdt





             
                              

.                 (2.21) 

The dependent variable equations or output equations to obtain the sending-end 

voltages and the receiving-end currents are written as 

 
 
 

0
0 0

1
0 0 10

s

k k

k

m m

m

v tZ
v i Z

I t
i v

I tZ





  
                              

,                     (2.22) 

where / 4CZ Z rl   and ik , im represent the sending-end and the receiving-end 

current, and vk, , vm represent the sending-end and the receiving-end busbar voltages,  

respectively. The current sources that represent the past history terms are determined as 

[10, 20-21] 

2

2

( ) [ ( ) ( / 4) ( )]
( / 4)

/ 4
[ ( ) ( / 4) ( )],

( / 4)

C
k m C m
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I t v t Z R i t

Z R

R
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  

 


     




    



                   (2.23) 
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2

2
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/ 4
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( / 4)

C
m k C k

C

m C m

C

Z
I t v t Z R i t

Z R

R
v t Z R i t

Z R
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 


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


    



                   (2.24) 

2.5 Transient State Estimation  

State estimation techniques are used to determine the state values at unmonitored 

location. The complete system values including partial measurements value and the 

estimated value are used to develope power quality of system. 

The state estimation techniques are extended from steady-state to transient 

phenomena, call transient state estimation. The frequently occurring transient 

phenomena are voltage sag which is one of the most concerned power quality issues 

refer to IEEE Standard 1159-2009 [22]. Voltage sag is a sudden decrease in Root-Mean-

Square (RMS) voltage for durations from 0.5 cycles to 1 minute which can be 

categoried to three subgroups as shown in table 2.1. Voltage sag defines the magnitue 

voltage drop between 0.1 to 0.9 pu , reported as the remaining voltage. 

Table 2.1 Categories and characteristics of power systems electromagnetic phenomena 

[22]. 

 

The transient phenomena that occur in power system can be determined by state 

estimation technique. It combines the component and network equation to state equation 

Categories Typical Duration Typical Magnitude

Instantaneous

Sag 0.5-30 cycles 0.1-0.9 pu

Swell 0.5-30 cycles 1.1-1.8 pu

Momentary

Interruption 0.5-3 seconds < 0.1 pu

Sag 0.5-3 seconds 0.1-0.9 pu

Swell 0.5-3 seconds 1.1-1.8 pu

Temporary

Interruption 3 sec-1 minute < 0.1 pu

Sag 3 sec-1 minute 0.1-0.9 pu

Swell 3 sec-1 minute 1.1-1.8 pu
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form. The state equation (repeated here) use the function to relate the system state 

vector, x  with the set of measurement vector, z  can be written as [1-2,4-5]. 

  z H x   ,                     (2.25) 

where  H  is the measurement matrix and    is the error vector. The previous state 

formulation of the Bergeron transmission line in equation (2.21) that included operator 

d/dt can be approximated and rewritten in terms of the previous system state at ( )t t  

as [4] 

( ) ( ) ( )
,

( ) ( ) ( )
.

di t i t i t t

dt t

dv t v t v t t

dt t

  




  




                          (2.26) 

In this study, the three-phase transmission line uses modal transformation 

technique which requires eigenvalue analysis [10] to transform coupled equations to 

decoupled equations. The effect of coupling between phases can be eliminated. The 

three-phase voltage and current can be calculated as three independent modes and each 

mode can be treated as a single-phase transmission line [21, 23-24]. Phase to modal 

transformation (subscript phase and mode, respectively) can be described as [24] 

 

Figure 2.6 Transformation between phase and modal domain on three-phase line. 
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For modal to phase transformation are determined as 

 

 

,

.

phase mode

phase mode

v T v

i T i

      

      
                        (2.28) 

where modev   , modei    denote the voltage and current in modal domain, and phasev 
  , 

phasei 
  denote the voltage and current in phase domain. Let  T

 
is modal 

transformation matrix for voltage and current value and  
1

T


 is the inverse matrix of 

 T . The modal transformation is not unique, for a transposed three-phase line, this can 

be determined as [24] 

 

1 1 0

1 0 1

1 1 1

T

 
 


 
   

,             (2.29) 

 
1

1 1 1
1

2 1 1
3

1 2 1

T


 
 

  
 
   

 .                                              (2.30) 

Therefore, the Bergeron transmission line can be constructed as a modal domain 

in the state space equation. The equivalent circuit for the positive sequence network is 

shown in figure 2.7. 

 

Figure 2.7 Equivalent circuit model for the positive sequence transmission line. 
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 Consider the equivalent circuit for the positive sequence shown in figure 2.7. The 

equation (2.21) and (2.22) can reform to positive sequence in modal domain.  

 
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       (2.31) 
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   
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                  (2.32) 

where 
     1 1 1

/ 4CZ Z r l   ,
 

 

 

1
1

1CZ
c

  and 
     1 1 1

l c  .  

Similar expressions are derived for the other sequence network. The equations 

shown in (2.31) can be represented in terms of the previous time from equation (2.26) in 

the modal domain as the result in equation (2.33).  
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…. (2.33) 

The superscript (0), (1), and (2) denote zero, positive and negative sequence 

parameters, respectively. Note that a series inductance in each sequence is assigned as 

     0 1 2
L L L L   . Moreover, resistance and capacitance load for each sequence 

assign as 
     0 1 2

R R R R   and 
     0 1 2

C C C C   , respectively. The output 

equations to obtain the sending-end voltages and receiving-end current in modal domain 

are calculated by equation (2.34).  
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  (2.34) 

The past history current source for each sequence can be calculated using equation 

(2.23) and (2.24) which show in positive sequence as equation (2.35) and (2.36).  

   
 

   

           

 

   

           

1
1 1 1 1 1 1 1 1

1 1 2

1
11 1 1 1 1

1 1 2

( ) [ ( ) ( / 4) ( )]
( / 4)

/ 4
[ ( ) ( / 4) ( )],

( / 4)
k

C
k m C m

C

k C

C

Z
I t v t Z R i t

Z R

R
v t Z R i t

Z R

  

 


     




    



     (2.35) 

   
 

   

           

 

   

           

1

1 1 1 11 1 1 1

1 1 2

1
1 1 11 1 1

1 1 2

( ) [ ( ) ( / 4) ( )]
( / 4)

/ 4
[ ( ) ( / 4) ( )],

( / 4)

C

m k C k

C

m C m

C

Z
I t v t Z R i t

Z R

R
v t Z R i t

Z R

  

 


     




    



     (2.36) 
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where 
 

 

 

1
1

1CZ
c

  , 
   1 1

R r l  and 
     1 1 1

l c  .  

Equations (2.33) to (2.36) are formed to solve state estimation for each Bergeron 

transmission line. The power system is set as a group of Bergeron transmission line. 

The group of state equation and output equation are reformed for all Bergeron 

transmission line in the network. 

The proposed algorithm uses the sending-end current and receiving-end voltage as 

the state variables [10]. Rows of measurement equations associated with the selected 

measurement location (value of both previous time-step, t tz   and present time-step, tz ) 

are added to the measurement matrix [H]. At each time step, measurements are updated 

by applying an estimated result, x̂   to virtual measurements, t tz    for the next time 

step calculation. These can form a new set of measurement equations. From equation 

(2.6) the weighted least squares formulation which the covariance of the measurements 

assumed to be an identity matrix (collecting data from the same instrumentation) is used 

to describe the measurement system as [4-5] 

      
1

ˆ
T T

x H H H z


                   (2.37) 

After the equations are solved to obtain the sending-end currents and receiving-

end voltages in the modal domain, the output variables of sending-end voltages and 

receiving-end currents are determined using equation (2.34) and history term current in 

equation (2.35) and (2.36). Finally, the current and voltage in the phase domain can be 

obtained by the modal to phase domain transformation in equation (2.28) and (2.29). 

The flowchart of TSE with the modal transformation is presented in figure 2.8. 
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Phase to modal transformation 

and reform equations in terms 

of the previous system state

(eqns.2.27, 2.30-2.31, 2.33)
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t

Adding rows to measurement 

matrix, [H]. (eqn. 2.25)

z H x  
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Solve equation by (eqn. 2.37)

Record estimation result, x and used
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for the next time step
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           
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power system (eqn. 2.21)

Modal to phase transformation

(eqn.2.28 - 2.29)

t+∆t

Calculate dependent variable, e.g. 

sending voltage, receiving current, 

history term (eqns. 2.34-2.36)

 

Figure 2.8 Flowchart of proposed transient state estimation. 
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Algorithms for predicting a parameter, signal, and estimate state value are used in 

many fields. Its performance needs to be evaluated in practice to serve a number of 

purposes, such as represents of its validity, demonstration of its performance, and 

comparison with other method or other estimators. 

The widely used performance tool for the developed model included the 

percentage Root Mean Squared Error (%RMSE) and the percentage Mean Absolute 

Error (%MAE) calculated by [25-26]  

2

1

1
ˆ( )

% 100

n

i i
i

x x
n

RMSE
peak voltage at nominal





 


,            (2.38) 

1

1
ˆ

% 100

n

i i
i

x x
n

MAE
peak voltage at nominal





 


,               (2.39) 

where ix  is actual value, ˆ
ix  is estimate value, n is number of value and peak voltage at 

nominal means the peak voltage value while there is no fault occur. 

 Both performance evaluation methods are applied with the actual values and the 

estimated values at bus location without voltage measurement. 

2.6 Measurement Noise 

 State estimation process is an important technique for monitoring the behavior of 

power system. It involves collecting the data set from phasor measurement units (PMU) 

consistent with the state variables from estimator. If the measurements data are 

collected with large errors, then the estimated state may be incorrect and degrades the 

quality of estimator. These bad data can result from erroneous measurement data, 

incorrect system parameters, or incorrect network topology. Cause of problem may be 

occurring at transducer that wired incorrectly or malfunctioning in the transducer itself 

so that it gives incorrect data affect to accurate readings. Erroneous measurement has 

been the main focus of bad data analysis.  This can be classified into three parts: 

extreme errors, gross errors and normal measurement noise. The problem of bad data 

can be overcome by detection, identification and removal of bad data. This procedure 
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usually requires the system to be over-determined (the system has redundancy 

measurements). A practical method for bad data analysis should have at least two 

features. The first one corresponds to having a good identification performance. The 

other feature is related with the computational efficiency. However, this study focuses 

on only the effect of measurement noise to estimation performance. 

 Generally, the state estimation is particularly useful to filter out measurement 

noise but still affect to the performance of algorithms. From equation (2.1), the 

measurement error vector is the difference between the measurements value from their 

true values cause by the presence of measurement noise or bad data. 

Measurement

Matrix : H

System state

variable: x
Measurement : z

Measurement

Noise

 

Figure 2.9 Measurement noise added to measurement data. 

 Measurement noise considered is normal (or Gaussian) distribution and added to 

all of measurement data for evaluating the proposed algorithm as shown in figure 2.9. 

2.7 Nonlinear Equipment  

 In case of ideal transformer model, simple transformer model is represented using 

coupled coil model. This method can be extended to three-phase transformer by neglect 

the interphase mutual coupling and then consider three-phase equations independently. 

Many transformer models have been developed continuously. There are nonlinear 

components in some models use to consider the magnetic core saturation characteristics. 

For PSCAD simulation program, saturation can be represented in the classical 

transformer models combine with a compensating current source injection across the 

selected winding as shown in figure 2.10. 
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Figure 2.10 Compensating current sources for core saturation 

There are three input parameters which are air core reactance, knee voltage and 

magnetizing current for adjust the core saturation characteristic of transformer as show 

in figure 2.11. 

Air core reactance: This parameter adjusts the slope of the asymptotic line as 

dashed line in figure 2.11. 

Knee voltage: The knee voltage input adjusts vertically shifts the Y-intercept of 

the air core reactance asymptotic line in the figure 2.11. 

Magnetizing current: This parameter determines the horizontal position along the 

V = 1.0 p.u. voltage line, of the effective knee point. It affects the shape of curve. For 

instance, if magnetizing current is increase, the curve of the saturation characteristic will 

become less sharp. 

 

 

 

 

 

 

 

 

Figure 2.11 Magnetization curves of saturation properties. 

Knee Point 

Percent Magnetizing Current 

1.0 Saturation Characteristic 

Slope Based on Air Core Reactance 

B (V) 

H (I) 



 

 26  

 The saturation of magnetic core in power transformer is nonlinear characteristic 

which degrade the effectiveness of the transformer. According to the relation between 

magnetic flux density (B) and magnetic field intensity (H) are tend to nonlinear curve 

which call B-H curve. In the saturation behavior, magnetic flux is produced by the 

magnetizing current. The magnetizing current will be slightly increasing when the 

amplitude of the voltage (or flux) is large enough to reach the nonlinear region of the B-

H curve. Similarly, the induced voltage in secondary winding of transformer will no 

longer match the sinusoidal wave with primary winding. In other words, the saturation 

of magnetic core in transformer will distort the wave shape from primary to secondary 

side, and also create harmonics problem in the output of secondary side.  

 The nonlinear phenomenon of magnetic saturation affects the steady state and the 

transient behaviour of transformer. Therefore, it is necessary to consider the nonlinear 

characteristic with state estimation of the proposed algorithm.  


