CONTENTS

Page

ACKNOWLEDGEMENT		iii
ABSTRACT (IN TH	ABSTRACT (IN THAI)	
ABSTRACT (IN EN	NGLISH)	vi
CONTENTS		vii
LIST OF TABLES	. MAIEIRIA .	xi
LIST OF FIGURES	20 000 24	xii
CHAPTER 1 INTI	RODUCTION	1
1.1 Introdu	iction 5	1
1.2 Literatu	ure review	_
1.2.1	Geology of green tourmaline from Madagascar,	2
	Mozambique and Tanzania	
1.2.2	Crystallography, physical properties and optical properties	6
	of tourmaline	
1.2.3	Structure and chemistry of tourmaline	7
1.2.4	The causes of coloration in green tourmaline	11
1.2.5	UV-Vis-NIR Spectroscopy of green tourmaline	12
1.2.6	Fourier Transform Infrared Spectroscopy (FTIR)	15
C_{127}	Electron probe micro-analyser (EPMA) and	16
AII	Laser Ablation-Inductively Coupled Plasma-Mass	10
	Spectroscopy (LA-ICP-MS)	
1.3 Aim and	d objectives	19
CHAPTER 2 MAT	ERIALS AND METHODS	21
2.1 Sampl	es preparation	21
2.2 Analyt	ical techniques	26
2.2.1. H	Basic analytical techniques	26

		Page
	2.2.2. Color grading	27
	2.2.3 Advanced analytical techniques	30
	(1) Ultraviolet-Visible-Near Infrared (UV-Vis-NIR)	30
	absorption spectroscopy	
	(2) Fourier Transform Infrared (FTIR) spectroscopy	31
	(3) Electron probe micro-analyser (EPMA)	32
	(4) Laser Ablation-Inductively coupled plasma-mass	34
	Spectroscopy (LA-ICP-MS)	
CHAPTEI	R 3 RESULTS	37
3.	1 Gemological properties	37
3.2	2 Internal microscopic characteristics	40
3.2	3 Ultraviolet-Visible-Near Infrared (UV-Vis-NIR)	43
	spectra of samples	
3.4	4 Fourier Transform Infrared (FTIR) spectra of samples	52
3.:	5 Chemical analyses using electron probe micro-analyser	60
	(EPMA)	
	3.5.1 Group I : The samples from Madagascar	60
	3.5.2 Group II : The samples from Mozambique	63
	3.5.3 Group III : The samples from Tanzania	65
3.0	6 Chemical analyses using Laser Ablation-Inductively coupled	67
	plasma-mass Spectroscopy (LA-ICP-MS)	
	3.6.1 Group I : The samples from Madagascar	67
	3.6.2 Group II : The samples from Mozambique	68
	3.6.3 Group III : The samples from Tanzania	70
CHAPTEI	R 4 DISCUSSIONS AND CONCLUSION	71
4.	1 Gemological properties	71
4.2	2 UV-Vis-NIR absorption spectroscopy	73
4.	3 Infrared absorption spectroscopy	74

		Page
4.4	Chemical composition	76
4.5	Conclusion	79
REFERENCE	ES	81
APPENDICE	S	86
APPENDIX A	A UV-Vis-NIR absorption spectra of green tourmalines	86
	from Madagascar, Mozambique and Tanzania	
APPENDIX H	3 FTIR absorption spectra of green tourmaline from	96
	Madagascar, Mozambique and Tanzania	
APPENDIX (C Chemical analyses of green tourmaline samples from	106
	Madagascar, Mozambique and Tanzania using	
	EPMA-WDS	
APPENDIX I	Chemical analyses of green tourmaline samples from	110
	Madagascar, Mozambique and Tanzania using	
	LA-ICP-MS	
	IEL MARIS	
CURICULUN	CURICULUM VITAE	
	C. C. SII	
	AI UNIVER	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Table 1.1	Chemical composition of green tourmaline species	10
Table 1.2	Causes of coloration in tourmaline group	11
Table 1.3	Chemical composition of tourmaline from other localities	17
Table 3.1	Gemological properties of green tourmaline samples from	31
	Madagascar	
Table 3.2	Gemological properties of green tourmaline samples from	38
	Mozambique	
Table 3.3	Gemological properties of green tourmaline samples from	39
	Tanzania	
Table 3.4	EPMA analyses of green tourmaline of various colors from	62
	Madagascar	
Table 3.5	EPMA analyses of green tourmaline of various colors from	64
	Mozambique	
Table 3.6	EPMA analyses of green tourmaline of various colors from	66
	Tanzania	
Table 3.7	LA-ICP-MS chemical data of green tourmaline of various	68
	colors from Madagascar	
Table 3.8	LA-ICP-MS chemical data of green tourmaline of various	69
1	colors from Mozambique	
Table 3.9	LA-ICP-MS chemical data of green tourmaline of various	70
	colors from Tanzania	
Table 4.1	Gemological properties of green tourmaline samples	71
	used in this study compared with reports from other localities	
Table 4.2	EPMA analyses of green tourmaline of various colors from	78
	Madagascar, Mozambique and Tanzania	
Table 4.3	LA-ICP-MS chemical data of green tourmaline of various	79
	colors from Madagascar, Mozambique and Tanzania	

LIST OF FIGURES

Figure 1.1	Idealized representation of a miarolitic cavity	4
Figure 1.2	Examples of miarolitic cavities	4
Figure 1.3	Major gem-pegmatite districts of the world	5
Figure 1.4	Major gem-pegmatite districts and notable gem minerals	5
Figure 1.5	Tourmaline crystals	7
Figure 1.6	The tourmaline structure projected parallel to the (0001) plane	8
Figure 1.7	Ternary system for the primary tourmaline groups based on	9
	the dominant occupancy of the X-site	
Figure 1.8	Ternary subsystem species tourmaline within each subgroup on	9
	the dominant occupancy of the Y-site and Z-site	
Figure 1.9	UV-Vis-NIR absorption spectra of vanadium-bearing, iron free	13
	tourmaline from southern Madagascar	
Figure 1.10	UV-Vis-NIR absorption spectra of green tourmaline are from	14
	Brazil (G2), Africa(G3) and Tanzania(G8)	
Figure 1.11	UV-Vis-NIR absorption spectra of Cu-bearing tourmaline	14
	are from Mozambique	
Figure 1.12	Infrared spectra Trapiche Tourmaline from Zambia show	15
	O-H stretching region and the widely varying intrinsic bands	
Figure 1.13	Mid-infrared spectra of green and pink tourmaline in (A.) O-H	16
(stretching region 3800-3200 cm ⁻¹ and (B.) low wavenumber	
	region 1500-800 cm^{-1}	
Figure 2.1	The samples used in this study from (a) Madagascar,	21
	(b) Mozambique and (c) Tanzania	
Figure 2.2	Group I: The samples from Madagascar, with their	22
	abbreviations from Tm.Mc.001 to Tm.Mc.020	
Figure 2.3	Group II: The samples from Mozambique, with their	23
	abbreviations from Tm.Mb.001 to Tm.Mb.020	

		Page
Figure 2.4	Group III: The samples from Tanzania, with their	25
	abbreviations from Tm.Tz.001 to Tm.Tz.020	
Figure 2.5	Basic analytical instruments used in this study	27
Figure 2.6	The GIA Gemset from Gemological Institute of America	29
Figure 2.7	The Hitachi U4001 UV-Vis-NIR absorption spectrophotometer	31
Figure 2.8	The Bruker Tensor 27 FTIR spectrometer	32
Figure 2.9	Carbon coated on polish section of green tourmalines from	33
	(a) Madagascar, (b) Mozambique and (c) Tanzania	
Figure 2.10	Electron Probe Micro Analyzer (JEOL Model JXA 8100)	34
Figure 2.11	The schematic diagram presents the component of	36
	laser ablation-inductively coupled plasma-mass spectroscopy	
	(LA-ICP-MS)	
Figure 2.12	Laser Ablation-Inductively Coupled Plasma-Mass Spectrometer	36
	(LA-ICP-MS)	
Figure 3.1	Healed fractures containing fluid- and/or two-phase (liquid-gas)	40
	inclusions in Tm.Mc.011 (a) and trichite, which fluid-filled	
	cavities linked by networks of very thin capillaries	
	in Tm.Mc.001 (b).	
Figure 3.2	Flat fluid inclusions in Tm.Mc.001 (a) and hollow tubes,	41
	oriented parallel to the C-axis in Tm.Mc.004 (b).	
Figure 3.3	Fractures in Tm.Mc.014	41
Figure 3.4	Hollow tubes, oriented parallel to the C-axis in Tm.Mb.018 (a)	41
	and healed fractures containing fluid- and/or	
1-	two-phase (liquid-gas) inclusions in Tm.Mb.020 (b).	
Figure 3.5	Trichite, which fluid-filled cavities linked by networks of	42
	very thin capillaries in Tm.Mb.005 (a) and Tm.Mb.015 (b).	
Figure 3.6	Fractures filled with ion stains in Tm.Mb.002	42
Figure 3.7	Fluid inclusion and negative inclusion in Tm.Tz.015 (a) and	42
	healed fractures containing fluid- and/or	
	two-phase (liquid-gas) inclusions in Tm.Tz.008 (b).	

		Page
Figure 3.8	Crystal inclusion in Tm.Tz.007 (a) and fractures filled with	43
	ion stains in Tm.Tz.001 (b).	
Figure 3.9	UV-Vis-NIR absorption spectra of sample from Madagascar	44
	(Tm.Mc.005; green color)	
Figure 3.10	UV-Vis-NIR absorption spectra of sample from Madagascar	45
	(Tm.Mc.017; green color)	
Figure 3.11	UV-Vis-NIR absorption spectra of sample from Madagascar	45
	(Tm.Mc.006; bluish green color)	
Figure 3.12	UV-Vis-NIR absorption spectra of sample from Madagascar	46
	(Tm.Mc.012; yellowish green color)	
Figure 3.13	UV-Vis-NIR absorption spectra of sample from Madagascar	46
	(Tm.Mc.014; yellowish green color)	
Figure 3.14	UV-Vis-NIR absorption spectra of sample from Mozambique	47
	(Tm.Mb.002; greenish blue color)	
Figure 3.15	UV-Vis-NIR absorption spectra of sample from Mozambique	47
	(Tm.Mb.007; greenish blue color)	
Figure 3.16	UV-Vis-NIR absorption spectra of sample from Mozambique	48
	(Tm.Mb.013; blue color)	
Figure 3.17	UV-Vis-NIR absorption spectra of sample from Mozambique	48
	(Tm.Mb.017; green color)	
Figure 3.18	UV-Vis-NIR absorption spectra of sample from Mozambique	49
((Tm.Mb.019; bi-color)	
Figure 3.19	UV-Vis-NIR absorption spectra of sample from Tanzania	49
1	(Tm.Tz.002; yellowish green color)	
Figure 3.20	UV-Vis-NIR absorption spectra of sample from Tanzania	50
	(Tm.Tz.009; yellowish green color)	
Figure 3.21	UV-Vis-NIR absorption spectra of sample from Tanzania	50
	(Tm.Tz.017; Yellow-Green color)	
Figure 3.22	UV-Vis-NIR absorption spectra of sample from Tanzania	51
	(Tm.Tz.018; green color)	

		Page
Figure 3.23	UV-Vis-NIR absorption spectra of sample from Tanzania	51
	(Tm.Tz.019; green color)	
Figure 3.24	Polarized FTIR absorption spectra of sample from	52
	Madagascar (Tm.Mc.005)	
Figure 3.25	Polarized FTIR absorption spectra of sample from	53
	Madagascar (Tm.Mc.006)	
Figure 3.26	Polarized FTIR absorption spectra of sample from	53
	Madagascar(Tm.Mc.011)	
Figure 3.27	Polarized FTIR absorption spectra of sample from	54
	Madagascar (Tm.Mc.018)	
Figure 3.28	Polarized FTIR absorption spectra of sample from	54
	Madagascar (Tm.Mc.019)	
Figure 3.29	Polarized FTIR absorption spectra of sample from	55
	Mozambique (Tm.Mb.001)	
Figure 3.30	Polarized FTIR absorption spectra of sample from	55
	Mozambique (Tm.Mb.004)	
Figure 3.31	Polarized FTIR absorption spectra of sample from	56
	Mozambique (Tm.Mb.007)	
Figure 3.32	Polarized FTIR absorption spectra of sample from	56
	Mozambique (Tm.Mb.010)	
Figure 3.33	Polarized FTIR absorption spectra of sample from	57
0	Mozambique (Tm.Mb.012)	
Figure 3.34	Polarized FTIR absorption spectra of sample from	57
1-	Tanzania (Tm.Tz.003)	
Figure 3.35	Polarized FTIR absorption spectra of sample from	58
	Tanzania (Tm.Tz.006)	
Figure 3.36	Polarized FTIR absorption spectra of sample from	58
	Tanzania (Tm.Tz.008)	
Figure 3.37	Polarized FTIR absorption spectra of sample from	59
	Tanzania (Tm.Tz.012)	

		Page
Figure 3.38	Polarized FTIR absorption spectra of sample from	59
	Tanzania (Tm.Tz.017)	
Figure 4.1	UV-Vis-NIR absorption spectra comparisons of green	74
	tourmaline from Madagascar, Mozambique and Tanzania	
Figure 4.2	Polarized FTIR absorption spectra comparisons of sample	75
	from (a) Madagascar. (b) Mozambique and (c) Tanzania	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved