CONTENTS

	Page
Acknowledgement	iii
Abstract in Thai	iv
Abstract in English	vi
List of Tables	xi
List of Figures	xii
List of Abbreviations and Symbols	XV
Statement of originality in Thai	xvii
Statement of originality in English	xviii
Statement of originanty in English	AVIII
Chapter 1 Introduction	1
1.1 Objectives of this thesis	3
1.2 The scope of work	4
Chapter 2 Literature Review	5
2.1 Ancient Nan Pottery	6
2.1 Ancient Nail Pottery 2.2 Archaeological theory and method	10
2.3 Ceramic processing	15
2.4 Ceramic Raw Materials	18
2.4.1 Clay minerals	18
2.5 Preparation and analysis of ceramics	26
2.5.1 Plasticity	26
2.5.2 Linear shrinkage	28
2.5.3 Water absorption	29
2.5.4 Bending strength	30

		Page
2.6	Sintering of ceramic	31
2.7	Defect in Ceramics	37
2.8	Deterioration of Ceramics	45
Chapter	3 Methodology	49
3.1	Characterization and physical properties of ancient	49
	Ban Bo Suak potteries	
	3.1.1 Microstructure of ancient pottery	50
	3.1.2 Characterization of ancient pottery	50
3.2	Characterization and properties of different clay sources	52
	3.2.1 Particle size distribution analysis	52
	3.2.2 Physical properties of different clay sources	54
	3.2.3 Specimen preparation	54
	3.2.4 Water absorption	55
	3.2.5 Linear shrinkage	56
	3.2.6 Softening point	56
	3.2.7 Characterization of fired samples	57
3.3	Study deterioration using autoclave and bury tests	58
	3.3.1 Autoclave tests	58
	3.3.2 Bury tests	58
Chapter	4 Results and Discussions	62
4.1	Characterization of ancient pottery	62
4.2		73
4.3	Deterioration of samples by autoclave and bury technique	93
Chapter	5 Conclusion and Suggestions	102
Referen	ces	106
		1116

	Page
List of Publications	114
Appendix	11.6
Appendix A Location of kiln site in Northern Thailand	11.7
Appendix B Ban Bo Suak kilns	118
Appendix C Geologic of Wiang Sa Nan province	119
Appendix D Data JCPDS files	120
Appendix E Bending strength	128
Appendix F Water absorption	129
Appendix G Linear shrinkage	130
Curriculum Vitae	131

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่
Copyright[©] by Chiang Mai University
All rights reserved

LIST OF TABLES

		Page
Table 2.1	The classification of clay minerals	21
Table 2.2	Reaction occurring on firing process	34
Table 2.3	Comparison effect of strength of alumina in content of pore	38
Table 2.4	ASTM Standards C424-93 Test method for crazing resistance of	44
	fired glaze whitewares by Autoclave treatment	
Table 4.1	The configurations of ancient sherds	64
Table 4.2	Chemical analysis of sherds obtained from Ban Bo Suak	69
Table 4.3	Chemical analysis of powder clays unfired and after fired	75
	1250 °C	
Table 4.4	Sieve analysis and particle size of different clays	78
Table 4.5	Percentage of water content	80
Table 4.6	Plasticity of clays with water solution for forming process	81
Table 4.7	Chemical composition of samples	94
Table 4.8	Autoclave test weight of drying mass	95
Table 4.9	Bury test weight of drying mass	96

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

		Page
Figure 2.1	Map illustrating locations approximate are of Ban Bo Suak kiln sites	7
Figure 2.2	Tao Sunan and Ja-Manas kilns after excavation	8
Figure 2.3	Jars with single and double mouth-rim, incised decoration body	9
Figure 2.4	Ban Bo Suak potteries from the National Museum of Nan	9
Figure 2.5	Measurement of decay activity of a buried piece of wood	11
Figure 2.6	Thermoluminescence techniques (a) a ground up sample was	13
	placed in a special oven (b) heat was raised rapidly resulting in an	
	energy emission from the sample	
Figure 2.7	The date of formation of a context which was totally sealed	14
	between two datable layers, (a) here we can see 12 contexts,	
	each numbered with a unique context number and (b) sequence	
	was represented in the Harris matrix	
Figure 2.8	Decorative techniques of Nan pottery (a) unglazed, (b) slip	16
	decoration and (d) glaze decoration.	
Figure 2.9	Basic units of kaolinite group	19
Figure 2.10	Basic units of clay minerals	19
Figure 2.11	Kaolinite structure (a) the change of the tetrahedral (light)	22
C	and Octahedral (dark) sheets, (b) structure of kaolinite	
Figure 2.12	SEM micrograph of halloysite clay	22
Figure 2.13	Microstructure evolutions in triaxial porcelain	25
Figure 2.14	States of consistency and plasticity limits of clays	27
Figure 2.15	Clay moisture content versus volume	29
Figure 2.16	Example of bend testing under a three-point bend arrangement	30
Figure 2.17	Ceramic sintering processes	31

		Page
Figure 2.18	Example of sintering at different temperature	32
Figure 2.19	Schematic evolution of powder compact during liquid-phase sintering	35
Figure 2.20	SEM shows liquid glass forms from clay and flows between	36
	SiO ₂ flux melts at lower	
Figure 2.21	Crack initiations	39
Figure 2.22	The crack propagation	40
Figure 2.23	The crack energy	40
Figure 2.24	The expansion cracks in material (a) crack a circle line	42
	(b) a radial crack	
Figure 2.25	SEM micrograph showed typical cracks observed around the	43
	quartz grains in the sample fired up to (a)1050°C and (b) 1200°C	
Figure 3.1	Experimental procedures preparation of Ban Bo Suak ancient	51
	pottery	
Figure 3.2	Experimental procedures of specimen preparation and	53
	characterization	
Figure 3.3	Example of plasticity testing	54
Figure 3.4	Example of plaster mould for forming process	55
Figure 3.5	Setting of the test bars for firing (a) the span equals the distance	57
ลิ	between the cross-lines of the test bar (b) bending of the bars is	
0	compared with the bending of bars	
Figure 3.6	Experimental procedures to test deterioration using autoclave and bury tests	59
Figure 3.7	Autoclave test	60
Figure 3.8	Locations of Ban Bo Suak kiln site in bury experiment	60
Figure 3.9	Experimental procedures of bury test	61

		Page
Figure 4.1	The typical photo of the samples (scale unit length: 1 cm).	62
Figure 4.2	Decorative techniques: patterns with stripes, naturally	62
Figure 4.3	The cross section of pottery sherds with layer structure in body	65
	and glaze showed dark stoneware bodies engobe decoration	
Figure 4.4	The sherd samples have shown a glaze which is full of bubbles	66
Figure 4.5	The carbon coke effect on the pottery sherds	68
Figure 4.6	Cross section in samples showed pores and cracks in the body	68
Figure 4.7	XRD patterns of the ancient Ban Bo Suak pottery sherds	70
Figure 4.8	SEM micrographs of pottery sherds	72
Figure 4.9	XRD patterns of the different powder clays from Ban Bo Suak	76
Figure 4.10	XRD patterns of clays after fired at 1250 °C	77
Figure 4.11	Shapes and particle sizes of clays	79
Figure 4.12	Percentage of water to cause toughness	80
Figure 4.13	Plasticity of clays with water solution for forming	81
	process	
Figure 4.14	The color of fired clay at different temperatures	83
Figure 4.15	The water absorption values of the fired clays at different	84
	temperatures	
Figure 4.16	The firing shrinkage values of the fired clays at different	85
ลิ	temperatures	
Figure 4.17	Bending strength of the fired clays at different temperatures	86
Figure 4.18	SEM micrographs of clays being fired at 800 °C	88
Figure 4.19	SEM micrographs of clays being fired at 1000 °C	89
Figure 4.20	SEM micrographs of clays being fired at 1200 °C	90
Figure 4.21	SEM micrographs of clays being fired at 1250 °C	91
Figure 4.22	SEM micrographs of clays being fired at 1280 °C	92
Figure 4.23	SEM of fired clays at different time for autoclave process 500x	97
Figure 4.24	SEM of fired clays at different time for autoclave process1500x	98

		Page
Figure 4.25	SEM of fired clays at different time for bury process 500x	100
Figure 4.26	SEM of fired clays at different time for bury process 1500x	101

LIST OF ABBREVIATIONS AND SYMBOLS

 α Alpha

 β Beta

Ø Diameter

σ flexural bending strength

μm Micrometer

v poisson ratio

 θ Theta

% Percent

wt. % Weight percent

ASTM American Society for Testing Materials

Ca Calcium

Cu-Kα Copper energy level k alpha

°C Degree of Celsius

EDS Energy dispersive spectrometry

h Hour

g/cm³ Gram per cubic centimeter

L.O.I. Loss on ignition

MPa mega pascal

mm millimeter

min minute

M.W. Molecular Weight

SiO₂ Silica

SEM Scanning electron microscopy

T Temperature

XRD X-ray diffraction spectrometry

XRF X-ray fluorescence spectrometry

JQA Ja-Manas

FQB Doi Fuang Moh

PQC Dong Poo Ho

NQD Nong Tom

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ข้อความแห่งการริเริ่ม

เรื่องร้านคินเผาจัดได้ว่าเป็นหลักฐานทางโบราณคดีที่เป็นรูปธรรมมากที่สุด ในการศึกษา เรื่องราวในอดีตของมนุษย์ในด้านสังคม วิถีชีวิตความเป็นอยู่ และระบบทางการค้าการติดต่อระหว่าง ชุมชน การแปลความหมายจากหลักฐานที่พบเหล่านี้ให้มีความลูกต้องมากที่สุดจึงมีความสำคัญอย่าง มากในเชิงโบราณคดี ในวิทยานิพนธ์นี้ได้ให้ความสนใจในการศึกษาเครื่องปั้นดินเผาโบราณจากบ้าน บ่อสวก จังหวัดน่าน ซึ่งเป็นแหล่งเตาเผาที่ใหญ่ที่สุดอีกแหล่งหนึ่งของภากเหนือ ซึ่งมุ่งเน้นศึกษา ข้อมูลเบื้องต้นใน 3 ประเด็นหลักคือ ศึกษาเครื่องปั้นดินเผาโบราณ ศึกษาวัตถุดิบที่ใช้ในการผลิต และส่วนที่ 3 ศึกษาปัจจัยเบื้องต้นในการเสื่อมสภาพของเครื่องปั้นดินเผามีความสัมพันธ์เป็นอย่างมากกับกระบวนการผลิตและคุณสมบัติของวัตถุดิบที่ นำมาใช้งาน เครื่องปั้นดินเผาเมื่อถูกฝังจะสัมผัสกับสภาพแวดล้อมทำให้เกิดความชื้นและเกิดการสะสมของสิ่งมีชีวิตและสารต่าง ๆ ซึ่งความชื้นและสิ่งตาง ๆ เหล่านั้นจะเข้าสู่เนื้อดินโดยการผ่านรู พรุนซึ่งเป็นกลไกเริ่มค้นที่ทำให้เครื่องปั้นดินและสิ่งตาง ๆ เหล่านั้นจะเข้าสู่เนื้อดินโดยการผ่านรู พรุนซึ่งเป็นกลไกเริ่มค้นที่ใดยใช้หม้อด้มออโตเครปและการฝังดินเพื่อศึกษาปัจจัยการเสื่อมสภาพ ดังกล่าวพบว่าความเสียหายในเนื้อดินมักจะเกิดจากจุดที่อ่อนแอที่สุดโดยเฉพาะรูพรุนและรอยร้าวใน เนื้อดินทำให้บางส่วนก่อยๆหลุดออกและเปิดผิวของเนื้อดินทำให้การแทรกซึมของๆเหลวเพิ่มปริมาณ ขึ้นตามระยะเวลาที่มากขึ้น

การศึกษาการเสื่อมสภาพของเครื่องปั้นดินเผา ในอนาคตจะช่วยให้เข้าใจกระบวนการ การ เสื่อมสภาพที่เกิดจากปัจจัยต่าง ๆ ที่จะส่งผลกับเครื่องปั้นดินเผา เช่น ปัจจัยแวคล้อมทางธรรมชาติ และ ที่มนุษย์สร้างขึ้นกับพื้นดินบริเวณ ที่ถูกผัง รวมทั้งเข้าใจกระบวนการผลิตเครื่องปั้นดินเผา สภาพแวคล้อมทางสังคม การค้าขายและความสัมพันธ์ทางธรณีวิทยาในยุคสมัยที่ผ่านมา ดังนั้นใน อนาคตงานวิจัยนี้อาจเป็นส่วนหนึ่งในการนำไปใช้เป็นข้อมูลให้นักโบราณคดีได้ใช้ในการเชื่อมโยง ข้อมูลทางวิทยาศาสตร์กับโบราณคดี อีกทั้งข้อมูลบางส่วนสามาถนำไปประยุกต์ใช้เพื่อการอนุรักษ์ และการเก็บรักษาเครื่องปั้นดินเผาโบราณได้ถูกต้องยิ่งขึ้น

STATEMENT OF ORIGINALITY

Pottery is one of the most concrete archaeological evidence that can be used in studying human history regarding social features, life styles, trading systems and ways of communication between communities. The way the evidence is interpreted is of the utmost importance in archaeological study. In this thesis, the focus is on researching ancient pottery from Ban Bo Suak in Nan province, which is one of the most important archaeological sites in Northern Thailand. The research interest is on basic information of three issues, which are studying ancient pottery, studying raw material used and studying primary factors related to pottery degradation.

Pottery degradation is highly related to manufacturing processes and quality of raw material used. When ceramic body is buried, it is exposed to environmental factors which lead to the collection of substances and organisms. These factors including humidity seep into ceramic body via pores. This initiated all kinds of damages in potteries. Researches were done by mimicking acceleration of deterioration using autoclave and bury tests. The objective is to study the effect of these factors. The results show that damages usually start from the weakest point, especially pores and cracks. They make the clay body fall apart so, with time passes, more amount of liquid can get into the potteries.

Studying pottery deterioration will help us understand processes and factors that have effects on potteries, such as man-made and environmental factors and the areas where potteries are buried. The study will aid understanding in pottery making, traditional social environment, trading and geological relations. Therefore, information gathered in this research might be useful in the future for archaeologists in that they are able to link scientific data with archaeology. Some part of information can also be used to help with conservation and storage of ancient potteries.