REFERENCES

- [1] Shaw, J.C., Introducing Thai Ceramics Also Burmese and Khmer, Duangphorn Kemasinki, Thailand. 1987.
- [2] Praicharnjit, S., Community Archaeology Process, Participatory axtion research and development program towards an enhancement of community ability on cultural resource management in Nan Province, Final Report, Thammasat University, Thailand. 2005.
- [3] Pitipat, S. Praicharnjit, S. and Barbetti, M., The Lanna Ceramic Research Project: The Intaknin and the Muang Nan Ban Bo Suak Kiln Sites,

 Thammasat University, 2002.
- [4] Montana, G., Angel, M.C.O., Polito, M.A. and Azzaro, E. Characterisation of clayey raw materials for ceramic manufacture in ancient Sicily, Journal of Apply. Clay Science, 2010, pp 13.
- [5] Glanzman, W. D. and Fleming S. J., Ceramic technology at prehistoric Ban Chiang, Thailand: fabrication methods. MASCA J, 1985.
- [6] Musthafa, A. M., Janaki, K. and Velraj, G. Microscopy, porosimetry and chemical analysis to estimate the firing temperature of some archaeological pottery shreds from India. Journal of Microchem, 2010.
- [7] Thongchai. U., "Overview of Nan pottery" Faculty of Humanities, Chiang Mai University, Chiang Mai Thailand, 2012.
- [8] Praicharnjit, S., Archaeology of ceramics in Lan Na Northern Siam. Silpakorn creative economy development project, Silpakorn University, Thailand. 2011.
- [9] Chui Mei, H., Ancient ceramics kiln technology in Asia. Hong Kong center of Asia studies, University of Hong Kong, 1990.
- [10] Shaw, J. C., Northern Thai ceramics. Kuala Lumpur, Oxford University Press, 1981.
- [11] Glenn, C. N. and Richard, B., Ceramics a pottery's handbook sixth Edition, San Diego State University, America, 2002.
- [12] Ryan, W., Properties of ceramic raw materials. Oxford: Pergamon, 1978.

- [13] Hyper Physics (No date). "Radioactive dating" [Online]. Availble http://hyperphysics.phyastr.gsu.edu/hbase/nuclear/cardat.html#c1. 2001.
- [14] Chronometric Techniques—Part II (No date). "Thermoluminescence Dating". [Online]. Availble. http://anthro.palomar.edu/time/time_5.htm.1998-2012.
- [15] Wikipedia, the free encyclopedia (18 January 2016). "Dating methodologies in archaeology" [Online]. Availble.

 https://en.wikipedia.org/wiki/Dating_methodologies_in_archaeology. 2016.
- [16] Velde, B., Composition and mineralogy of clay minerals, Origin and mineralogy of clays: New York, Springer-Verlag, 1995, pp 8-42.
- [17] Arnold, D. E., Ceramic theory and cultural process. Cambridge University Press, Cambridge, 1985.
- [18] Brown, R. M., Ming Gap and Shipwreck Ceramics in Southeast Asia: Towards a Chronology of Thai Trade Ware. River Books Press Dist A C. 2009, pp. 206.
- Carla, M. S., Approaches to archaeological ceramics, Plenum Press, New York, Division of Plenum publishing corporation, New York, USA.1991.
- [20] Spink, C.N., The ceramics wares of Siam, Bangkok Siam Society, 1965.
- [21] Kamolthip, T., The study of relationship between Muang Nan Sukhothai
 Lan Na During the 13th-16th A.D. evidence from Ban Bo Suak kiln site.
 Thesis Submitted in Partial Fulfillment of the Requirements for the degree,
 Department of Archaeology Graduate School, Silpakorn University,
 Thailand, 2015.
- [22] Tichane, R., Clay bodies. Painted Post, N.Y. New York Glaze Institure, 1990.
- [23] Murray, H. H., Applied clay mineralogy. Amsterdam: British Library Cataloguing in Publication Data, 2007.
- [24] U.S. Department of the Interior (December 17, 2015) "Kaolinite Group" [Online]. Availble. http://marine.usgs.gov/index.php. 2015.
- [25] Ahmed, J., Body ceramic. Asian Ceramics, June, 2014.
- [26] Hillier, S., Clay Mineralogy, in GV Middleton, MJ Church, M Coniglio, LA Hardie. and F J Longstaffe eds., Encyclopaedia of sediments and sedimentary rocks: Kluwer Academic Publishers, Dordrecht, 2003, pp. 139-142.

- [27] Kaolinite, (July 15, 2010), [Online]. Availble.

 http://soil.gsfc.nasa.gov/forengeo/aukao2.GIF, Retrieved.2010.
- [28] Halloysite, (July 17, 2010), [Online]. Availble. http://www.northstar-halloysite.com/halloysite.html, 2010.
- [29] Hillier, S., Erosion, sedimentation and sedimentary origin of clays, in Velde, B, ed., Origin and mineralogy of clays: New York, Springer-Verlag, 1995, pp 162-219.
- [30] Brindley G.W. and Nakahira, M., The kaolinite-mullite reaction series: I. A survey of outstanding problems. Journal of American Ceramic Society, 1959, 42; 311-314.
- [31] Grimshaw, R. W., The chemistry and physics of clay 4th ed. Rev. New York: John Wiley & Son. 1980.
- [32] Lee, S., Kim Y. J. and Moon, H. S., Phase transformation sequence from kaolinite to mullite investigated by an energy-filtering transmission electron microscope. Journal of American Ceramic Society, 1999, 82 (10); pp 2841-48,
- [33] Duda, R. and Rejl. L., Minerals of the world. New York: Arch Cape Press, 1989.
- [34] Iqbal, Y. and Lee, W. E., Microstructural evolution in triaxial porcelain, Journal of American Ceramic Society, 2000, 83(12); pp 3121-3127.
- [35] Andrade F. A., Al-Qureshi H. A., and Hotza D., Measuring the plasticity of clays: review. Journal of applied Clay Science. 2011, 51; pp 1-7.
- [36] James, S. R., Principles of ceramics processing 2 nd, John Wiley and Sons, New York, 1995.
- [37] Alain, M., Clays, Spring Berlin Heidelberg New York. America. 2005.
- [38] Wattle & Daub, (No date). "Plasticity", [Online]. Availble http://www.tonygraham.co.uk/house_repair/wattle_daub/WD-4_1_2.html#fnB55. 2015.
- [39] American society for testing of materials, Designation D 427 Standard test method for drying and firing shrinkage of ceramic whitewares clays.

 In: Annual book of ASTM standard 15.02, West Conshohocken, Pennsylvania: ASTM (2002).

- [40] Heidema, P. B., Bar-shrinkage test and the Practical Importance of Bar-Linear shrinkage as an Identifier of Soils. Proceedings of the 4th International Conference on Soil Mechanics and Foundation Engineering, Vol. 1, 1957, pp 44-48.
- [41] Harry, F., Ceramic faults and their remedies. A&C Black Ltd, London. 1986.
- [42] American society for testing of materials, Designation C 326-82 Standard test method for drying and firing shrinkage of ceramic whitewares clays. In:

 Annual book of ASTM standard 15.02, West Conshohocken, Pennsylvania:

 ASTM (2002).
- [43] American society for testing of materials, Designation C 373-88 Standard test method for water absorption, bulk density, apparent density and apparent specific, gravity of fired whitewares products. In: Annual book of ASTM standard 15.02, West Conshohocken, Pennsylvania: ASTM (2002).
- [44] American society for testing of materials, Designation C773-88 Standard test method for compressive (crushing) strength of fired whitewares materials. In Annual Book of ASTM standard 15.02, West Conshohocken, Pennsylvania: ASTM (2002).
- [45] Lutgard, C. and Jonghe, D., Sintering of ceramic, handbook of Advance Ceramic S. Soniya et. al.(Eds) 2003.
- [46] Kitouni, S. and Harabi, A,. Sintering and mechanical properties of porcelains prepared from algerian raw materials, Constantine Ceramics Laboratory, Mentouri University Constantine, Algeria, 2011, pp 453-460.
- [47] Dmitri, K., (22 November 2014). "Sintering of ceramics", [Online]. Availble http://www.substech.com/dokuwiki/doku.php?id=sintering_of_ceramics . 2014.
- [48] Bertolino, S. R. and Fabra, M., Provenance and ceramic technology of pot sherds from ancient Andean cultures at the Ambato valley, Journal of Argentina Applied Clay Science, 2003, 24; pp 21–34.
- [49] Rex, W. G., The chemistry and physics of clays. Ernest Benn Limited, London. 1971.

- [50] Martín, M. J. and Rincon, M. J., Effect of firing temperature on sintering of porcelain stoneware tiles. Journal of Ceramics Internacional, 2008, 34; pp 1867-1873.
- [51] Beth, P., (No date). "How Temperature Changes Clay", [Online]. Availble http://pottery.about.com/od/temperatureandmaturation/tp/tempclay.htm. 2016.
- [52] Ayse, K., (No date). "Ceramic Material I" [Online]. Availble http://metalurji.mu.edu.tr/Icerik/metalurji.mu.edu.tr/Sayfa/Kalemtas_A_Sintering_2014(1).pdf, 2015.
- [53] Waldemar, P., (No date). "Sintering of Ceramic Powders" [Online]. Availble http://home.agh.edu.pl/~nmos1/TPCP/TPCP-Lecture-_Sintering.pdf. 2016.
- [54] Matt, G., (27/4/19/97). "Ceramic Materials and Fracture Design" [Online]. Availble, http://www.sv.vt.edu/classes/MSE2094_NoteBook// 97ClassProj/exper/gordon/www/ceramic.html. 1997.
- [55] Bin, X., Junpeng, S. and Jianjun, L., Ceramic Tiles II: Pore Effect on Surface Formation. Journal of the Australian Ceramics Society, 2014, Volume 50[2]; pp 162 166.
- [56] James, F. S., Ceramic and Glass materials structure properties and processing, University of California, USA. 2008.
- [57] Gregorova, E. and Pabst, W., Porosity and pore size control in starch consolidation casting of oxide ceramics—achievements and problems. Journal of the European Ceramic Society, 2007, 27; pp. 669–672.
- [58] Bayne, S.C. and Thompson, J.Y., Ceramics: Properties 2, University of Michigan, School of Dentistry, Michigan, USA. 2015.
- [59] Kaelble, D. H., A relationship between the fracture mechanics and surface energetics failure criteria, Journal of Applied Polymer science. 1974.
- [60] Garofano, I. and Robador, M.D., Ceramics from the Alcazar Palace in Seville (Spain) dated between the 11th and 15th centuries: Compositions, technological features and degradation processes Journal of European Cramic Society, 2015, pp 4307-4319.

- [61] Griffith, A. A., The Phenomena of Rupture and Flow in Solids. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1920, 221 (582–593); pp 163.
- [62] Davidge, R. W., Mechanical behavior of ceramics: Considerations about Degradation of the Red Ceramic Material Manufactured with Granite Waste United Kingdom Atomic Energy Authority Research Group, Atomic Energy Research Establishment, 1979.
- [63] Michal, K. and Tomas, H., Study of microcracking in illite-based ceramics during firing, Journal of the European Ceramic Society. 2015.
- [64] Arnold, D. E., Ceramic Theory and Cultural Process. Cambridge University Press, New York, 1985, pp 51-52.
- [65] American society for testing of materials, Designation C424-93 Standard test method for crazing resistance of fired glazed whitewares by Autoclave treatment, West Conshohocken, Pennsylvania: ASTM (2012).
- [66] Braganca, S.R. and Bergmann, C. P., Effect of quartz of fine particle size on porcelain properties, Federal University of Rio de Janeiro, Brazil, 2016.
- [67] Stubna, I. A. and Trnik, L.V., Thermomechanical analysis of quartz porcelain in temperature cycles, Ceram. Int. 2007, 33; pp 1287–1291.
- [68] Little, M., The Winterthur Guide to Caring for Your Collection. Chapter 5: Ceramics and Glass. London: University Press of New England. ISBN 0-912724-52-8, 2000, pp. 57–66.
- [69] Prasanta, N. and etc., Microstructure and Deterioration in Steatite ceramic, Journal of the American Ceramic Society. 1983, 2; pp 66.
- [70] Paula. L.A., Archaeological ceramic amphorae from underwater marine environments: Influence of firing temperature on salt crystallization decay, Journal of the European Ceramic Society, 2013, 33; pp 2013-2042.
- [71] Charola, A. E., Salts in the deterioration of porous materials: An overview. Journal of the American Institute of Conservation, 2000, 39; pp 327-343.
- [72] Castro, X. G. and Fernando, S., Cesar de Almeida Maia Paulo and Jonas Alexandre State University of Norte Fluminense Darcy Ribeiro UENF, Department of Civil Engineering, Campos, Rio de Janeiro, Brazil, 2005.

- [73] Oliveira, M.M. and Sanjad, T.B.C., Biological degradation of glazed ceramic tiles. In: Lourenço, P.B., Roca, P. (Eds.), Historical Constructions, Guimarães, Portugal, 2001, pp. 337–341.
- [74] Fatma, S. M. and Mohamed, K. K., Degradation Processes of Egyptian Faience Tiles in the Step Pyramid at Saqqara, Procedia Social and Behavioral Sciences, 2012, 68; pp 63-76.
- [75] Oakley, V. L. and Jain, K., Essentials in the care and conservation of historical ceramic objects. Archetype Publications Ltd., Great Britain, 2002.
- [76] Paula. L.A. and Doehne, E., Magnesium sulfate salts and historic building materials: experimental simulation of limestone flaking by relative humidity cycling and crystallization of salts. Mater Construct, 2008, 58; pp125–42.
- [77] Henrik. N., The Self-Reliant Potter: Refractories and Kilns. A Publication of the Deutsches Zentrum, Technische Zusammenarbeit (GTZ), 1987.
- [78] Leung, P. L. and Mao, Z., Line scanning analysis of the component of Ru porcelain by micro energy dispersive fluorescence. Science in China (Series B) 46 (5), 2003, pp 65-472.
- [79] Richard E. C., Preparation and Analysis of ceramic microstructures. American Ceramic Society, USA. 2002.
- [80] Silvana, R. B.; Mariana, F. Provenance and ceramic technology of pot sherds from ancient Andean cultures at the Ambato valley, Argentina, Applied Clay Science, 2003, 24; pp 21–34.
- [81] Maritan, L., Nodari, L., and etc., Influence of firing conditions on ceramic products: experimental study on clay rich in organic matter, Journal of Applied Clay Science. 2006, 31; pp 1–15.
- [82] Carla, M. S., Approaches to Archaeological Ceramic, Plenum Press, New York, USA, 1991.
- [83] Rye, O. S., Pottery Technology: Principles and Reconstruction, Taraxacum, Inc., Washington, D.C. 1981.
- [84] Rice, P. M., Pottery Analysis, A Sourcebook University of Chicago Press, Chicago, 1987.

- [85] Conrad, J., advanced Ceramic Manual: Technical Data for the studio potter Falcon Company. 1987.
- [86] Wattanasiriwech, D. and Sangtong C., Characterization of Vieng Kalong clays and Relation between Physicals and Bloating. Journal of Scienceasia, 2007, 33; pp125-130.
- [87] Maritan, L. and Nodari, L., Russo U. Influence of firing conditions on ceramic products: experimental study on clay rich in organic matter. Journal of Applied Clay Science, 2006, 31; pp 1–15.
- [88] Santino, O., Speciation studies of iron in ancient pots from Sicily (Italy), Journal Microchemical, 2011, 99; pp 132-137.
- [89] Schneider, H. and Okada, K., Mullite and Mullite Ceramics, Wiley, New York, NY, 1994.
- [90] Varshneya. A.K. Fundamentals of inorganic glasses. Sheffield: Society of Glass Technology, (2006).
- [91] Richard, E.C., Preparation and Analysis of ceramic microstructures. American Ceramic Society, USA. 2002.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF PUBLICATIONS

International publication

- Usanee Malee and Sakdiphon Thiansem, "Preparation and characterization of clays from different areas in Ban Bo Suak, Nan province, Thailand." Key Engineering Materials Vol. 659 (2015), pp 127-131, Trans Tech Publications, Switzerland Revised: 2015.
- 2. Usanee Malee and Sakdiphon Thiansem, "Analytical study of ancient pottery from the archaeological site of Ban Bo Suak from Nan province, Thailand." Key Engineering Materials Vol. 609 (2016), pp 18-22 Trans Tech Publications, Switzerland Revised: 2016.

International conference

- 1. **Usanee Malee** and Sakdiphon Thiansem, "Characterization and properties of clay in Ban Bo Suak simulate Ban Bo Suak ancient pottery in Nan Province, Thailand" Pure and Applied Chemistry (PACCON2012), Chiang Mai, Thailand (2012).
- Usanee Malee and Sakdiphon Thiansem, "Basic properties of clay from Ban Bo Suak in Nan Province, Thailand." International Conference on Tradition and Advanced Ceramics (ICTA 2012) Bangkok, Thailand (2012).
- Usanee Malee and Sakdiphon Thiansem, "Investigate the characterization and properties of indigenous clay from Dong Phuhor kiln sites in Nan Province, Thailand." International Conference on Science and Social Science 2012: Sustainable Development (ICSSS 2012), Maha Sarakham, Thailand (2012).

- 4. **Usanee Malee** and Sakdiphon Thiansem, "Preparation and characterization of clays from different areas in Ban Bo Suak, Nan province, Thailand." 8th International Conference on Materials Science and Technology (MSAT-8). Bangkok, Thailand (2014).
- 5. **Usanee Malee** and Sakdiphon Thiansem, "Analytical study of ancient pottery from the archaeological site of Ban Bo Suak from Nan province, Thailand." International Conference on Traditional and Advanced Ceramics (ICTA2015). Bangkok, Thailand (2015).
- 6. **Usanee Malee** and Sakdiphon Thiansem, "Investigation of ancient pottery from Nan province, Thailand." 10th International Conference on the Physical Properties and Application of Advanced Materials (ICPMAT2015), Chiang Mai University, Chiang Mai, Thailand. (2015).

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved