CONTENTS

Acknowledgement	d
Abstract in Thai	e
Abstract in English	f
List of Tables	i
List of Figures	j
List of Abbreviations	0
List of Symbols	р
Statement of Originality in Thai	q
Statement of Originality in English	r
Chapter 1 Introduction	1
1.1 Historical Background	1
1.2 Objectives	2
1.3 Literature Review	2
1.4 Theories / Principles and Rationale	4
1.5 Scopes of Study	5
1.6 Expecting Benefit	6
1.7 Research Methodology	6
1.8 Thesis Organization	6
Chapter 2 Transient State Estimation Algorithm	7
2.1 The Basis of State Estimation	7
2.2 Normal Equations Method	8
2.3 State Variable Formulation	9
2.4 System Modeling	10

2.5 Transient State Estimation	15
2.6 Measurement Noise	23
2.7 Nonlinear Equipment	24
Chapter 3 Test Case and Estimation Results	27
3.1 The Test System	27
3.2 Transient State Estimation	32
3.3 Estimation with Measurement Noise	39
3.4 Estimation with Nonlinear Equipment	48
3.5 Consideration of Estimated Result in Modal Domain	56
3.5.1 Case of TSE algorithm	56
3.5.2 Case of TSE algorithm with noise	59
3.5.3 Case of TSE algorithm with nonlinear equipment	61
Chapter 4 Conclusion	64
4.1 Conclusion	64
4.2 Future Work	67
References	68
List of Publication	72
Appendix	
Appendix A TSE Program Code Structure	73
Appendix B Estimation Results in Different Sag Voltage	75
Appendix C MAE Evaluation	96
Curriculum Vitae	103

LIST OF TABLES

Table 2.1	Categories and characteristics of power systems electromagnetic phenomena	15
Table 3.1	Evaluation at bus no.5 for three-phase disturbance	37
Table 3.2	Evaluation at bus no.7 for three-phase disturbance	37
Table 3.3	Evaluation at bus no.5 for single-phase disturbance (Phase A disturbance)	38
Table 3.4	Evaluation at bus no.7 for single-phase disturbance (Phase A disturbance)	38
Table 3.5	Evaluation at bus no.5 for three-phase disturbance with measurement noise	44
Table 3.6	Evaluation at bus no.7 for three-phase disturbance with measurement noise	45
Table 3.7	Evaluation at bus no.5 for single-phase disturbance with measurement noise	46
Table 3.8	Evaluation at bus no.7 for single-phase disturbance with measurement noise	47
Table 3.9	Evaluation at bus no.5 for three-phase disturbance with considering	
	the saturation of transformer.	54
Table 3.10	Evaluation at bus no.7 for three-phase disturbance with considering	
	the saturation of transformer.	54
Table 3.11	Evaluation at bus no.5 for single-phase disturbance (phase A disturbance)	
	with considering the saturation of transformer.	55
Table 3.12	Evaluation at bus no.7 for single-phase disturbance (phase A disturbance)	
	with considering the saturation of transformer.	55
Table 4.1	Range of %RMSE of voltage at bus no.5 cause by different sag	
	from high to low level	66
Table 4.2	Range of %RMSE of voltage at bus no.7 cause by different sag	
	from high to low level	66
Table B.1	List of figures of estimation results in different sag voltage	75
Table C.1	List of figures of %MAE evaluation	96

LIST OF FIGURES

Figure 1.1	Difference between transient simulation and TSE	4
Figure 1.2	Framework of transient state estimation	5
Figure 2.1	Decision pattern for select the transmission line model	11
Figure 2.2	Propagation of a wave on a transmission line	11
Figure 2.3	Equivalent two-port network for a lossless line	13
Figure 2.4	Bergeron transmission line model	13
Figure 2.5	Single line view with termination	14
Figure 2.6	Transformation between phase and modal domain on three-phase line	16
Figure 2.7	Equivalent circuit model for the positive sequence transmission line	17
Figure 2.8	Flowchart of proposed transient state estimation	22
Figure 2.9	Measurement noise added to measurement data	24
Figure 2.10	Compensating current source for core saturation	25
Figure 2.11	Magnetization curves of saturation properties	25
Figure 3.1	Overall frameworks	27
Figure 3.2	Test system	29
Figure 3.3	Test system in PSCAD	30
Figure 3.4	Voltage at bus no.5 (three-phase disturbance: 80% sag)	33
Figure 3.5	Voltage at bus no.7 (three-phase disturbance: 80% sag)	33
Figure 3.6	Voltage at bus no.5 (single-phase disturbance at phase A: 80% sag)	34
Figure 3.7	Voltage at bus no.7 (single-phase disturbance at phase A: 80% sag)	34
Figure 3.8	%RMSE at bus no.5 for three-phase disturbance	35
Figure 3.9	%RMSE at bus no.7 for three-phase disturbance	35
Figure 3.10	0%RMSE at bus no.5 for single-phase disturbance	36
Figure 3.1	% RMSE at bus no.7 for single-phase disturbance	36
Figure 3.12	2 Voltage at bus no.5 (three-phase disturbance, 80% sag with a 1%	
	measurement noise)	39

Figure 3.13 Voltage at bus no.7 (three-phase disturbance, 80% sag with a 1%	
measurement noise).	40
Figure 3.14 Voltage at bus no.5 (single-phase disturbance: 80% sag with a 1%	
measurement noise)	40
Figure 3.15 Voltage at bus no.7 (single-phase disturbance: 80% sag with a 1%	
measurement noise).	41
Figure 3.16%RMSE at bus no.5 for three-phase disturbance with measurement noise	41
Figure 3.17%RMSE at bus no.7 for three-phase disturbance with measurement noise	42
Figure 3.18% RMSE at bus no.5 for a single line disturbance with measurement noise	42
Figure 3.19%RMSE at bus no.7 for a single line disturbance with measurement noise	43
Figure 3.20 Test system for estimation with saturated transformer	48
Figure 3.21 Closer look at bus no.7 in PSCAD	49
Figure 3.22 Rebuild [H] with adding Ipr, measure of saturated transformer	49
Figure 3.23 Voltage at bus no.5 (three-phase disturbance: 80% sag	
with considering the saturation of transformer)	50
Figure 3.24 Voltage at bus no.7 (three-phase disturbance: 80% sag	
with considering the saturation of transformer)	50
Figure 3.25 Voltage at bus no.5 (single-phase disturbance at phase A: 80% sag	
with considering the saturation of transformer)	51
Figure 3.26 Voltage at bus no.7 (single-phase disturbance at phase A: 80% sag	
with considering the saturation of transformer)	51
Figure 3.27%RMSE at bus no.5 for three-phase disturbance with considering	
the saturation of transformer	52
Figure 3.28%RMSE at bus no.7 for three-phase disturbance with considering	
the saturation of transformer	52
Figure 3.29%RMSE at bus no.5 for single-phase disturbance with considering	
the saturation of transformer	53
Figure 3.30%RMSE at bus no.7 for single-phase disturbance with considering	
the saturation of transformer	53
Figure 3.31 Work flow for consideration of estimated result in modal domain	56
Figure 3.32 Voltage at bus no.5 in modal domain (three-phase disturbance: 80% sag)	57

Figure 3.33 Voltage at bus no.7 in modal domain (three-phase disturbance: 80% sa	ug) 57
Figure 3.34 Voltage at bus no.5 in modal domain (single-phase disturbance	
at phase A: 80% sag)	58
Figure 3.35 Voltage at bus no.7 in modal domain (single-phase disturbance	
at phase A: 80% sag)	58
Figure 3.36 Voltage at bus no.5 in modal domain (three-phase disturbance:	
80% sag with a 1% measurement noise)	59
Figure 3.37 Voltage at bus no.7 in modal domain (three-phase disturbance:	
80% sag with a 1% measurement noise)	59
Figure 3.38 Voltage at bus no.5 in modal domain (single-phase disturbance	
at phase A: 80% sag with a 1% measurement noise)	60
Figure 3.39 Voltage at bus no.7 in modal domain (single-phase disturbance	
at phase A: 80% sag with a 1% measurement noise)	60
Figure 3.40 Voltage at bus no.5 in modal domain (three-phase disturbance:	
80% sag with considering the saturation of transformer)	61
Figure 3.41 Voltage at bus no.7 in modal domain (three-phase disturbance:	
80% sag with considering the saturation of transformer)	62
Figure 3.42 Voltage at bus no.5 in modal domain (single-phase disturbance	
at phase A: 80% sag with considering the saturation of transformer)	62
Figure 3.43 Voltage at bus no.7 in modal domain (single-phase disturbance	
at phase A: 80% sag with considering the saturation of transformer)	63
Figure 4.1 %RMSE of phase-A at bus no.5 for three-phase disturbance	
in each evaluation testing	64
Figure 4.2 %RMSE of phase-A at bus no.7 for three-phase disturbance	0.
in each evaluation testing	65
Figure 4.3 %RMSE of phase-A at bus no.5 for single-phase disturbance	00
in each evaluation testing	65
Figure 4.4 %RMSE of phase-A at bus no.7 for single-phase disturbance	
in each evaluation testing	66
Figure A.1 TSE program code structure	74

Figure B.1	Voltage at bus no.5 (three-phase disturbance, different sag)	76
Figure B.2	Voltage at bus no.7 (three-phase disturbance, different sag)	77
Figure B.3	Voltage at bus no.5 (single-phase disturbance, different sag)	78
Figure B.4	Voltage at bus no.7 (single-phase disturbance, different sag)	79
Figure B.5	Voltage at bus no.5 (three-phase disturbance, different sag	
	with a 1% measurement noise)	80
Figure B.6	Voltage at bus no.7 (three-phase disturbance, different sag	
	with a 1% measurement noise)	81
Figure B.7	Voltage at bus no.5 (single-phase disturbance, different sag	
	with a 1% measurement noise)	82
Figure B.8	Voltage at bus no.7 (single-phase disturbance, different sag	
	with a 1% measurement noise)	83
Figure B.9	Voltage at bus no.5 (three-phase disturbance, different sag	
	with a 2% measurement noise)	84
Figure B.1	0 Voltage at bus no.7 (three-phase disturbance, different sag	
	with a 2% measurement noise)	85
Figure B.1	1 Voltage at bus no.5 (single-phase disturbance, different sag	
	with a 2% measurement noise)	86
Figure B.12	2 Voltage at bus no.7 (single-phase disturbance, different sag	
	with a 2% measurement noise).	87
Figure B.1	3 Voltage at bus no.5 (three-phase disturbance, different sag	
	with a 3% measurement noise)	88
Figure B.14	4 Voltage at bus no.7 (three-phase disturbance, different sag	
	with a 3% measurement noise)	89
Figure B.1:	5 Voltage at bus no.5 (single-phase disturbance, different sag	
	with a 3% measurement noise)	90
Figure B.1	6 Voltage at bus no.7 (single-phase disturbance, different sag	
	with a 3% measurement noise)	91
Figure B.1	7 Voltage at bus no.5 (three-phase disturbance: different sag	
	with considering the saturation of transformer)	92
	-	

Figure B.18 V	oltage at bus no.7 (three-phase disturbance: different sag	
wit	th considering the saturation of transformer)	93
Figure B.19 Vo	oltage at bus no.5 (single-phase disturbance: different sag	
wit	th considering the saturation of transformer)	94
Figure B.20 V	oltage at bus no.7 (single-phase disturbance: different sag	
wit	th considering the saturation of transformer)	95
Figure C.1 %	MAE at bus no.5 for three-phase disturbance	97
Figure C.2 %	MAE at bus no.7 for three-phase disturbance	97
Figure C.3 %	MAE at bus no.5 for single-phase disturbance	98
Figure C.4 %	MAE at bus no.7 for single-phase disturbance	98
Figure C.5 %	MAE at bus no.5 for three-phase disturbance with measurement noise	99
Figure C.6 %	MAE at bus no.7 for three-phase disturbance with measurement noise	99
Figure C.7 %	MAE at bus no.5 for single-phase disturbance with measurement noise 1	00
Figure C.8 %	MAE at bus no.7 for single-phase disturbance with measurement noise 1	00
Figure C.9 %	MAE at bus no.5 for three-phase disturbance	
wit	th considering the saturation of transformer 1	01
Figure C.10 %	MAE at bus no.7 for three-phase disturbance	
wit	th considering the saturation of transformer 1	01
Figure C.11 %	MAE at bus no.5 for single-phase disturbance	
wit	th considering the saturation of transformer 1	02
Figure C.12 %	MAE at bus no.7 for single-phase disturbance	
wit	th considering the saturation of transformer 1	02
Co	opyright [©] by Chiang Mai University	
A	ll rights reserved	

LIST OF ABBREVIATIONS

- GPS Global Positioning System
- MAE Mean Absolute Error
- PMU Phasor Measurement Unit
- RMS Root Mean Square
- RMSE Root Mean Squared Error
- SE State Estimation
- TSE Transient State Estimation
- WLAV Weighted Least Absolute Value
- WLS Weighted Least Squares

2102:273

LIST OF SYMBOLS

Length of transmission line	[km]
Line resistance per unit length	$[\Omega/km]$
Line inductance per unit length	[H/km]
Line capacitance per unit length	[F/km]
Phase velocity	[m/s]
Sending-end busbar voltage	[V]
Sending-end current	[A]
Receiving-end busbar voltage	[V]
Receiving-end current	[A]
Surge impedance	[Ω]
Travelling time	[s]
Total line resistance	[Ω]
The MAI UNIV	ERSTIT
	Length of transmission line Line resistance per unit length Line inductance per unit length Line capacitance per unit length Phase velocity Sending-end busbar voltage Sending-end current Receiving-end current Surge impedance Travelling time Total line resistance

ข้อความแห่งการริเริ่ม

- วิทยานิพนธ์นี้ได้นำเสนอวิธีการใหม่ในการประมาณก่าสถานะของทรานเซียนต์ของสายส่งที่ พิจารณาพารามิเตอร์แบบกระจาย โดยใช้โมเคลสายส่งแบบเบอร์เจอรอนซึ่งทำให้การประมาณ ก่ามีความถูกต้องมากขึ้น
- 2) อัลกอริทึมที่พัฒนาถูกนำมาทดสอบกับองค์ประกอบอื่นๆ ได้แก่ การทดสอบกับสัญญาณ รบกวนในระดับต่างๆกัน การทดสอบกับอุปกรณ์ที่มีความไม่เป็นเชิงเส้น โดยในงานวิจัยได้ใช้ หม้อแปลงไฟฟ้าที่มีการอิ่มตัวสำหรับการทดสอบ ซึ่งผลการทดสอบได้นำมานำเสนอไว้ใน วิทยานิพนธ์นี้

STATEMENTS OF ORIGINALITY

- 1. This thesis presents the new method of transient state estimation for distributed parameter transmission line represented by Bergeron model. This new method provides the better results of estimation.
- The developed algorithm is tested with other components such as testing with different noise, with nonlinear equipment (transformer which become saturation). The results of testing are presented in this thesis.

