CONTENTS

DEDICATI	ON	c
ACKNOWL	LEDGEMENT	d
ABSTRACT	Г (THAI)	e
ABSTRACT	r (ENGLISH) ABLES	i
LIST OF TA	ABLES	q
LIST OF FI		u
STATEMEN	NT OF ORIGINALITY IN THAI	У
STATEMEN	NT OF ORIGINALITY IN ENGLISH	Z
CHAPTER	1 INTRODUCTION	1
1.1	The world's agricultural situation	1
1.2	The agricultural situation in Thailand	8
1.3	Organic agriculture in Thailand	10
1.4	Appropriate technology in Thailand	12
1.5	The basic education in Thailand	15
1.6	Appropriate technology knowledge transfer	18
	to rural people in Thailand	
1.7	Research problem justification	22
1.8	Research aims	23
1.9	Research objectives	23
1.10	Research hypothesis	24
1.11	List of publication	24

CONTENTS (CONTINUED)

CHAPTE	CHAPTER 2 LITTERATURE REVIEW	
2.1	Definition	26
	2.11 Rural development	26
	2.12 Sufficient economy	27
	2.13 Appropriate technology	27
	2.14 Organic agriculture	30
	2.15 Knowledge engineering	31
	2.16 Ontology	32
2.2	The principle and practice of rural development	33
2.3	Sufficient Economy Philosophy	40
2.4	Appropriate technology concept	43
2.5	Organic agriculture concept	49
2.6	Learning theories	54
	2.6.1 Behavioral learning theory	54
	2.6.2 Pedagogical Learning Theory	56
	2.6.3 Adult Learning Theory	58
	2.6.4 Cognitive Learning Theory	60
	2.6.5 Bloom's Taxonomy	62
2.7	Knowledge Engineering	69
	2.7.1 Knowledge elicitation	70
	2.7.2 Knowledge analysis	74
	2.7.3 Knowledge representation	76
	2.7.4 Knowledge Validation	79
2.8	CommonKADS	83
2.9	Ontology	87
	2.9.1 Specification and conceptualization	87

CONTENTS (CONTINUED)

	2.9.2 Roles of Ontologies in Knowledge Engineering	92
	2.9.3 Ontologies in designing educational systems	94
2.10	Annotation	95
2.11	Semantic annotation	96
2.12	Conceptual framework	98
CHAPTER 3	METHODOLOGY	102
3.1	Research Framework	105
3.2	Methodology Design	107
	3.2.1 Sample Selection	112
	3.2.2 Trainer Knowledge Capture Using CommonKADS	114
	3.2.3 Ontology Identification and Development	117
	3.2.4 Ontology Tutorial	118
	3.2.5 Domain Knowledge Training	119
	3.2.6 Learning Process and Learning Process Measurement	120
	3.2.7 Knowledge Validation and Ontology Adaptation	135
	From Samples	
3.3	Authentic assessment using Psychomotor by mentor of sample group: local expert	136
C	opyright [©] by Chiang Mai University	
CHAPTER 4	RESULTrights reserved	142
4.1	Chapter Overview	142
4.2	Initial Finding	143
4.3	Quality of Samples from Sample Selection	146
4.4	Research Results	153
	4.4.1 Trainer Knowledge Capture Using CommonKADS	155

CONTENTS (CONTINUED)

	4.4.2	Ontology Identification and Development	169
	4.4.3	Ontology Tutorial	177
	4.4.4	Domain Knowledge Training	178
	4.4.5	Learning Process Measurement	179
	4.4.6	Internal Process Reflection Using Psychomotor	204
		Framework	
	4.4.7	Internal Process Reflection Using Psychomotor	206
	11 0	Framework	
CHAPTER S	5 DISC	USSION AND CONCLUSION	220
5.1	Effect	tiveness of tutorial ontology in learning process	220
5.2	The m	heasurement of learning process by	224
	annota	ation technique on Bloom's Taxonomy vocabulary	
5.3	Benef	iciary	227
5.4	Resea	rch Limitation	228
5.5	Acade	emic contribution to KM, Novelty and Originality	228
5.6	The Fu	uture Research	232
REFERENC	ES	ทธิบหาวิทยาลัยเชียงไหม right [©] by Chiang Mai University	233
APPENDIC	ES	rights reserved	249
CURRICUL	UM VI	TAE	374

LIST OF TABLES

Table 1.1	Number of Students in the Formal School System as a Percentage	16
	of School-age Population by Level of Education, Grade:	
	Academic Year 2013	
Table 1.2	Number and Percentage of Students in the Formal School System	17
	by Level of Education and Grade in Bangkok Metropolis and other	
	Provinces: Academic Year 2013	
Table 2.1	Bloom's Taxonomy cognitive domain	68
Table 2.2	The critical review of problem and solutions for non-science	97
	educated learning process behavior	
Table 3.1	Concept of design the tutorial social science ontology effectiveness	107
	for non-science and technology educated famers on appropriate	
	technology knowledge transfer	
Table 3.2	Questions guideline and expected learners' answer and	125
	learners' behavior and based on Bloom's Taxonomy vocabulary	
	of learning process measurement for non-science and technology	
	educated adaptive organic rice farmers in both control and	
	experimental groups	
Table 3.3	Cognitive behavior evaluation form for non-science and	134
	technology educated farmers in both control and experimental groups	
Table 3.4	The authentic assessment form of organic rice farming skill	137
10010 5.4	and process for each sample	157
Table 3.5	Performance and competency evaluation form for non-science	139
1 able 5.5		139
	and technology educated farmers in both control and experimental	
	groups	

LIST OF TABLES (CONTINUED)

Table 3.6	Timeframe of effective tutorial social science ontology modeling	140
	on organic rice farming and learning process measurement by	
	semantic annotation on Bloom's Taxonomy vocabulary	
Table 4.1	Bio-data of education of rural people in Phrao District,	148
	Chiang Mai Province	
Table 4.2	Bio-data of occupation of rural people in Phrao District,	149
	Chiang Mai Province	
Table 4.3	A test result of organic rice farmers in Phrao District	150
Table 4.4	Bio data and education background of ten farmers in	152
	adaptive organic rice farm level	
Table 4.5	Control and experimental groups of adaptive organic rice	153
	farming samples	
Table 4.6	The minimum of science ontologies based on biology,	174
	chemistry, physics and mathematics concepts	
Table 4.7	The scores from Q1-Q3 tests of both sample groups	184
Table 4.8	The scores from Q4 tests of both sample groups	185
Table 4.9	The comparison of average number of domain knowledge	186
	in Q1, Q2 and Q3 between control and experimental groups	
Table 4.10	Statistical test of the throughput domain knowledge	187
1	measurement between control and experimental group	
	comparison	
Table 4.11	The comparison of an average throughput of domain	188
	knowledge between control and experimental groups: Q4	
Table 4.12	Statistical test of the throughput domain knowledge measurement	190
	between control and experimental group comparison	
Table 4.13	The revised Bloom's Taxonomy	192

LIST OF TABLES (CONTINUED)

Table 4.14	An example of cognitive behavior evaluation for non-science	195
	and technology educated farmers of organic rice farming	
	learning process improvement: the sample code is AD1	
	on task 7 disease and pets control	
Table 4.15	An example of cognitive behavior evaluation for non-science	196
	and technology educated farmers of organic rice farming	
	learning process improvement: the sample code is AD6	
	on task 7 disease and pets control	
Table 4.16	Total evaluation scores of all organic rice farming tasks	197
	(Task1-Task 9) were calculated from learning process	
	measurement by semantic annotation on Bloom's Taxonomy	
	vocabulary using assessment form of both sample groups using assess	ment
	form of both sample groups	
Table 4.17	Number of samples in each group reaches the cognitive level	198
Table 4.18	An example of cognitive behavior evaluation for non-science	201
	and technology educated farmers of organic rice farming	
	learning process improvement: the sample code is AD6	
	on contingency plan of rice diseases, pets and insects outbreak	
Table 4.19	Total evaluation scores of contingency plan were calculated	202
	from learning process measurement by semantic annotation on	
1	Bloom's Taxonomy vocabulary using assessment form of	
	both sample groups	
Table 4.20	Number of samples writing in contingency plan in each	203
	group reaches the cognitive level	
Table 4.21	Performance and competency evaluation form of	208
	Psychomotor for sample farmers in both control	
	and experimental groups	

LIST OF TABLES (CONTINUED)

by mentor of sample group: local expert of organic rice farming knowledge Table 4.23 An example of authentic assessment using Psychomotor 210 by mentor of sample group: local expert of Task 9 soil development of all samples Table 4.24 An example of authentic assessment using Psychomotor 211 by mentor of sample group: local expert of sample code AD1 Table 4.25 An example of authentic assessment using Psychomotor 212 by mentor of sample group: local expert of sample code AD1 Table 4.26 Comparison cognitive domain level with psychomotor domain 213 Table 4.27 An example of cognitive level of Bloom's Taxonomy 216 and Psychomotor domain of task 7 of sample AD6 in experimental group.			
farming knowledge210Table 4.23An example of authentic assessment using Psychomotor by mentor of sample group: local expert of Task 9 soil development of all samples210Table 4.24An example of authentic assessment using Psychomotor by mentor of sample group: local expert of Sample code AD1211Table 4.25An example of authentic assessment using Psychomotor by mentor of sample group: local expert of sample code AD6212Table 4.25An example of authentic assessment using Psychomotor by mentor of sample group: local expert of sample code AD6213Table 4.26Comparison cognitive domain level with psychomotor domain and Psychomotor domain of task 7 of sample AD6 in experimental group.217Table 4.28An example of cognitive level of Bloom's Taxonomy and Psychomotor domain of task 7 of sample AD1 in control group.217Table 4.29An example of cognitive level of Bloom's Taxonomy and219	Table 4.22	An example of authentic assessment using Psychomotor	209
Table 4.23An example of authentic assessment using Psychomotor210by mentor of sample group: local expert of Task 9 soil development of all samples211Table 4.24An example of authentic assessment using Psychomotor211by mentor of sample group: local expert of sample code AD1212Table 4.25An example of authentic assessment using Psychomotor212by mentor of sample group: local expert of sample code AD6213Table 4.26Comparison cognitive domain level with psychomotor domain213Table 4.27An example of cognitive level of Bloom's Taxonomy and Psychomotor domain of task 7 of sample AD6 in experimental group.217Table 4.28An example of cognitive level of Bloom's Taxonomy and Psychomotor domain of task 7 of sample AD1 in control group.217Table 4.29An example of cognitive level of Bloom's Taxonomy and219		by mentor of sample group: local expert of organic rice	
by mentor of sample group: local expert of Task 9 soil development of all samples Table 4.24 An example of authentic assessment using Psychomotor 211 by mentor of sample group: local expert of sample code AD1 Table 4.25 An example of authentic assessment using Psychomotor 212 by mentor of sample group: local expert of sample code AD6 Table 4.26 Comparison cognitive domain level with psychomotor domain 213 Table 4.27 An example of cognitive level of Bloom's Taxonomy 216 and Psychomotor domain of task 7 of sample AD6 in experimental group. Table 4.28 An example of cognitive level of Bloom's Taxonomy 217 and Psychomotor domain of task 7 of sample AD1 in control group.		farming knowledge	
development of all samplesTable 4.24An example of authentic assessment using Psychomotor211by mentor of sample group: local expert of sample code AD1212Table 4.25An example of authentic assessment using Psychomotor212by mentor of sample group: local expert of sample code AD6213Table 4.26Comparison cognitive domain level with psychomotor domain213Table 4.27An example of cognitive level of Bloom's Taxonomy216and Psychomotor domain of task 7 of sample AD6 in experimental group.217Table 4.28An example of cognitive level of Bloom's Taxonomy217and Psychomotor domain of task 7 of sample AD1 in control group.219	Table 4.23	An example of authentic assessment using Psychomotor	210
Table 4.24An example of authentic assessment using Psychomotor by mentor of sample group: local expert of sample code AD1211Table 4.25An example of authentic assessment using Psychomotor by mentor of sample group: local expert of sample code AD6212Table 4.26Comparison cognitive domain level with psychomotor domain213Table 4.27An example of cognitive level of Bloom's Taxonomy and Psychomotor domain of task 7 of sample AD6 in experimental group.217Table 4.28An example of cognitive level of Bloom's Taxonomy and Psychomotor domain of task 7 of sample AD1 in control group.217Table 4.29An example of cognitive level of Bloom's Taxonomy and219		by mentor of sample group: local expert of Task 9 soil	
by mentor of sample group: local expert of sample code AD1 Table 4.25 An example of authentic assessment using Psychomotor 212 by mentor of sample group: local expert of sample code AD6 Table 4.26 Comparison cognitive domain level with psychomotor domain 213 Table 4.27 An example of cognitive level of Bloom's Taxonomy 216 and Psychomotor domain of task 7 of sample AD6 in experimental group. Table 4.28 An example of cognitive level of Bloom's Taxonomy 217 and Psychomotor domain of task 7 of sample AD1 in control group. Table 4.29 An example of cognitive level of Bloom's Taxonomy and 219		development of all samples	
Table 4.25An example of authentic assessment using Psychomotor by mentor of sample group: local expert of sample code AD6212Table 4.26Comparison cognitive domain level with psychomotor domain213Table 4.27An example of cognitive level of Bloom's Taxonomy and Psychomotor domain of task 7 of sample AD6 in experimental group.216Table 4.28An example of cognitive level of Bloom's Taxonomy and Psychomotor domain of task 7 of sample AD1 in control group.217Table 4.29An example of cognitive level of Bloom's Taxonomy and219	Table 4.24	An example of authentic assessment using Psychomotor	211
by mentor of sample group: local expert of sample code AD6Table 4.26Comparison cognitive domain level with psychomotor domain213Table 4.27An example of cognitive level of Bloom's Taxonomy216and Psychomotor domain of task 7 of sample AD6 in experimental group.217Table 4.28An example of cognitive level of Bloom's Taxonomy and Psychomotor domain of task 7 of sample AD1 in control group.217Table 4.29An example of cognitive level of Bloom's Taxonomy and219		by mentor of sample group: local expert of sample code AD1	
 Table 4.26 Comparison cognitive domain level with psychomotor domain Table 4.27 An example of cognitive level of Bloom's Taxonomy and Psychomotor domain of task 7 of sample AD6 in experimental group. Table 4.28 An example of cognitive level of Bloom's Taxonomy and Psychomotor domain of task 7 of sample AD6 in control group. Table 4.29 An example of cognitive level of Bloom's Taxonomy and 213 	Table 4.25	An example of authentic assessment using Psychomotor	212
 Table 4.27 An example of cognitive level of Bloom's Taxonomy 216 and Psychomotor domain of task 7 of sample AD6 in experimental group. Table 4.28 An example of cognitive level of Bloom's Taxonomy 217 and Psychomotor domain of task 7 of sample AD1 in control group. Table 4.29 An example of cognitive level of Bloom's Taxonomy and 219 		by mentor of sample group: local expert of sample code AD6	
and Psychomotor domain of task 7 of sample AD6 in experimental group. Table 4.28 An example of cognitive level of Bloom's Taxonomy and Psychomotor domain of task 7 of sample AD1 in control group. Table 4.29 An example of cognitive level of Bloom's Taxonomy and 219	Table 4.26	Comparison cognitive domain level with psychomotor domain	213
experimental group. Table 4.28 An example of cognitive level of Bloom's Taxonomy 217 and Psychomotor domain of task 7 of sample AD1 in control group. Table 4.29 An example of cognitive level of Bloom's Taxonomy and 219	Table 4.27	An example of cognitive level of Bloom's Taxonomy	216
Table 4.28 An example of cognitive level of Bloom's Taxonomy217and Psychomotor domain of task 7 of sample AD1 in control group.217Table 4.29 An example of cognitive level of Bloom's Taxonomy and219		and Psychomotor domain of task 7 of sample AD6 in	
and Psychomotor domain of task 7 of sample AD1 in control group. Table 4.29 An example of cognitive level of Bloom's Taxonomy and 219		experimental group.	
control group.Table 4.29 An example of cognitive level of Bloom's Taxonomy and219	Table 4.28	An example of cognitive level of Bloom's Taxonomy	217
Table 4.29 An example of cognitive level of Bloom's Taxonomy and219		and Psychomotor domain of task 7 of sample AD1 in	
		control group.	
Psychomotor domain of task 7 of sample AD1 in control group.	Table 4.29	An example of cognitive level of Bloom's Taxonomy and	219
		Psychomotor domain of task 7 of sample AD1 in control group.	
All rights reserved		All rights reserved	

LIST OF FIGURES

Figure 2.1	Philosophy of sufficiency economy framework	41
Figure 2.2	Bloom's Taxonomy Behavior Vocabulary	66
Figure 2.3	Bloom's Taxonomy Activities to Measure Learner's Cognitive	67
	Level Behavior	
Figure 2.4	The framework of CommonKADS	84
Figure 2.5	Knowledge Model of CommonKADS Template	86
Figure 2.6	Ontology expressing intended models for description of the domain	87
Figure 2.7	Conceptual Framework	101
Figure 3.1	Conceptualizes the proposed methodology used in this research.	106
	These stages, along with methodological detail are described	
	in Table 3.1 and the following sub-sections	
Figure 3.2	The methodological design	112
Figure 3.3	Knowledge Model of CommonKADS Template	117
Figure 3.4	Knowledge mapping template	118
Figure 3.5	The learning process of both sample groups	122
Figure 3.6	learning process on organic rice farming knowledge from both	123
	control 123 and experimental groups. (148 number of domain	
	knowledge, m=number of ontology, x;y =lost domain knowledge,	
	u;w=new domain knowledge of adaptive organic rice farmers)	
Figure 3.7	A semantic annotation technique on Bloom's Taxonomy vocabulary	133
Figure 3.8	Ontology adaptation and Knowledge validation technique	135
Figure 3.9	Knowledge validation procedures from both control and	136
	experimental groups	
Figure 4.1	The Research Design Framework	147

LIST OF FIGURES (CONTINUED)

Figure 4.2	The learning process technique framework for non-science	154
	and technology educated farmers using knowledge engineering	
Figure 4.3	The knowledge map organic rice farming knowledge of tasks	158
	and inference	
Figure 4.4	The knowledge map of soil analysis task, inferences and	159
	domain knowledge	
Figure 4.5	The knowledge map of seed selection task, inferences and	160
	domain knowledge	
Figure 4.6	The knowledge map of rice seedling task, inferences and	161
	domain knowledge	
Figure 4.7	The knowledge map of soil preparation task, inferences and	162
	domain knowledge	
Figure 4.8	The knowledge map of planting rice task, inferences and	163
	domain knowledge	
Figure 4.9	The knowledge map of water management task, inferences and	164
	domain knowledge	
Figure 4.10	The knowledge map of disease, pets protection and taking	165
	care of crop task, inferences and domain knowledge	
Figure 4.11	The knowledge map of disease, pets protection and taking	166
	care of crop task, inferences and domain knowledge (continue)	
Figure 4.12	2 The knowledge map of harvest task, inferences and domain	167
	knowledge	
Figure 4.13	The knowledge map of soil development task, inferences	168
	and domain knowledge	
Figure 4.14	Ontologies identification and development of soil analysis	170
	task from soil analysis by farmer inference	

LIST OF FIGURES (CONTINUED)

Figure 4.15 Ontologies identification and development of soil analysis	171
task from soil analysis by farmer inference	
Figure 4.16 Ontologies identification and development of soil analysis	172
task from soil analysis by farmer inference	
Figure 4.17 Ontology development of each concept	173
Figure 4.18 The learning process of both sample groups	176
Figure 4.19 Knowledge validation technique of task 5 organic rice	181
planting comparison of AD1 and AD6 samples	
Figure 4.20 Knowledge validation technique of task 7 disease and	182
pets control comparison of AD1 and AD6 samples	
Figure 4.21 Knowledge validation technique of task 9 soil development	183
comparison of AD1 and AD6 samples	
Figure 4.22 Comparison of domain knowledge on organic rice farming	189
of control and experimental groups	
Figure 4.23 Comparison of domain knowledge percentage on organic	189
rice farming between control and experimental group	
Figure 4.24 The mapping of semantic annotation technique on	191
Bloom's Taxonomy vocabulary to cognitive level	
Figure 4.25 The example of mapping of semantic annotation technique	193
on Bloom's Taxonomy vocabulary to cognitive level of	
the sample code is AD1 on task 7 diseases and pets' control	
Figure 4.26 The example of mapping of semantic annotation technique	194
on Bloom's Taxonomy vocabulary to cognitive level of	
the sample code is AD6 on task 7 diseases and pets' control	
Figure 4.27 Comparison of cognitive level of both control and	198
experimental groups	

LIST OF FIGURES (CONTINUED)

Page

Figure 4.28 The example of mapping of semantic annotation technique	200
on Bloom's Taxonomy vocabulary to cognitive level of the sample	
code is AD6 on contingency plan of rice diseases, pets and insects out	break
Figure 4.29 Comparison of cognitive level of both control and experimental	203
groups in contingency plan test	
Figure 4.30 Ontology adaptation and knowledge validation and adaptation	205
Figure 4.31 Ontology knowledge validation and adaptation	206
Figure 5.1 The new knowledge transferring model	231
- Charles - Char	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ข้อความแห่งการริเริ่ม

- วิทยานิพนธ์นี้ได้นำเสนอวิธีการใหม่โดยใช้การสอนกำศัพท์ออนโทโลจีของกลุ่มกำทาง วิทยาสาสตร์ ในการถ่ายทอดความรู้ และเทคโนโลยีที่เหมาะสมไปยังชุมชนที่คนส่วนใหญ่มี ความรู้ขั้นพื้นฐานไม่ เพียงพอในการเข้าใจความรู้ทางวิทยาสาสตร์ซึ่งเป็นเหตุเป็นผล โดย ความรู้ทางวิทยาสาสตร์นี้ จะทำ ให้เกิดการพัฒนาชุมชนแก้ปัญหาสามารถแสวงหาความรู้ใหม่ และพึ่งตนเองนำไปสู่การพัฒนา อย่างยั่งยืน
- 2) เพื่อสร้างแบบจำลองการเรียนรู้ที่มีพื้นฐานการสอนกำศัพท์ออน โทโลจีของกลุ่มกำทาง วิทยาศาสตร์ ที่ใช้ได้จริง โดยมีการทดลองใช้แบบจำลองการเรียนรู้ในสถานการณ์จริงกับ ชุมชน เพื่อให้เกิดการ เรียนรู้และถ่ายทอดเทกโนโลยีที่เหมาะสมได้เพิ่มขึ้น และมีการวัด ผล กระบวนการเรียนรู้ที่ดีขึ้น ด้วยเทกนิกการวิเกราะห์เชิงกวามหมายกับกำศัพท์ของพุทธพิสัย และทักษะพิสัย เพื่อให้ทราบถึง การปรับพฤติกรรมการเรียนรู้ที่ดีขึ้น และการเรียนรู้ตลอดชีวิต

STAEMENT OF ORIGINALITY

- 1) This thesis presents a new knowledge transfer model of tutorial vocabulary using ontologies based on scientific terms in Thai's curriculum of lower secondary school in order to transfer knowledge and appropriate technology knowledge to the community that most people who are lack of basic knowledge. The knowledge from appropriate technology from research or sustainable development projects are scientific knowledge, which is logical knowledge and scientific and technology knowledge need to understand and apply for developing rural community. This knowledge transfer model using tutorial ontologies could improve the non-science and technology educated people to understand, apply and create new knowledge. Moreover, the rural people who are lack of basic education could live as self-reliance and develop their community in sustainable way.
- 2) In order to improve learning process and to increase knowledge transfer of appropriate technology. Creating a knowledge transfer model of learning the basic vocabulary ontologies of scientific terms that the experimental model of learning takes place in real-world community. The measurement of learning process by semantic annotation on Bloom's Taxonomy vocabulary in order to prove ontology effectiveness and leaning process improvement of rural people. The non-science and technology educated people who have ontologies and can reasoning domain knowledge with experts' jargon improve their learning process to life-long learning.