

CHAPTER 3

Results

3.1 Raw material characteristics

Trace elements concentrations of CaCO_3 were found to contain arsenic (AS) below 0.32 ppm and cadmium (Cd) below 0.01 ppm. Mercury (Hg) and Lead (Pb) were not detectable in CaCO_3 . Total heavy metals had less than 50 ppm. In **Figure 12**, XRD pattern of the CaCO_3 powders were presented. The Result of this study revealed contained phase of calcite (JCPDS file no. 85-1108) which was pure CaCO_3 .

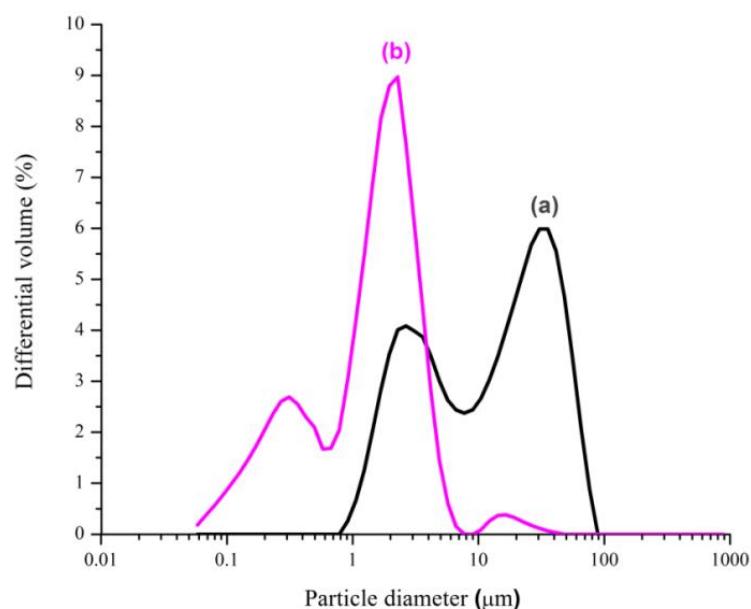

All rights reserved

Figure 12 XRD pattern of the CaCO_3 powders at 650 °C 5 hours

It was found that the particle size distribution of mixed powder before and after milling was differences as shown in **Figure 12**.

Figure 13 shows powder mixtures before milling, particle size distribution was not homogenous and can be divided into two groups of particles populations (curve (a), while, after milling, partly homogenous and are separated into three groups (curve (b) due to different sizes of starting materials and insufficiency of mechanical energy. The average particle size was approximately $11.04 \pm 0.06 \mu\text{m}$. The size distribution of ground powders were between 0.3 and 14 μm . The specific surface area was $3.7228 \pm 0.01 \text{ m}^2/\text{g}$. These values would be appropriate for forming the ceramic bodies and sintering at high temperature.

The mixed powder consists of irregular shapes agglomerates probably due to electrostatic and van der Waal's attraction between particles or liquid capillary forces as a result of the presence of reaching the melting point of $\text{NH}_4\text{H}_2\text{PO}_4$ (190°C) during milling process.

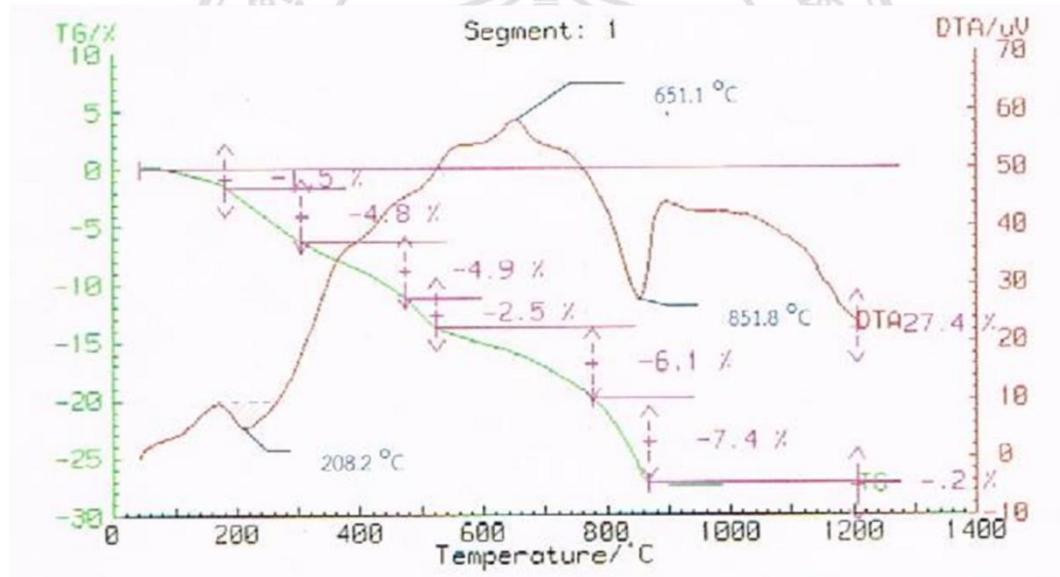


Figure 13 Particle size distribution of mixed powder (a) before milling (b) after milling.

3.2 Physical properties of mixed powder

Thermal analysis

Thermal analysis was physical property of material for to know materials reactivity under sintering temperature. The TG showed the weight loss of sample powder. This result could be divided the seventh stages in **Table 3**. The thermogram of mixed powder showed continuously endothermic and exothermic evolution and three distinct thermal events during the reaction of CaCO_3 and $\text{NH}_4\text{H}_2\text{PO}_4$. The composition of precursors could formed as HA in **Table 4**.

Figure 14 DTA/TG analyses curves of mixed powder with Ca/P ratio of 1.67

In **Figure 14**, solid state reaction used thermal analysis for studying reaction between CaCO_3 and $\text{NH}_4\text{H}_2\text{PO}_4$ powders. Mixed powder was ratio of Ca/P 1.67 for the formation of single phase HA. The first endothermic peak was range from 182.2 to 305.5 °C. This reaction was losing weight of ammonia and water vapor about 4.8 %.

The second exothermic peak took place between 523.4 and 775.5 °C, which shown in this curve occurred the phase transition from amorphous $\text{Ca}_2\text{P}_2\text{O}_7$ (γ - $\text{Ca}_2\text{P}_2\text{O}_7$) to beta- $\text{Ca}_2\text{P}_2\text{O}_7$ and possible to decomposition of CaCO_3 into CaO , which weight loss was about 6.1 %. The third endothermic peak was range from 775.5 to 867.7 °C. This reaction caused by remain of CaCO_3 and transform to CaO occurred CO_2 gas released in lose weight about 7.4 wt%. This reaction started formation of β -TCP, HA, β - $\text{Ca}_2\text{P}_2\text{O}_7$ phase and remained of CaO .

Table 3 Results of lose weight.

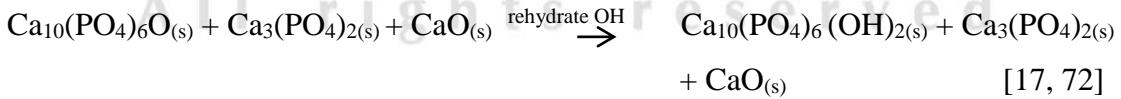
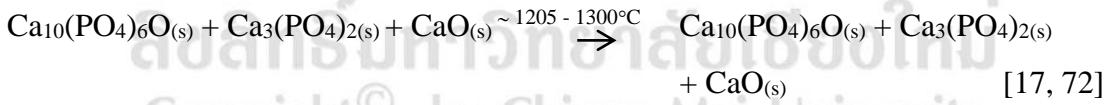
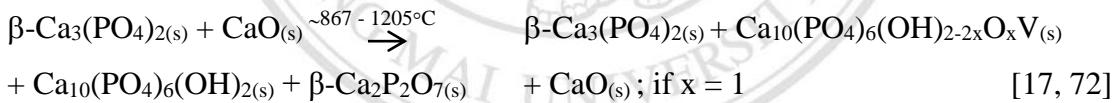
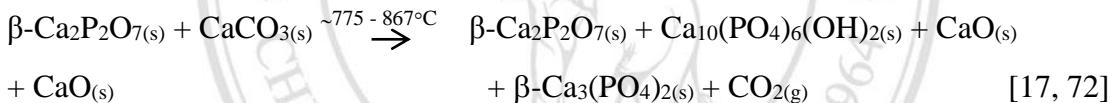
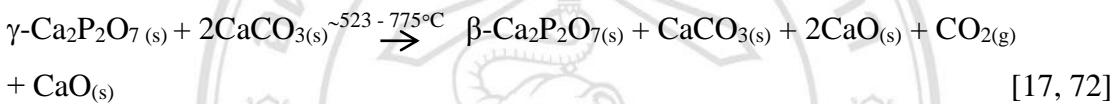
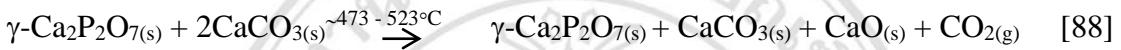
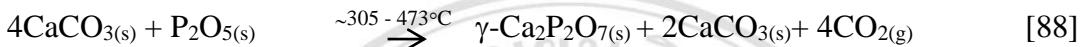
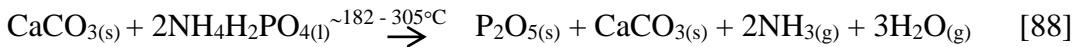
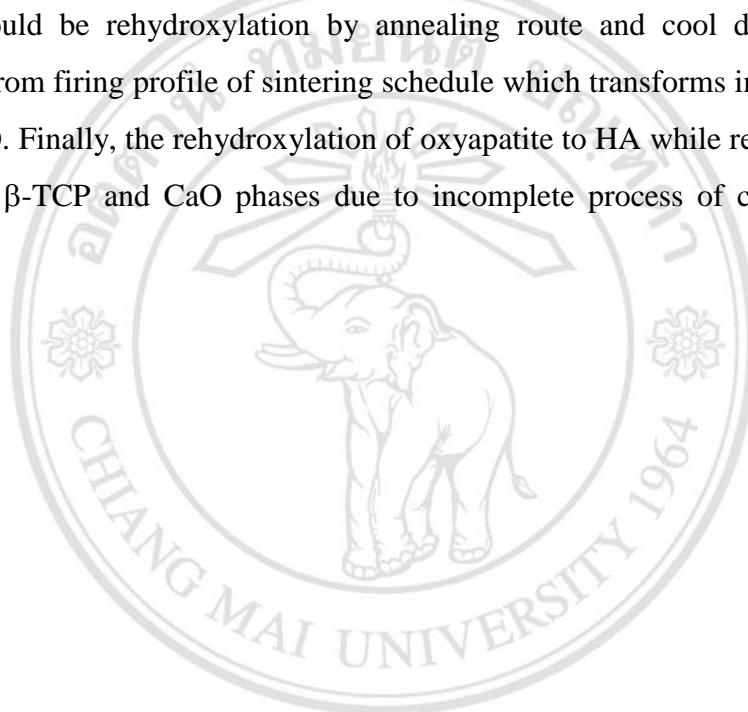








TG	
Temperature range of weight loss (°C)	Lose weight (%)
43.5-182.2	1.5
<u>182.2-305.5</u>	4.8
305.5-473.2	4.9
473.2-523.4	2.5
<u>523.4-775.5</u>	6.1
<u>775.5-867.7</u>	7.4
867.7-1205.4	0.2
Total lose weight	27.4

Table 4 Results of reaction.

DTA	
Type of reaction	Temperature (°C)
Endothermic	208.2
Exothermic	651.1
Endothermic	851.8


The observed total weight loss was 27.4 % from ambient temperature to 1200 °C. **Table 3** and **4** were summarized the above results could be explained that three distinct thermal events during the reaction of CaCO_3 and $\text{NH}_4\text{H}_2\text{PO}_4$. The solid state reaction between both materials mixed with Ca/P mole ratio of 1.67 to form HA.

The detailed solid state reaction sequence between the starting powders upon heating might be concluded as follows:

When the temperature was range from 775 to 867 °C, HA phase seem gradually increased while β-TCP had high quantity. At the temperatures range from 867 to 1205 °C, HA was dehydrated into oxyhydroxyapatite (OHA) ($\text{Ca}_{10}(\text{PO}_4)_6(\text{OH})_{2-2x}\text{O}_x\text{V}$) and expected when the temperature at 1100, 1150 and 1205

°C. OHA, where $x = 1$ and V was lattice vacancy in the OH^- position along the crystallographic. Then, OHA was transformed to oxyapatite $\text{Ca}_{10}(\text{PO}_4)_6\text{OV}$ or $\text{Ca}_{10}(\text{PO}_4)_6\text{O}$. This study could be explained that the formation of β -TCP was faster than of HA, but HA was more thermodynamically stable than β -TCP. Hence, the formed β -TCP was continually reaction with CaO, which could also be detected below 867 °C by XRD technique and when the temperature was increased up to 1250 °C and 1300 °C, both β -TCP and CaO remained be impurities phases and then oxyapatite could be rehydroxylation by annealing route and cool down to room temperature from firing profile of sintering schedule which transforms into HA and β -TCP and CaO. Finally, the rehydroxylation of oxyapatite to HA while remained phase showed both β -TCP and CaO phases due to incomplete process of cooling modes [17].

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่
Copyright© by Chiang Mai University
All rights reserved

3.3 Physical properties of sintered samples

Density and porosity measurements

Table 5 showed densities and porosities of samples with various Ca/P ratios 1.65, 1.66, 1.67, 1.68 and 1.69 at 1100, 1150, 1200, 1250 and 1300 °C for 2, 3, 4 and 5 hours. The result was derived from an average of six samples for each condition of sintering temperatures, compositions and soaking times.

Table 5 Effect of sintering temperature on density and apparent porosity.

Sample	Apparent density (g/cm ³)	Bulk density (g/cm ³)	True density (g/cm ³)	Apparent porosity (%)
1A-2	2.80 ± 0.02	1.21 ± 0.01	2.817 ± 0.001	56.82 ± 0.70
1B-2	2.82 ± 0.05	1.22 ± 0.02	2.833 ± 0.003	56.61 ± 0.31
1C-2	2.89 ± 0.02	1.38 ± 0.02	2.902 ± 0.009	52.18 ± 0.35
1D-2	2.97 ± 0.02	1.45 ± 0.02	3.016 ± 0.003	51.35 ± 0.38
1E-2	3.04 ± 0.03	1.49 ± 0.01	3.067 ± 0.002	51.20 ± 0.34
1A-3	2.67 ± 0.06	1.19 ± 0.02	2.686 ± 0.002	55.60 ± 0.38
1B-3	2.73 ± 0.01	1.28 ± 0.01	2.745 ± 0.001	53.04 ± 0.46
1C-3	2.91 ± 0.01	1.37 ± 0.01	2.918 ± 0.002	52.98 ± 0.44
1D-3	2.99 ± 0.03	1.49 ± 0.01	3.027 ± 0.001	50.20 ± 0.52
1E-3	2.99 ± 0.03	1.47 ± 0.01	3.095 ± 0.002	50.79 ± 0.43
1A-4	2.72 ± 0.04	1.19 ± 0.01	2.749 ± 0.001	56.11 ± 0.85
1B-4	2.86 ± 0.03	1.31 ± 0.02	2.866 ± 0.001	54.15 ± 0.43
1C-4	2.89 ± 0.05	1.36 ± 0.02	2.897 ± 0.001	52.88 ± 0.30
1D-4	2.96 ± 0.03	1.48 ± 0.02	2.987 ± 0.002	49.97 ± 0.48
1E-4	2.96 ± 0.04	1.45 ± 0.03	3.061 ± 0.002	51.12 ± 0.32

Table 5 (Cont'd)

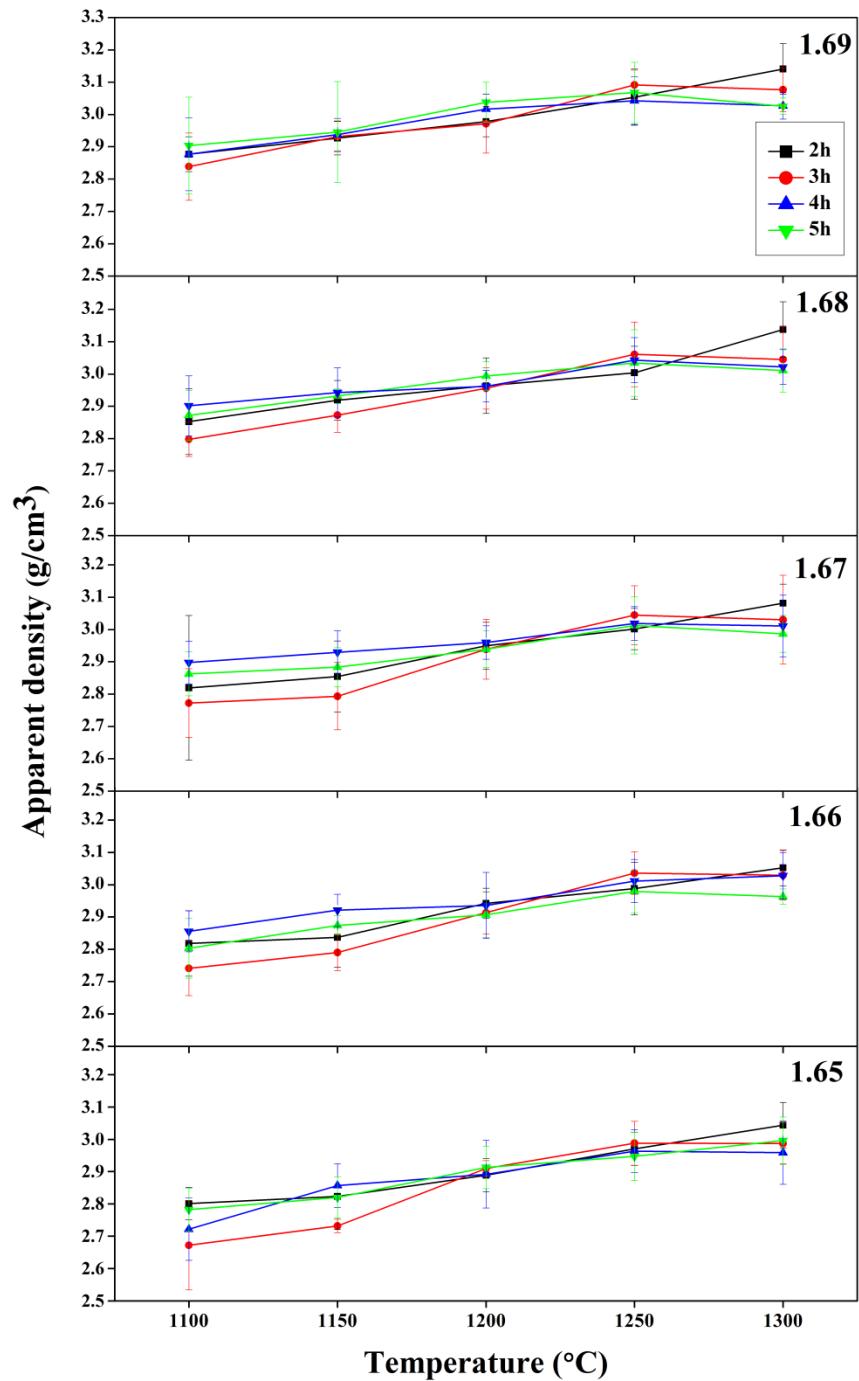
Sample	Apparent density (g/cm ³)	Bulk density (g/cm ³)	True density (g/cm ³)	Apparent porosity (%)
1A-5	2.78 ± 0.03	1.20 ± 0.01	2.799 ± 0.005	56.78 ± 0.31
1B-5	2.82 ± 0.03	1.28 ± 0.02	2.848 ± 0.001	54.75 ± 0.36
1C-5	2.91 ± 0.03	1.39 ± 0.02	2.923 ± 0.001	52.34 ± 0.32
1D-5	2.95 ± 0.03	1.50 ± 0.03	2.970 ± 0.002	49.14 ± 0.68
1E-5	3.00 ± 0.03	1.53 ± 0.01	3.043 ± 0.001	48.98 ± 0.64
2A-2	2.82 ± 0.05	1.22 ± 0.01	2.818 ± 0.001	56.50 ± 0.84
2B-2	2.84 ± 0.04	1.24 ± 0.01	2.844 ± 0.002	56.10 ± 0.54
2C-2	2.94 ± 0.02	1.42 ± 0.01	2.967 ± 0.002	51.86 ± 0.29
2D-2	2.99 ± 0.04	1.48 ± 0.01	3.023 ± 0.002	50.40 ± 0.43
2E-2	3.05 ± 0.03	1.54 ± 0.02	3.071 ± 0.002	49.38 ± 0.83
2A-3	2.74 ± 0.04	1.22 ± 0.01	2.766 ± 0.001	55.36 ± 0.76
2B-3	2.79 ± 0.02	1.32 ± 0.01	2.807 ± 0.002	52.64 ± 0.53
2C-3	2.91 ± 0.03	1.38 ± 0.01	2.944 ± 0.002	52.53 ± 0.21
2D-3	3.04 ± 0.03	1.60 ± 0.02	3.043 ± 0.005	47.15 ± 0.45
2E-3	3.03 ± 0.03	1.57 ± 0.02	3.097 ± 0.002	48.30 ± 0.46
2A-4	2.80 ± 0.04	1.24 ± 0.02	2.806 ± 0.001	55.92 ± 0.17
2B-4	2.87 ± 0.01	1.34 ± 0.01	2.890 ± 0.001	53.55 ± 0.08
2C-4	2.91 ± 0.03	1.41 ± 0.03	2.907 ± 0.002	51.65 ± 0.57
2D-4	2.98 ± 0.03	1.53 ± 0.02	2.995 ± 0.003	48.55 ± 0.42
2E-4	2.96 ± 0.01	1.51 ± 0.02	3.065 ± 0.001	48.99 ± 0.62
2A-5	2.86 ± 0.03	1.24 ± 0.01	2.869 ± 0.003	56.53 ± 0.80
2B-5	2.92 ± 0.02	1.36 ± 0.02	2.940 ± 0.002	53.57 ± 0.33
2C-5	2.94 ± 0.05	1.41 ± 0.02	2.954 ± 0.003	52.05 ± 0.54

Table 5 (Cont'd)

Sample	Apparent density (g/cm ³)	Bulk density (g/cm ³)	True density (g/cm ³)	Apparent porosity (%)
2D-5	3.01 ± 0.03	1.56 ± 0.03	3.028 ± 0.001	48.35 ± 0.74
2E-5	3.03 ± 0.03	1.57 ± 0.01	3.079 ± 0.003	48.13 ± 0.76
3A-2	2.82 ± 0.10	1.24 ± 0.02	2.820 ± 0.003	55.81 ± 1.84
3B-2	2.86 ± 0.05	1.26 ± 0.01	2.860 ± 0.001	55.66 ± 0.62
3C-2	2.95 ± 0.03	1.44 ± 0.01	2.971 ± 0.001	51.31 ± 0.35
3D-2	3.00 ± 0.03	1.51 ± 0.02	3.029 ± 0.002	49.57 ± 0.44
3E-2	3.08 ± 0.03	1.78 ± 0.02	3.092 ± 0.001	42.39 ± 0.36
3A-3	2.77 ± 0.05	1.24 ± 0.01	2.776 ± 0.001	55.06 ± 0.76
3B-3	2.79 ± 0.05	1.34 ± 0.01	2.811 ± 0.001	52.19 ± 0.52
3C-3	2.94 ± 0.04	1.41 ± 0.02	2.967 ± 0.002	51.94 ± 0.61
3D-3	3.05 ± 0.04	1.91 ± 0.03	3.060 ± 0.001	37.33 ± 0.50
3E-3	3.03 ± 0.06	1.61 ± 0.04	3.112 ± 0.002	46.93 ± 1.04
3A-4	2.86 ± 0.03	1.29 ± 0.01	2.867 ± 0.002	54.90 ± 0.50
3B-4	2.88 ± 0.03	1.38 ± 0.01	2.909 ± 0.001	52.22 ± 0.50
3C-4	2.94 ± 0.03	1.43 ± 0.01	2.983 ± 0.002	51.39 ± 0.22
3D-4	3.01 ± 0.04	1.96 ± 0.03	3.018 ± 0.001	35.05 ± 0.24
3E-4	2.99 ± 0.03	1.62 ± 0.02	3.084 ± 0.001	45.70 ± 0.72
3A-5	2.90 ± 0.03	1.28 ± 0.01	2.907 ± 0.002	55.85 ± 0.52
3B-5	2.93 ± 0.03	1.39 ± 0.01	2.951 ± 0.002	52.65 ± 0.35
3C-5	2.96 ± 0.02	1.44 ± 0.02	2.980 ± 0.002	51.28 ± 0.53
3D-5	3.02 ± 0.02	1.99 ± 0.04	3.068 ± 0.002	34.15 ± 1.06
3E-5	3.01 ± 0.04	1.62 ± 0.03	3.088 ± 0.003	46.09 ± 0.37
4A-2	2.85 ± 0.05	1.26 ± 0.02	2.882 ± 0.004	55.67 ± 1.14

Table 5 (Cont'd)

Sample	Apparent density (g/cm ³)	Bulk density (g/cm ³)	True density (g/cm ³)	Apparent porosity (%)
4B-2	2.92 ± 0.03	1.34 ± 0.01	2.922 ± 0.001	54.16 ± 0.41
4C-2	2.96 ± 0.04	1.46 ± 0.02	2.977 ± 0.002	50.81 ± 0.65
4D-2	3.00 ± 0.04	1.56 ± 0.02	3.046 ± 0.014	48.09 ± 0.48
4E-2	3.14 ± 0.04	2.29 ± 0.04	3.142 ± 0.003	26.97 ± 0.58
4A-3	2.80 ± 0.02	1.27 ± 0.01	2.818 ± 0.002	54.64 ± 0.23
4B-3	2.87 ± 0.02	1.38 ± 0.02	2.900 ± 0.001	52.07 ± 0.88
4C-3	2.96 ± 0.03	1.45 ± 0.02	2.996 ± 0.003	50.81 ± 0.56
4D-3	3.06 ± 0.04	1.97 ± 0.04	3.074 ± 0.003	35.72 ± 0.42
4E-3	3.04 ± 0.05	1.67 ± 0.02	3.123 ± 0.002	45.20 ± 0.72
4A-4	2.87 ± 0.03	1.33 ± 0.02	2.896 ± 0.002	53.83 ± 0.36
4B-4	2.93 ± 0.01	1.42 ± 0.01	2.941 ± 0.002	51.68 ± 0.28
4C-4	2.99 ± 0.02	1.48 ± 0.02	3.013 ± 0.001	50.59 ± 0.76
4D-4	3.03 ± 0.05	2.05 ± 0.03	3.056 ± 0.001	32.39 ± 0.36
4E-4	3.01 ± 0.03	1.69 ± 0.03	3.109 ± 0.003	43.98 ± 0.85
4A-5	2.90 ± 0.04	1.34 ± 0.02	2.922 ± 0.002	53.96 ± 0.53
4B-5	2.94 ± 0.03	1.41 ± 0.01	2.957 ± 0.002	52.06 ± 0.58
4C-5	2.96 ± 0.02	1.46 ± 0.01	2.986 ± 0.003	50.80 ± 0.28
4D-5	3.04 ± 0.03	2.10 ± 0.02	3.071 ± 0.003	31.10 ± 0.45
4E-5	3.02 ± 0.02	1.70 ± 0.02	3.092 ± 0.003	43.65 ± 0.69
5A-2	2.88 ± 0.02	1.29 ± 0.01	2.887 ± 0.002	55.27 ± 0.38
5B-2	2.93 ± 0.02	1.36 ± 0.01	2.953 ± 0.001	53.54 ± 0.48
5C-2	2.98 ± 0.02	1.52 ± 0.01	2.998 ± 0.002	49.03 ± 0.21
5D-2	3.05 ± 0.04	2.14 ± 0.03	3.141 ± 0.003	30.05 ± 0.42


Table 5 (Cont'd)

Sample	Apparent density (g/cm ³)	Bulk density (g/cm ³)	True density (g/cm ³)	Apparent porosity (%)
5E-2	3.14 ± 0.03	2.38 ± 0.03	3.145 ± 0.002	24.37 ± 0.51
5A-3	2.84 ± 0.05	1.31 ± 0.03	2.862 ± 0.002	53.81 ± 0.40
5B-3	2.93 ± 0.02	1.42 ± 0.01	2.998 ± 0.001	51.54 ± 0.22
5C-3	2.97 ± 0.04	1.50 ± 0.02	3.021 ± 0.002	49.57 ± 0.43
5D-3	3.09 ± 0.02	2.01 ± 0.01	3.114 ± 0.002	35.11 ± 0.26
5E-3	3.08 ± 0.03	1.80 ± 0.02	3.141 ± 0.001	41.34 ± 0.57
5A-4	2.88 ± 0.05	1.35 ± 0.02	2.904 ± 0.003	52.88 ± 0.30
5B-4	2.94 ± 0.02	1.45 ± 0.02	2.960 ± 0.001	50.69 ± 0.53
5C-4	3.02 ± 0.02	1.54 ± 0.01	3.018 ± 0.002	49.00 ± 0.42
5D-4	3.04 ± 0.03	2.07 ± 0.03	3.102 ± 0.002	31.87 ± 0.73
5E-4	3.03 ± 0.02	1.94 ± 0.02	3.124 ± 0.002	35.91 ± 0.83
5A-5	2.90 ± 0.07	1.37 ± 0.03	2.927 ± 0.002	52.87 ± 0.28
5B-5	2.95 ± 0.07	1.44 ± 0.01	2.958 ± 0.001	51.14 ± 1.28
5C-5	3.04 ± 0.03	1.57 ± 0.01	3.049 ± 0.002	48.17 ± 0.30
5D-5	3.07 ± 0.04	2.19 ± 0.04	3.073 ± 0.002	28.54 ± 0.45
5E-5	3.03 ± 0.01	2.10 ± 0.02	3.104 ± 0.002	30.72 ± 0.41

Note: 1, 2, 3, 4, 5 (front) = 1.65, 1.66, 1.67, 1.68, 169

A, B, C, D, E = 1100 °C, 1150 °C, 1200 °C, 1250 °C, 1300 °C

2, 3, 4, 5 (behind) = 2 hours, 3 hours, 4 hours, 5 hours

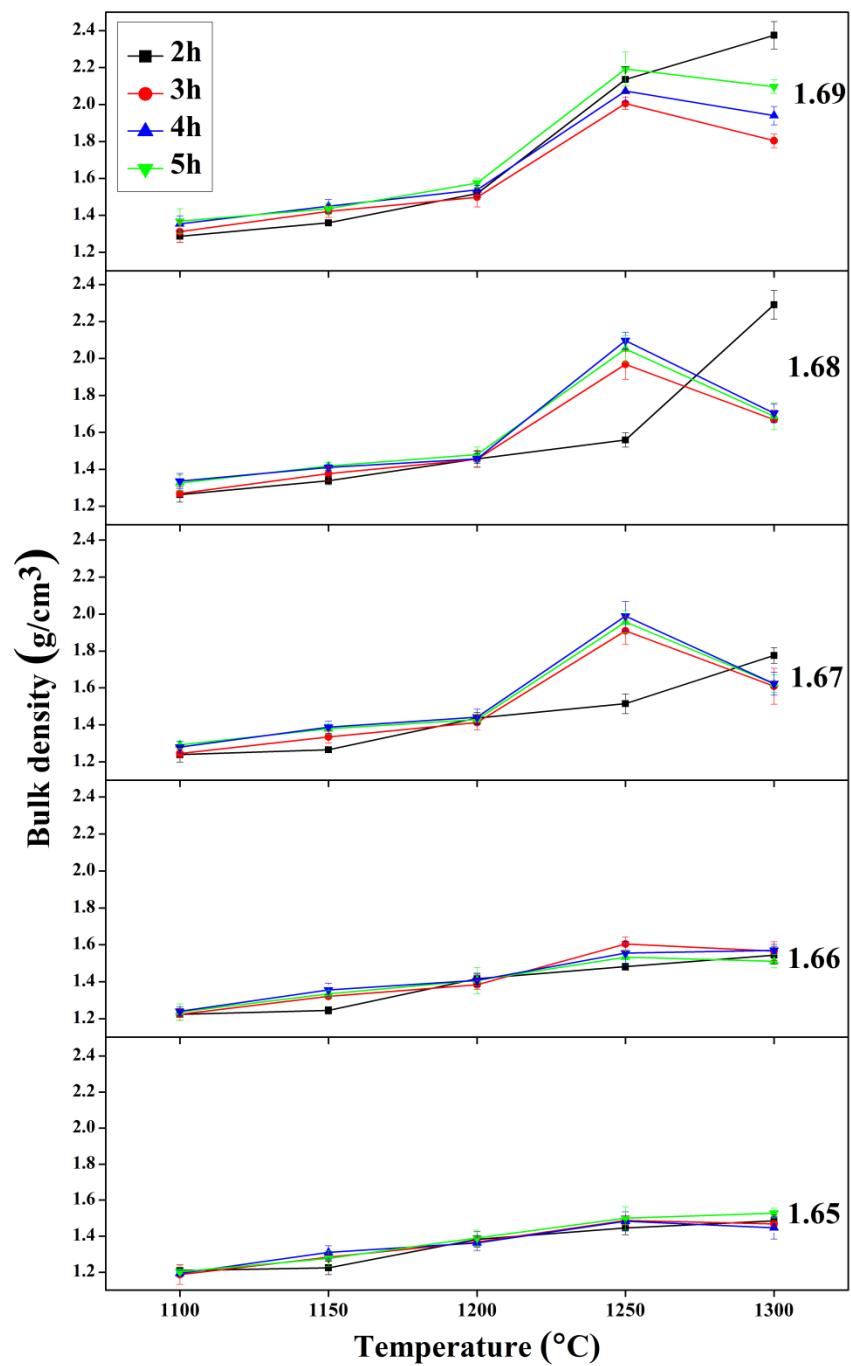


Figure 15 Apparent densities of Ca/P ratios 1.65, 1.66, 1.67, 1.68 and 1.69 at different temperatures and times.

Figure 15 showed curves of the apparent density variation as a function of sintering temperatures. This density included the solid component and closed pores. The overall trend of these curves showed behavior increased densities with increased sintering temperatures. These curves indicated that densification process of each grain boundary start at 1100 °C to the maximum apparent densities at 1250 °C for 3 and 4 hours with samples Ca/P ratio of 1.65, 1.66, 1.67, 1.68 and 1.69. In addition, for 5 hours with samples Ca/P ratios of 1.67, 1.68 and 1.69 showed the maximum apparent densities was same. However, the samples sintered at 1300 °C with Ca/P ratios of 1.65, 1.66, 1.67, 1.68 and 1.69 for 2 hours indicated maximum apparent densities and the samples Ca/P ratios of 1.65 and 1.66 showed the maximum apparent densities for 5 hours was same. The maximum apparent densities of all condition when compared with the same temperature showed that a sintering at 1300 °C for 2 hours with samples ratio 1.69 was $3.14 \pm 0.03 \text{ g/cm}^3$, which closed to the theoretical density of pure HA 3.16 g/cm^3 .

This behavior could be explained that at high sintering temperature, the densification rate had high and the compacts sample exhibited moderate to high grain growth. Any difference in initial particle sizes led to driving forces on the grain boundaries that caused grain growth, when the temperature was increased, then the rate of grain boundary activation increases and might be breakaway of the boundaries from many pores in microstructure and leaving of isolated pores in the internal grain.

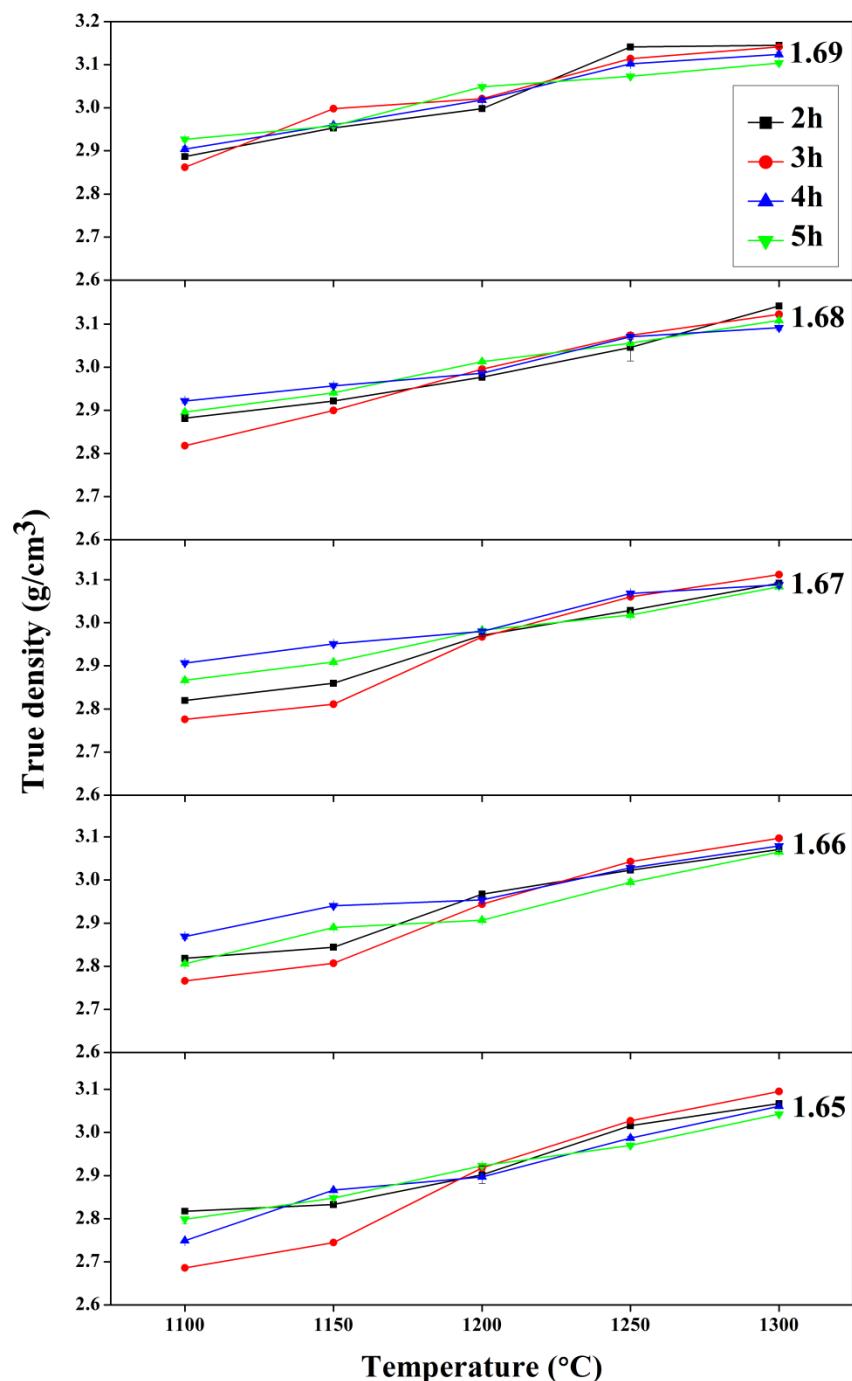
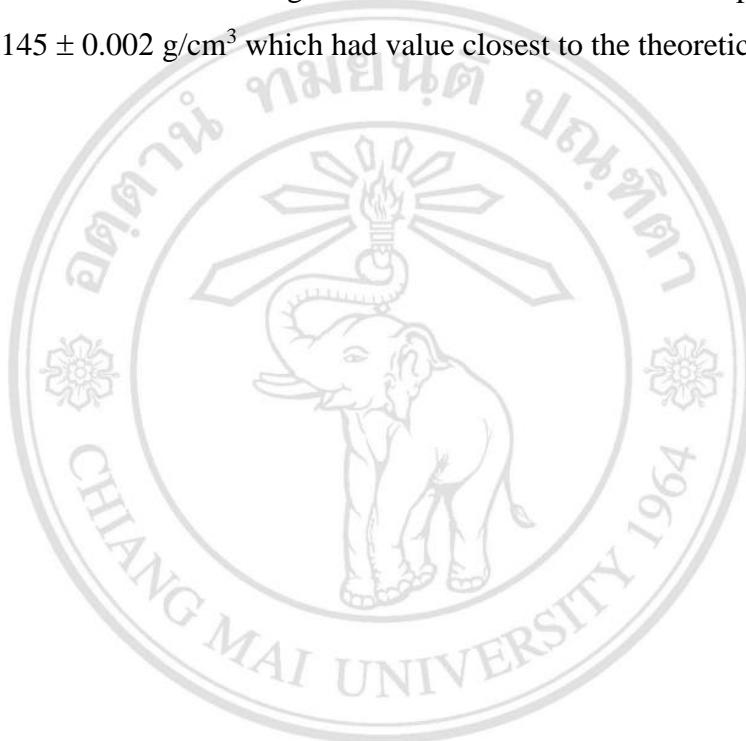

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่
Copyright© by Chiang Mai University
All rights reserved

Figure 16 Bulk densities of Ca/P ratios 1.65, 1.66, 1.67, 1.68 and 1.69 at different temperatures and times.


Figure 16 showed curves of the bulk density variation as a function of sintering temperatures. This density included the solid component, opened pores and closed pores. After sintering, samples were densified range from 1100 to 1300 °C. The bulk density had been increased with increasing sintering temperatures. These curves indicated that densification increases of each grain boundary at 1100 °C to the maximum bulk densities at 1250 °C for 3 and 4 hours with samples Ca/P ratios of 1.65, 1.66, 1.67, 1.68 and 1.69. The densification curves of bulk density range from 1100 °C to 1200 °C observed that slight shrinkage of bodies and the phase formation of HA had a little changed. After sintering at 1250 °C and 1300 °C found that amount of HA phase increased because the heating rate of sintering increased while effect to β -TCP and CaO phase decreased. In addition, for 5 hours with samples Ca/P ratios of 1.67, 1.68 and 1.69 showed the maximum bulk densities was same. However, for samples sintered at 1300 °C with Ca/P ratios of 1.65, 1.66, 1.67, 1.68 and 1.69 for 2 hours indicated maximum bulk densities only and samples Ca/P ratios of 1.65 and 1.66 showed the maximum bulk densities for 5 hours was same. The maximum bulk densities of all condition when compared with the same temperature, its density indicated that a sintering at 1300 °C for 2 hours with samples Ca/P ratio of 1.69 was 2.38 ± 0.03 g/cm³, which related with the apparent density due to highly porosity of sintered bodies.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่
Copyright© by Chiang Mai University
All rights reserved

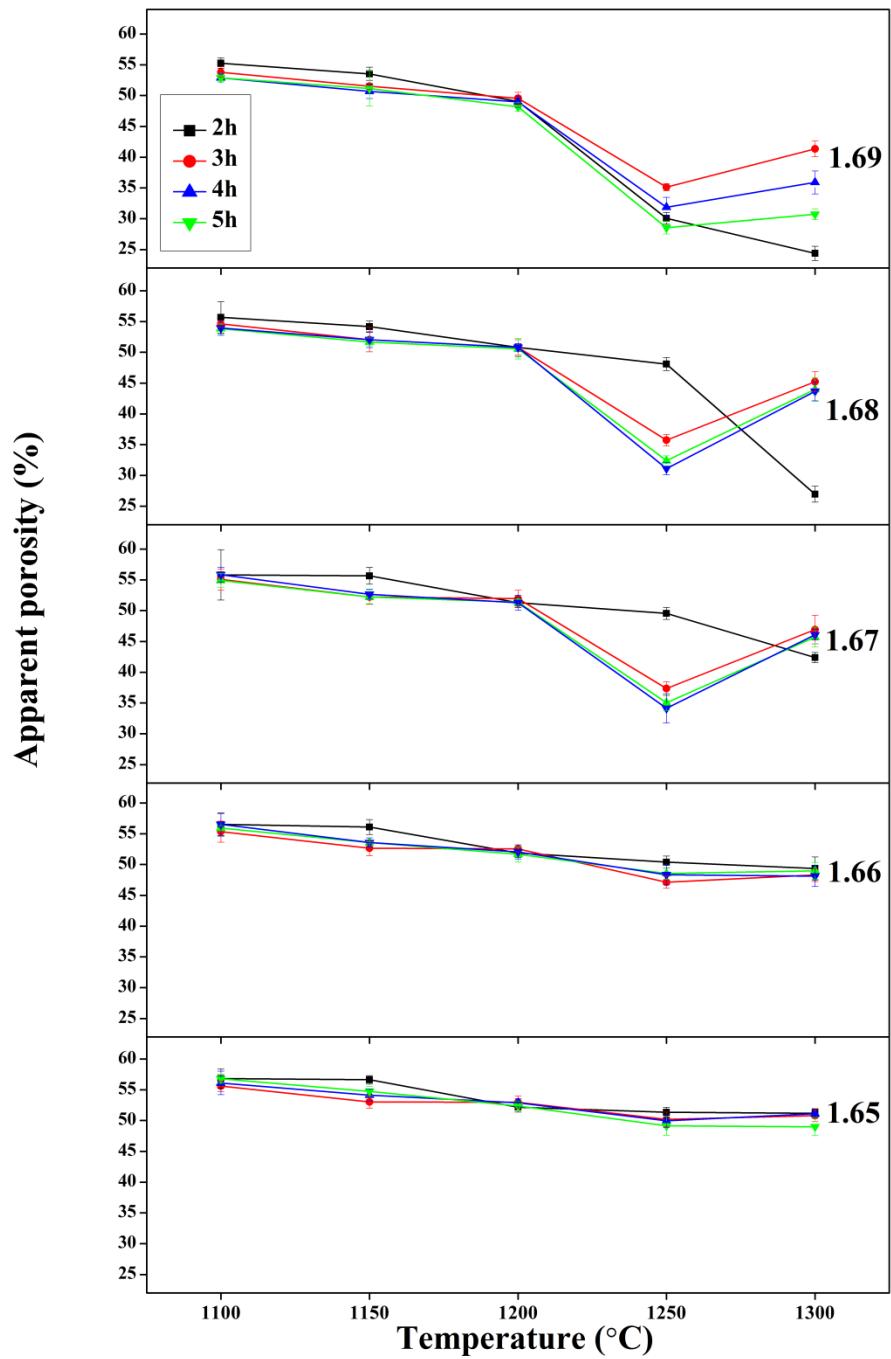


Figure 17 True densities of Ca/P ratios 1.65, 1.66, 1.67, 1.68 and 1.69 at different temperatures and times.

Figure 17 showed curves of the true density variation as a function of sintering temperatures. The true density included the solid component only. After sintering range from 1100 to 1300 °C, samples were densified and increased the density with increasing sintering temperatures. The maximum true densities at 1300 °C for 2, 3, 4 and 5 hours with samples Ca/P ratios of 1.65, 1.66, 1.67, 1.68 and 1.69 respectively. The maximum true densities of all condition when compared with the same sintering temperature indicated that a sintering at 1300 °C for 2 hours with samples Ca/P ratio of 1.69 was $3.145 \pm 0.002 \text{ g/cm}^3$ which had value closest to the theoretical density.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่
Copyright© by Chiang Mai University
All rights reserved

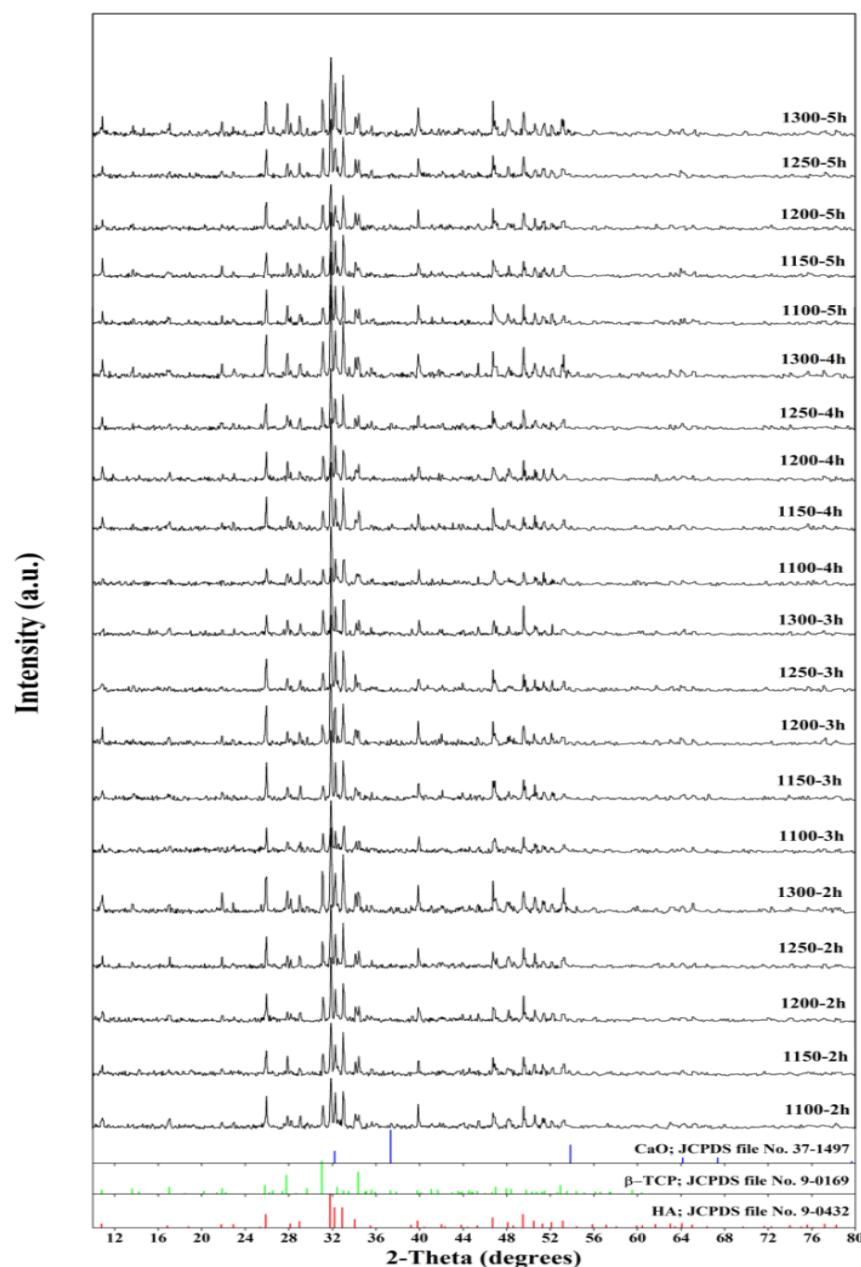

Figure 18 Apparent porosities of Ca/P ratios 1.65, 1.66, 1.67, 1.68 and 1.69 at different temperatures and times.

Figure 18 showed the relationship between sintering temperatures and apparent porosities. With increasing sintering temperature, both the bulk and apparent densities increases while the apparent porosity decrease as expected and the apparent porosity decreases with increasing the bulk and apparent density of which the maximum both densities had effect on the minimum apparent porosity. These curves indicated that shrinkage of samples increased due to the decrease of closed pores at 1100 °C was maximum porosity and became to the minimum porosity at 1250 °C for 3 and 4 hours with samples Ca/P ratios of 1.65, 1.66, 1.67, 1.68 and 1.69. In addition, for 5 hours with samples Ca/P ratios of 1.67, 1.68 and 1.69 showed the minimum porosity were same. In addition, for samples Ca/P ratios of 1.65 and 1.66 showed the minimum apparent porosity for 5 hours were same. However, for the samples sintered at 1300 °C with Ca/P ratios of 1.68 and 1.69 for 2 hours showed minimum apparent porosity when compared with other condition. The maximum bulk densities of all condition were affected on apparent porosity with the inversed curves of bulk density. From results, an apparent porosity with the same temperature indicated that sintering at 1300 °C for 2 hours with samples ratio of 1.69 had the minimum apparent porosity of $24.37 \pm 0.51\%$ which related the maximum bulk density of samples.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่
Copyright© by Chiang Mai University
All rights reserved

3.4 Phase characterization of samples powder after sintered using XRD technique

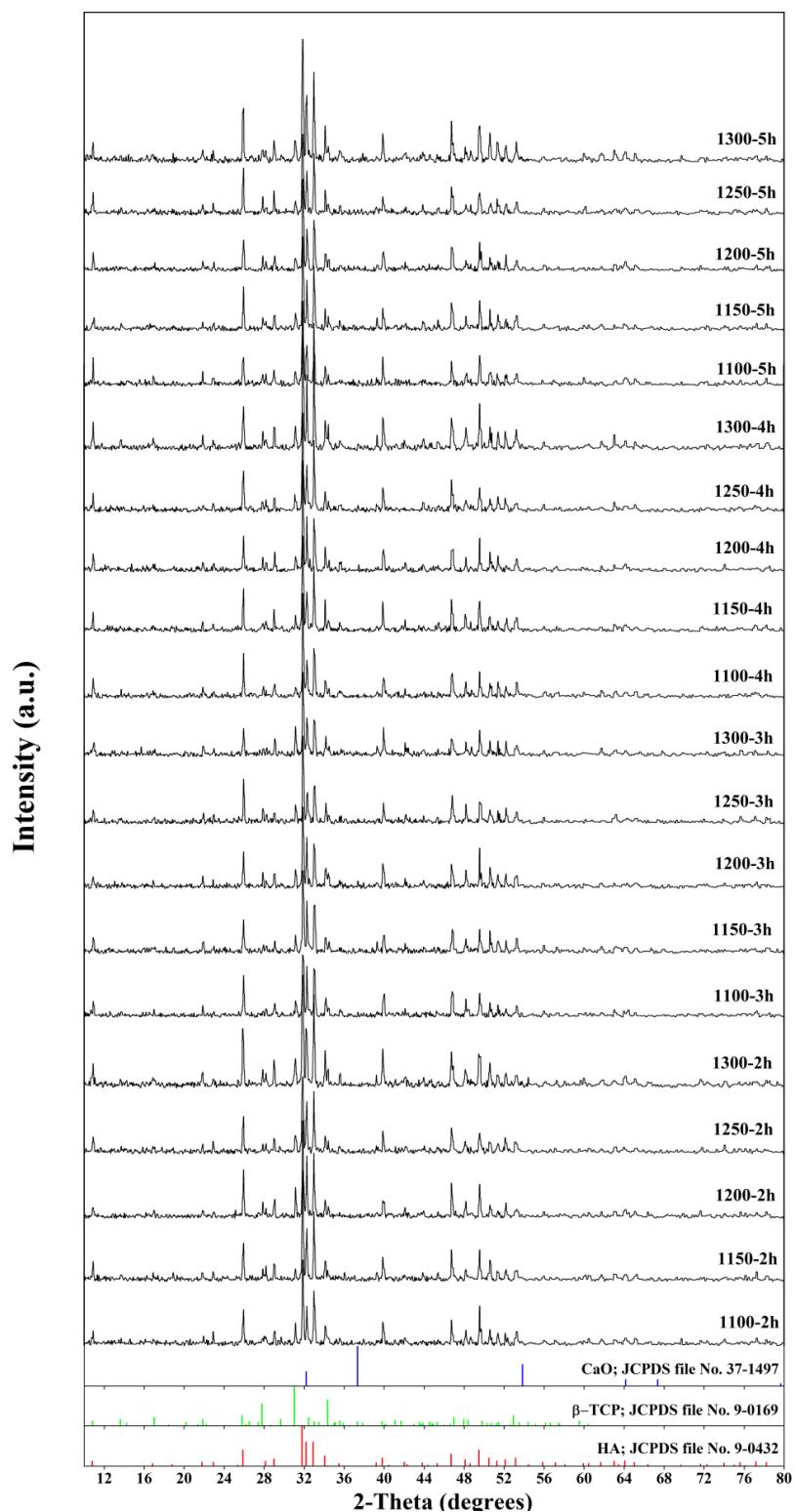
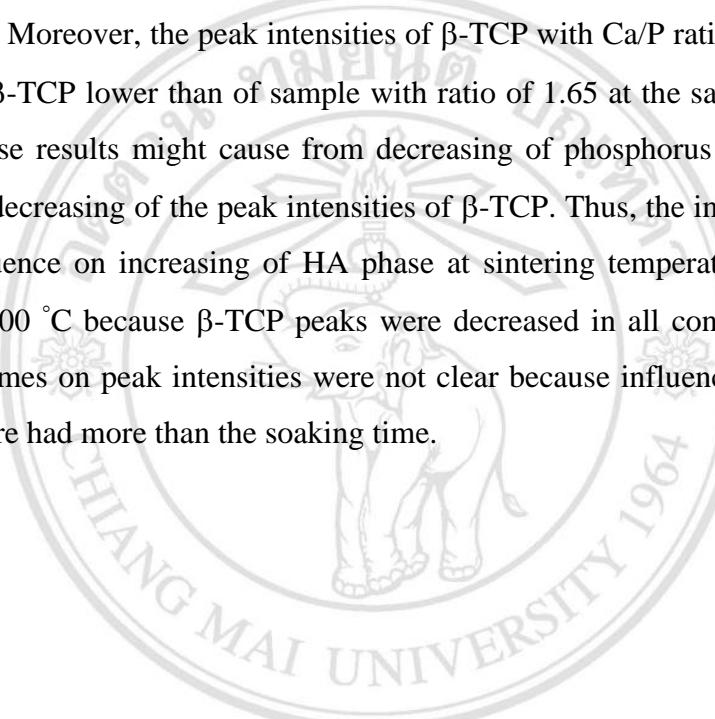

Results of the XRD patterns of all sintered samples with various of Ca/P mole ratios, temperatures and times are shown in **Figure 19-23**.

Figure 19 XRD patterns of sample powders with Ca/P ratio 1.65 at different temperatures and times compared with standard JCPDS file of HA, β -TCP and CaO.


Figure 19 showed the diffraction patterns of sintered samples with ratio of 1.65 at temperature range from 1100 to 1300 °C for 2 to 5 hours. The sintered samples were ceramics that consisted of mixtures of the HA, β -TCP and CaO phases. All sintered patterns were compared to the standard patterns JCPDS file no. 9-0432 of HA, JCPDS file no. 9-0169 of β -TCP and JCPDS file no. 37-1497 of CaO. The major peaks were HA phase and minor peaks were β -TCP and CaO for 2, 3, 4 and 5 hours. Peak of β -TCP was clearly seen from all diffraction patterns of samples powder while peak of CaO phase was difficult to seen. However, this phase could be observed the diffraction patterns of all samples. It seems that peaks intensities of HA increased with increasing of temperature which observed from increasing of intensity of HA peak. However, these results were not clear due to β -TCP peaks had trended increased when increased temperature were same with increased of HA peaks. For the influence of times on peak intensities were not clear because these peaks could not indicated trend of change peaks. These results had necessary to determined amount of phase content for identity of phase.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่
Copyright© by Chiang Mai University
All rights reserved

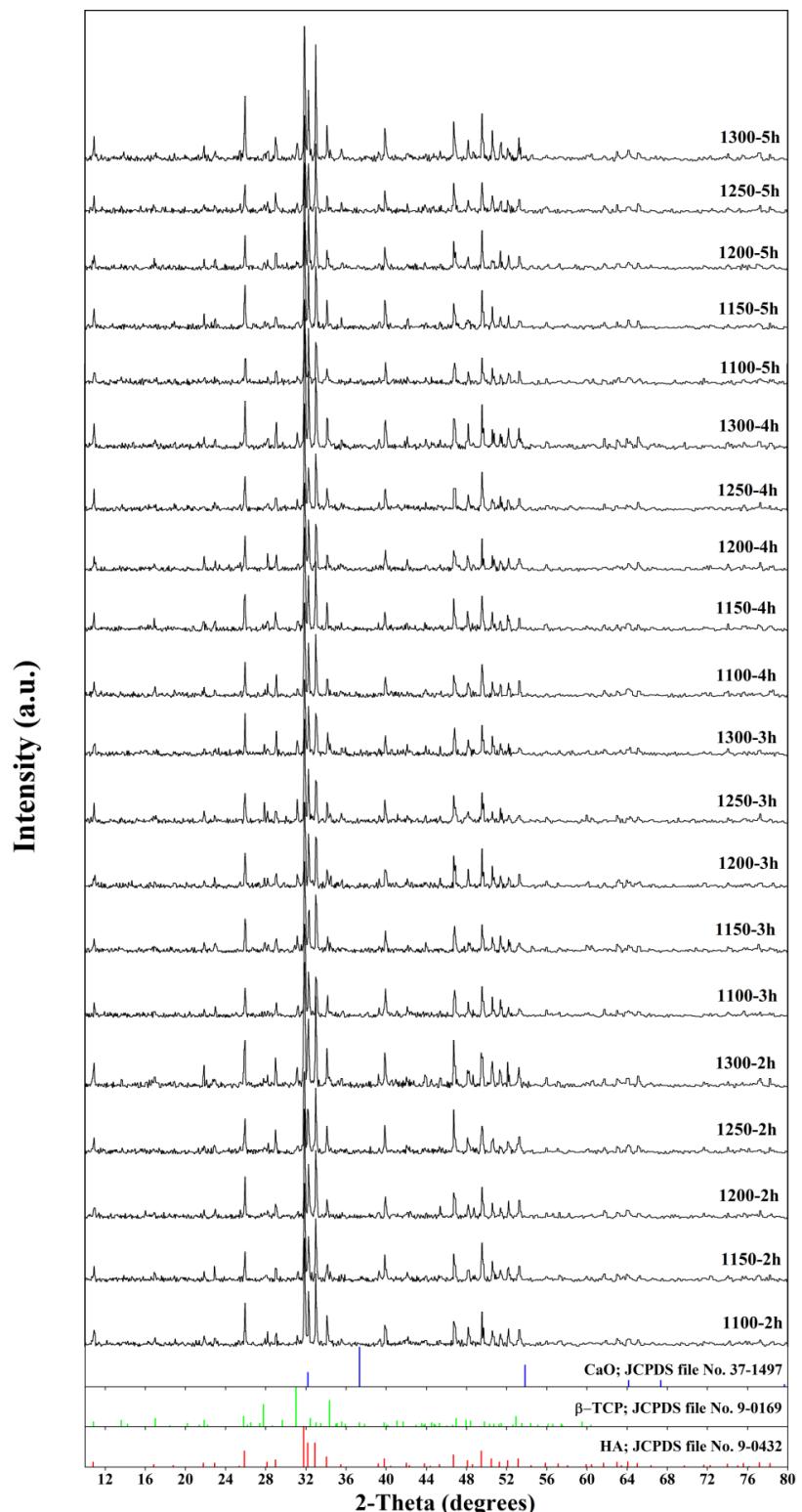
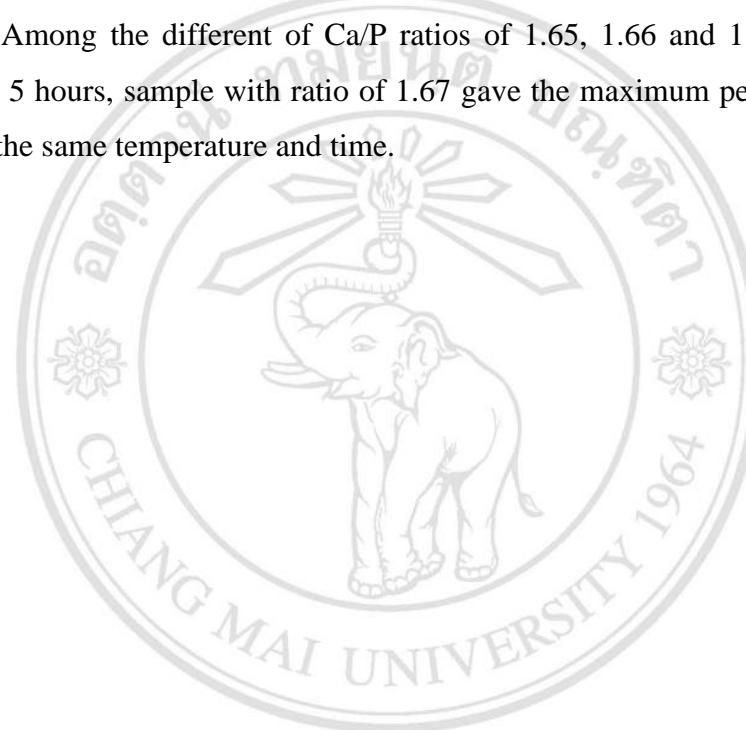


Figure 20 XRD pattern of sample powders with Ca/P ratio 1.66 at different temperatures and times compared with standard JCPDS file of HA, β -TCP and CaO.

Figure 20 showed the diffraction patterns of sintered samples with ratio of 1.66 at temperature range from 1100 °C to 1300 °C for 2 to 5 hours. The sintered samples were ceramics that contained of mixtures of the HA, β -TCP and CaO phases. The individual phase was compared to the standard patterns. The major peaks were HA phase and minor peaks were β -TCP and CaO for 2, 3, 4 and 5 hours. Peaks of β -TCP was still clearly seen from all diffraction patterns of samples powder and peaks of CaO phase was still difficult to see and remained appeared in the diffraction patterns of all samples. Moreover, the peak intensities of β -TCP with Ca/P ratio 1.66 had peak intensities of β -TCP lower than of sample with ratio of 1.65 at the same temperature and time. These results might cause from decreasing of phosphorus in composition and effect on decreasing of the peak intensities of β -TCP. Thus, the increased of Ca/P ratio had influence on increasing of HA phase at sintering temperature range from 1100 °C to 1300 °C because β -TCP peaks were decreased in all conditions. For the influence of times on peak intensities were not clear because influence of Ca/P ratio and temperature had more than the soaking time.



ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่
Copyright© by Chiang Mai University
All rights reserved

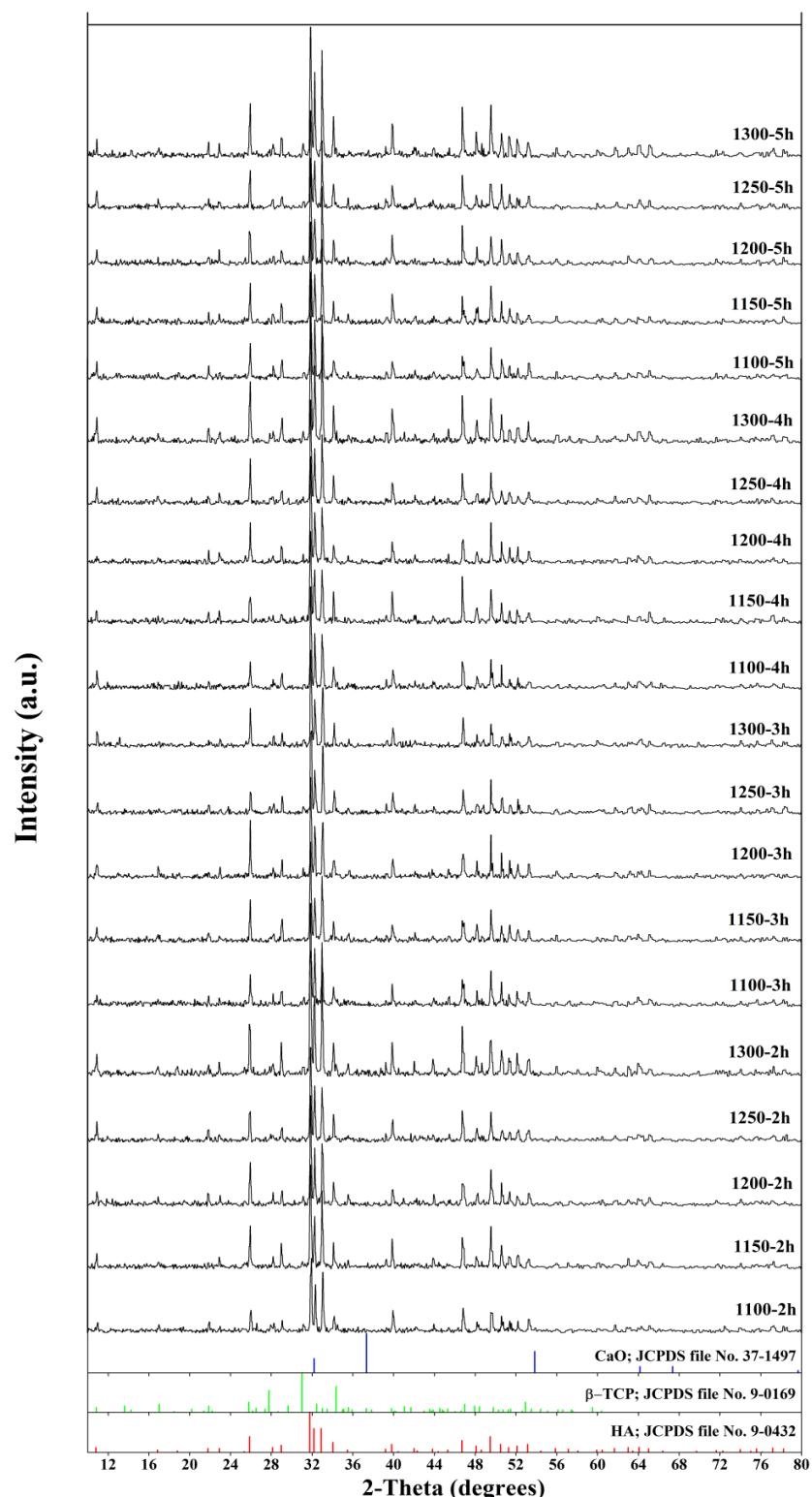
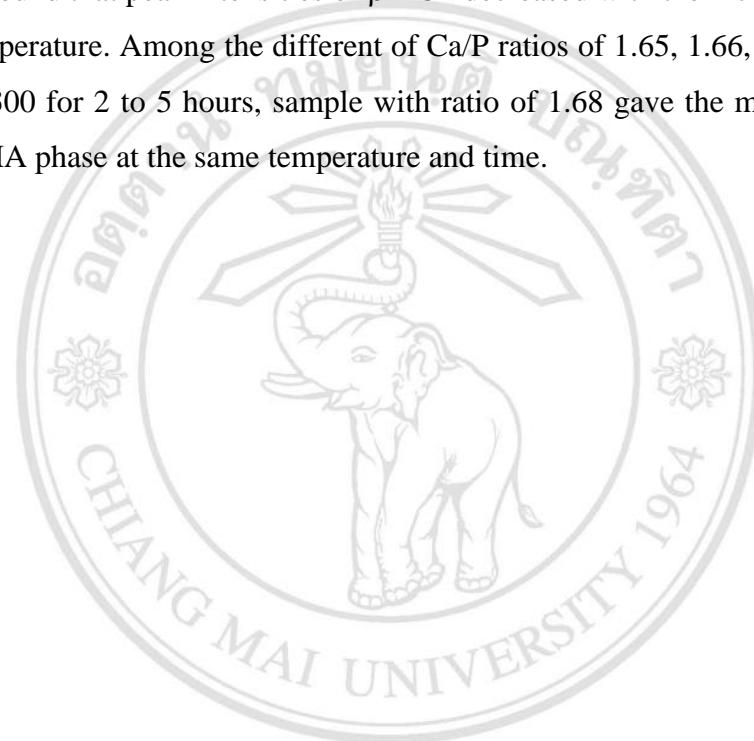


Figure 21 XRD pattern of sample powders with Ca/P ratio 1.67 at different temperatures and times compared with standard JCPDS file of HA, β -TCP and CaO.

Figure 21 showed the diffraction patterns of sintered samples with Ca/P ratio of 1.67 at temperature range from 1100 °C to 1300 °C for 2 to 5 hours. The sintered samples were ceramics that consisted of mixtures of the HA, β -TCP and CaO phases. All patterns were the same with Ca/P ratios of 1.65 and 1.66. The peak intensities of sample with ratio of 1.67 had peak intensities of β -TCP lower than of sample with ratios of 1.65 and 1.66 at the same temperature and time. At this ratio, it was found that peak intensities of β -TCP decreased with the increased of Ca/P ratio and temperature. Among the different of Ca/P ratios of 1.65, 1.66 and 1.67 at 1100 to 1300 for 2 to 5 hours, sample with ratio of 1.67 gave the maximum peak intensity of HA phase at the same temperature and time.



ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่
Copyright© by Chiang Mai University
All rights reserved

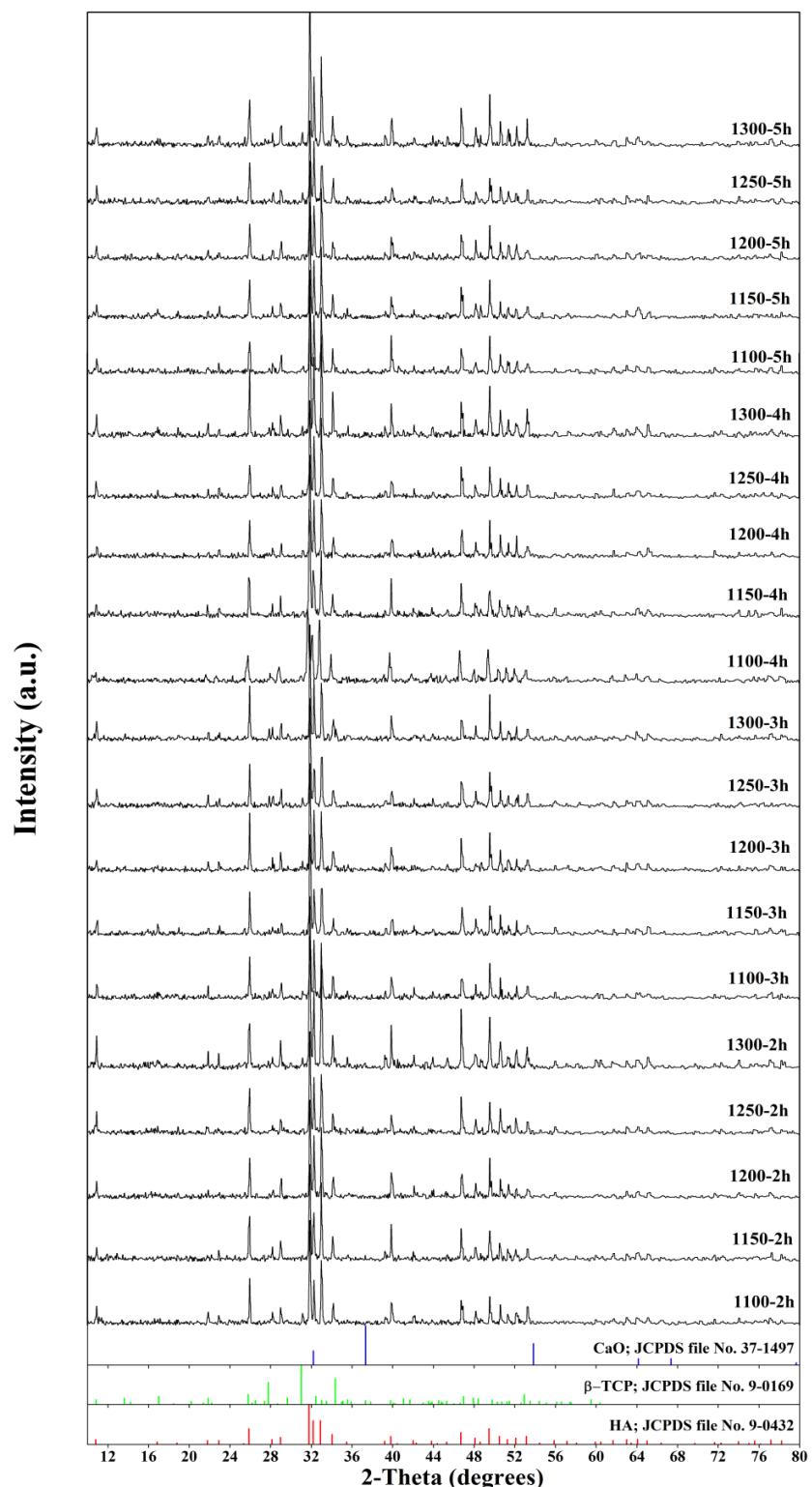


Figure 22 XRD pattern of sample powders with Ca/P ratio 1.68 at different temperatures and times compared with standard JCPDS file of HA, β -TCP and CaO.

Figure 22 showed the diffraction patterns of sintered samples with Ca/P ratio of 1.68 at temperature range from 1100 °C to 1300 °C for 2 to 5 hours. The sintered samples were ceramics that consisted of mixtures of the HA, β -TCP and CaO phases. These patterns were the same with Ca/P ratios of 1.65, 1.66 and 1.67. The peak intensities of sample with ratio of 1.68 had peak intensities of β -TCP lower than of sample with ratios of 1.65, 1.66 and 1.67 at the same temperature and time. At this ratio, it was found that peak intensities of β -TCP decreased with the increased of Ca/P ratio and temperature. Among the different of Ca/P ratios of 1.65, 1.66, 1.67 and 1.68 at 1100 to 1300 for 2 to 5 hours, sample with ratio of 1.68 gave the maximum peak intensity of HA phase at the same temperature and time.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่
Copyright© by Chiang Mai University
All rights reserved

Figure 23 XRD pattern of sample powders with Ca/P ratio 1.69 at different temperatures and times compared with standard JCPDS file of HA, β -TCP and CaO.

Figure 23 showed the diffraction patterns of sintered samples with Ca/P ratio of 1.69 at temperature range from 1100 °C to 1300 °C for 2 to 5 hours. The sintered samples were ceramics that consisted of mixtures of the HA, β -TCP and CaO phases. These patterns were the same with Ca/P ratios of 1.65, 1.66, 1.67 and 1.68. The peak intensities of sample with ratio of 1.69 had intensities of β -TCP lower than of sample with ratios of 1.65, 1.66, 1.67 and 1.68 at the same temperature and time. At this ratio, it was found that peak intensities of β -TCP decreased with the increased of Ca/P ratio and temperature. Among the different of Ca/P ratios of 1.65, 1.66, 1.67, 1.68 and 1.69 at 1100 to 1300 °C for 2 to 5 hours, sample with ratio of 1.69 gave the maximum peak intensity of HA phase when compared with other condition. For the influence of various times on intensities were not clear due to have not seen change.

The percentages of volume fraction of HA, TCP and CaO presented in **Table 6**. These amounts were calculated using the relative intensity ratio (RIR) of the main diffraction peaks of HA (**equation 16**). The peaks were indexed according to the standard patterns JCPDS file. These patterns fits the relative intensities of the five dominant HA peaks found at $2\theta = 25.88^\circ, 31.78^\circ, 32.18^\circ, 32.90^\circ$ and 49.472° . For the five dominant β -TCP peaks found at $2\theta = 27.77^\circ, 31.02^\circ, 34.37^\circ, 46.97^\circ$ and 52.94° . For the five dominant CaO peaks found at $2\theta = 37.36^\circ, 53.85^\circ, 64.16^\circ, 67.36^\circ$ and 79.66° .

$$\% \text{ phase content} = \left(\frac{I_{\beta\text{-TCP}}}{I_{\beta\text{-TCP}} + I_{\text{HA}} + I_{\text{CaO}}} \right) \times 100 \quad (16)$$

where, $I_{\beta\text{-TCP}}$ = Sum of first 5 highest intensity in β -TCP phase

I_{HA} = Sum of first 5 highest intensity in HA phase

I_{CaO} = Sum of first 5 highest intensity in CaO phase

Results of phase contents of sintered sample with various of Ca/P mole ratios, temperatures and soaking times are shown in **Table 6**.

Table 6 Phase composition of all sintered samples

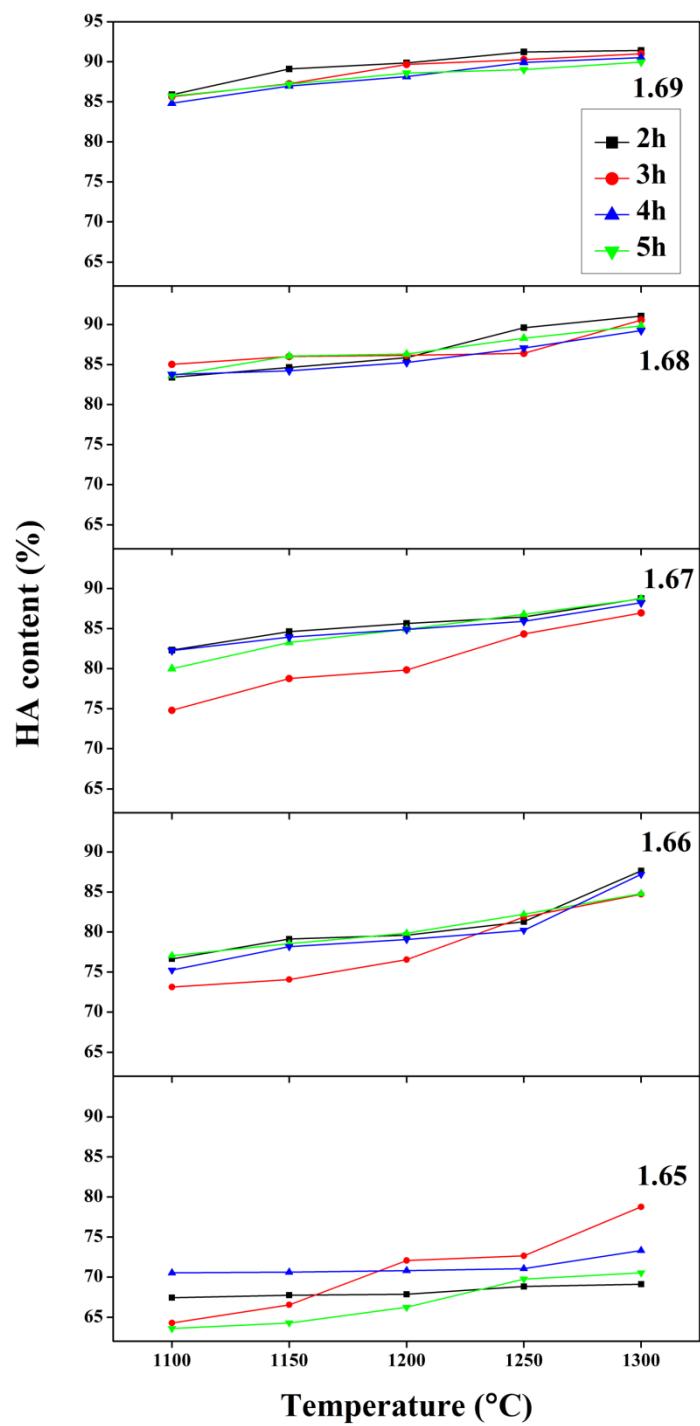
Sample	Percentage of HA, β -TCP and CaO phases in sintered samples		
	HA	TCP	CaO
1A-2	67.44	25.91	6.64
1B-2	67.75	24.94	7.31
1C-2	67.85	27.47	5.14
1D-2	68.83	23.41	7.76
1E-2	69.13	25.10	5.76
1A-3	64.29	27.62	8.08
1B-3	66.56	25.55	7.89
1C-3	72.07	21.56	6.37
1D-3	72.66	21.60	5.74
1E-3	78.77	13.04	5.99
1A-4	70.53	25.86	3.62
1B-4	70.64	23.96	5.40
1C-4	70.81	21.16	8.04
1D-4	71.07	22.95	5.99
1E-4	73.33	18.22	8.45
1A-5	63.59	30.53	5.88
1B-5	64.28	26.49	9.22
1C-5	66.25	30.05	3.69
1D-5	69.76	24.07	6.17
1E-5	70.54	23.00	6.46

Table 6 (Cont'd)

Sample	Percentage of HA, β -TCP and CaO phases in sintered samples		
	HA	TCP	CaO
2A-2	76.67	16.60	6.73
2B-2	79.13	14.98	5.89
2C-2	79.62	15.59	4.80
2D-2	81.28	15.37	3.36
2E-2	87.67	7.43	4.90
2A-3	73.15	18.08	8.77
2B-3	74.09	19.30	6.61
2C-3	76.57	18.44	4.99
2D-3	81.89	12.64	5.47
2E-3	84.73	8.97	6.30
2A-4	77.08	19.21	3.70
2B-4	78.56	14.58	6.86
2C-4	79.87	14.33	5.80
2D-4	82.24	12.73	5.03
2E-4	84.82	8.82	6.36
2A-5	75.26	18.19	6.54
2B-5	78.18	15.52	6.29
2C-5	79.10	14.49	6.41
2D-5	80.24	13.33	6.43
2E-5	87.20	8.70	4.10
3A-2	82.32	12.76	4.92
3B-2	84.64	9.08	6.28
3C-2	85.64	8.78	5.57
3D-2	86.45	9.71	3.84
3E-2	88.78	7.50	3.73

Table 6 (Cont'd)

Sample	Percentage of HA, β -TCP and CaO phases in sintered samples		
	HA	TCP	CaO
3A-3	74.82	18.36	6.83
3B-3	78.77	14.74	6.49
3C-3	79.84	13.56	6.60
3D-3	84.33	9.67	5.99
3E-3	86.97	7.97	5.06
3A-4	80.02	10.38	9.60
3B-4	83.27	10.61	6.12
3C-4	84.91	9.30	5.79
3D-4	86.80	9.56	3.64
3E-4	88.73	6.59	4.68
3A-5	82.26	10.15	7.59
3B-5	83.94	10.36	5.70
3C-5	84.88	9.87	5.26
3D-5	85.93	7.91	6.16
3E-5	88.23	6.44	5.33
4A-2	83.40	10.63	5.97
4B-2	84.65	9.04	6.31
4C-2	85.88	8.10	6.02
4D-2	89.61	5.97	4.42
4E-2	91.06	6.24	2.70
4A-3	85.03	7.76	7.21
4B-3	86.01	7.83	6.15
4C-3	86.16	7.55	6.29
4D-3	86.39	9.65	3.96
4E-3	90.57	5.47	3.97


Table 6 (Cont'd)

Sample	Percentage of HA, β -TCP and CaO phases in sintered samples		
	HA	TCP	CaO
4A-4	83.65	8.87	7.49
4B-4	86.07	8.08	5.85
4C-4	86.32	7.04	6.64
4D-4	88.31	7.51	4.18
4E-4	89.84	4.23	5.93
4A-5	83.79	8.71	7.50
4B-5	84.22	9.84	5.94
4C-5	85.27	10.19	4.54
4D-5	87.06	8.24	4.69
4E-5	89.24	7.42	3.34
5A-2	85.91	8.50	5.59
5B-2	89.10	5.49	5.40
5C-2	89.86	4.24	5.90
5D-2	91.23	5.27	3.51
5E-2	91.44	5.18	3.38
5A-3	85.66	6.19	8.15
5B-3	87.26	7.67	5.07
5C-3	89.67	7.11	3.22
5D-3	90.27	5.67	4.06
5E-3	91.02	4.51	4.47
5A-4	84.83	9.79	5.38
5B-4	86.98	7.84	5.18
5C-4	88.15	5.08	6.77
5D-4	89.92	4.97	5.11
5E-4	90.54	4.70	4.75

Table 6 (Cont'd)

Sample	Percentage of HA, β -TCP and CaO phases in sintered samples		
	HA	TCP	CaO
5A-5	85.73	9.39	4.87
5B-5	87.20	8.62	4.18
5C-5	88.61	7.14	4.25
5D-5	89.02	6.61	4.37
5E-5	89.98	4.01	6.00

Figure 24 showed sintered sample with ratio of 1.65 to 1.69 at temperatures 1100 °C to 1300 °C for 2 to 5 hours of which evaluated from **Table 6**. These results found that when sintered at these temperatures had effect on the formation of HA and increasing of this phases correspond to increasing of isothermal temperature. For the sample with ratio 1.65 was found that the increasing of HA phase at temperatures range 1100 °C to 1200 °C for 2 and 4 hours had a very little changed to HA due to observed from the slope of curves which had a small slope and after sintering up to 1250 °C and 1300 °C occurred that HA phase increased but not much. For 3 and 5 hours was found that the formation of HA phase had more when compared with 2 and 4 hours at temperatures range 1100 °C to 1200 °C of which observed from slope of curves was higher and after sintered up to 1300 °C. This temperature for 3 hours had been the formation of maximum HA as 78.77 % and influence of times on phase formation could not be indicated due to constant of curves.

Figure 24 HA contents of Ca/P ratios 1.65, 1.66, 1.67, 1.68 and 1.69 at different temperatures and times.

For the sample with ratio of 1.66 was found that the increasing of HA phase at temperature range from 1100 °C to 1200 °C for 2, 3, 4 and 5 hours. This ratio had been the formation of HA phase not much when sintered up to 1250 °C. At 1300 °C, it was found that amounts of HA phase increased with the increase of density and shrinkage of samples. This phase was 87.67 % at 1300 °C for 2 hours and observed that at temperature range from 1100 °C to 1200 °C for 3 hours had amounts of HA phase was minimum and outside of group.

For the sample with ratio of 1.67 was found that temperature had effect on phase formation of HA. This ratio was the same with ratio of 1.65 and 1.66. At temperatures range from 1100 °C to 1200 °C was found that the formation of HA phase not much until to 1250 °C and 1300 °C for 2, 4 and 5 hours. This phase had been change little when observed slope of curves except for 3 hours which clearly change phase. This composition had been the maximum phase of HA as 88.78 % at 1300 °C for 2 hours.

For the sample with ratio of 1.68 was found that temperature had effect on phase formation of HA. This ratio was the same with ratio of 1.65, 1.66 and 1.67. At temperatures range 1100 °C to 1200 °C was found that the formation of HA phase not much until to 1250 °C and 1300 °C, which observed HA phase of maximum as 91.06 % at 1300 °C for 2 hours and influence of times was not much effect on the phase HA due to not different of curves.

For the sample with ratio of 1.69 was found that temperature had effect on phase formation of HA. This ratio was the same with ratio of 1.65, 1.66, 1.67 and 1.68. At temperatures range 1100 °C to 1200 °C was found that the formation of HA phase not much until to 1250 °C and 1300 °C, which observed that HA phase of maximum was 91.44 % at 1300 °C for 2 hours and influence of soaking times was not much effected on the phase formation due to not different of curves. This value was the maximum percentage of HA phase which compared with theory of single phase HA 95 % and the composition of Ca/P ratio was important parameter for HA synthesized.

3.5 Chemical properties of sintered samples.

3.5.1 Chemical analysis (XRF) of sintered samples with various of Ca/P mole ratios, temperatures and times showed in **Table 7**

Table 7 The Ca/P mole ratios and total elements of all sintered samples

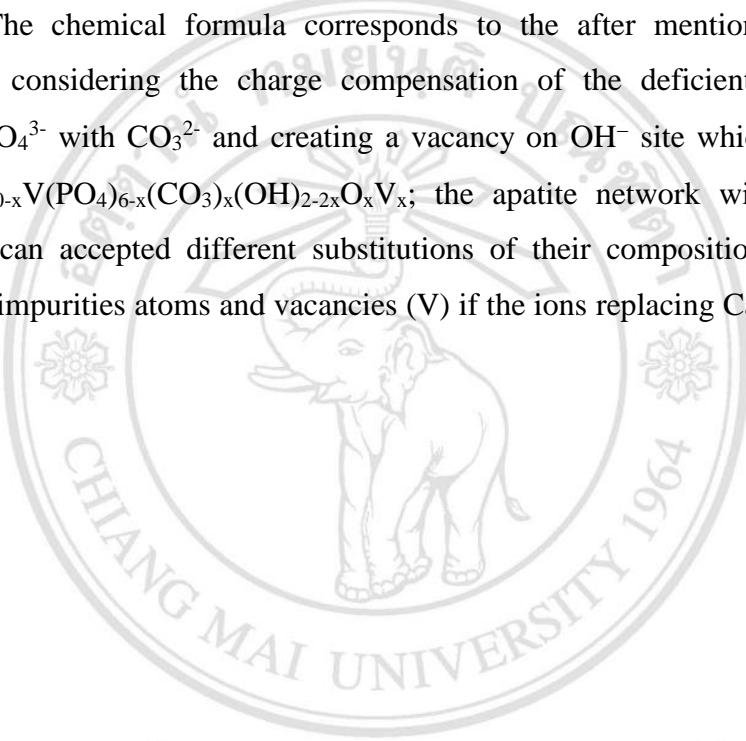
Sample	Content (% w/w)					Ca/P (Mole ratio)
	Ca	P	Si	Sr	Na	
1A-2	66.39	32.51	0.77	0.33	< 0.01	1.579
1B-2	66.35	32.55	0.77	0.33	< 0.01	1.576
1C-2	66.60	32.30	0.73	0.36	< 0.01	1.594
1D-2	66.34	32.56	0.75	0.36	< 0.01	1.575
1E-2	66.51	32.42	0.74	0.33	< 0.01	1.586
1A-3	66.19	32.67	0.83	0.32	< 0.01	1.566
1B-3	66.26	32.60	0.83	0.31	< 0.01	1.571
1C-3	66.47	32.37	0.79	0.38	< 0.01	1.588
1D-3	66.57	32.33	0.76	0.34	< 0.01	1.592
1E-3	66.28	32.69	0.71	0.31	< 0.01	1.567
1A-4	66.69	32.24	0.73	0.34	< 0.01	1.599
1B-4	66.57	32.36	0.73	0.33	< 0.01	1.590
1C-4	66.36	32.52	0.75	0.37	< 0.01	1.577
1D-4	66.51	32.38	0.78	0.33	< 0.01	1.588
1E-4	66.43	32.52	0.74	0.31	< 0.01	1.579
1A-5	66.27	32.50	0.87	0.35	< 0.01	1.576
1B-5	66.06	32.73	0.86	0.35	< 0.01	1.561
1C-5	66.53	32.32	0.77	0.37	< 0.01	1.591
1D-5	66.44	32.41	0.78	0.37	< 0.01	1.585
1E-5	66.49	32.44	0.73	0.34	< 0.01	1.585

Table 7 (Cont'd)

Sample	Content (% w/w)					Ca/P (Mole ratio)
	Ca	P	Si	Sr	Na	
2A-2	66.61	32.32	0.73	0.34	< 0.01	1.593
2B-2	66.74	32.22	0.73	0.31	< 0.01	1.602
2C-2	66.81	32.12	0.75	0.32	< 0.01	1.608
2D-2	66.94	31.99	0.74	0.33	< 0.01	1.618
2E-2	66.86	31.90	0.89	0.35	< 0.01	1.620
2A-3	66.39	32.54	0.74	0.33	< 0.01	1.577
2B-3	66.55	32.36	0.73	0.35	< 0.01	1.590
2C-3	66.74	32.21	0.73	0.32	< 0.01	1.602
2D-3	66.79	32.11	0.76	0.34	< 0.01	1.608
2E-3	66.72	32.06	0.88	0.33	< 0.01	1.609
2A-4	66.81	32.10	0.75	0.35	< 0.01	1.609
2B-4	66.64	32.28	0.74	0.34	< 0.01	1.596
2C-4	66.75	32.19	0.74	0.33	< 0.01	1.603
2D-4	66.85	32.08	0.75	0.32	< 0.01	1.611
2E-4	66.83	32.12	0.73	0.31	< 0.01	1.608
2A-5	66.60	32.34	0.72	0.33	< 0.01	1.592
2B-5	66.68	32.26	0.73	0.33	< 0.01	1.598
2C-5	66.67	32.24	0.74	0.35	< 0.01	1.599
2D-5	66.71	32.22	0.73	0.34	< 0.01	1.601
2E-5	67.03	31.92	0.73	0.32	< 0.01	1.624

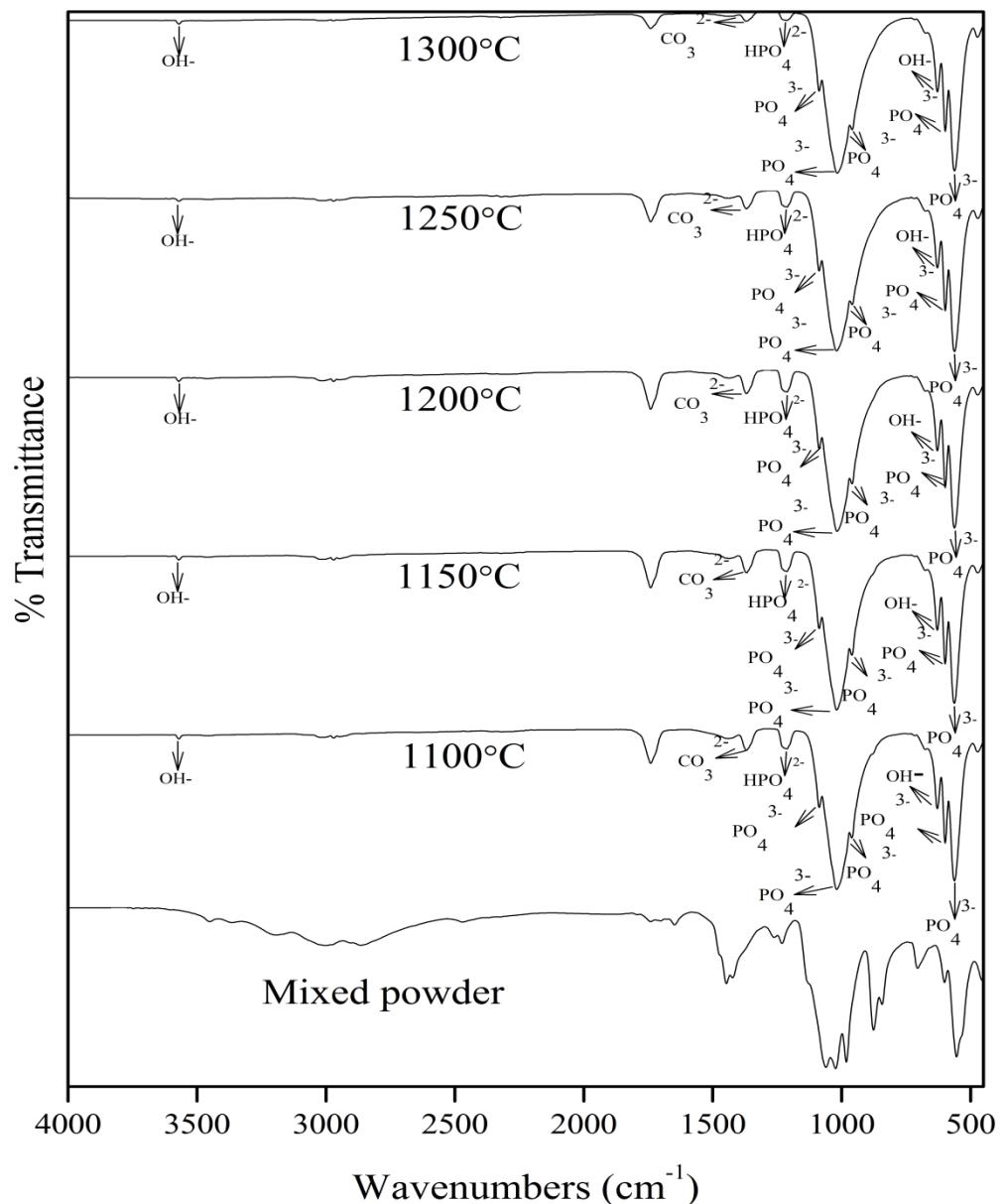
Table 7 (Cont'd)

Sample	Content (% w/w)					Ca/P (Mole ratio)
	Ca	P	Si	Sr	Na	
3A-2	66.77	32.03	0.74	0.46	< 0.01	1.612
3B-2	66.73	32.07	0.73	0.47	< 0.01	1.609
3C-2	66.83	32.02	0.82	0.34	< 0.01	1.614
3D-2	66.99	31.89	0.78	0.34	< 0.01	1.624
3E-2	67.08	31.85	0.73	0.34	< 0.01	1.628
3A-3	66.49	32.33	0.72	0.46	< 0.01	1.590
3B-3	66.61	32.23	0.71	0.46	< 0.01	1.598
3C-3	66.62	32.21	0.73	0.44	< 0.01	1.599
3D-3	66.81	32.09	0.76	0.33	< 0.01	1.609
3E-3	66.92	31.96	0.75	0.37	< 0.01	1.618
3A-4	66.39	32.39	0.73	0.48	< 0.01	1.584
3B-4	66.73	32.10	0.72	0.44	< 0.01	1.607
3C-4	66.77	32.03	0.75	0.45	< 0.01	1.611
3D-4	67.00	31.87	0.78	0.35	< 0.01	1.625
3E-4	66.97	31.89	0.80	0.33	< 0.01	1.623
3A-5	66.68	32.26	0.68	0.38	< 0.01	1.598
3B-5	66.77	32.06	0.72	0.46	< 0.01	1.610
3C-5	66.85	32.02	0.73	0.41	< 0.01	1.614
3D-5	66.83	32.07	0.78	0.32	< 0.01	1.611
3E-5	66.87	31.93	0.88	0.33	< 0.01	1.619


Table 7 (Cont'd)

Sample	Content (% w/w)					Ca/P (Mole ratio)
	Ca	P	Si	Sr	Na	
4A-2	66.80	32.12	0.69	0.39	< 0.01	1.608
4B-2	66.82	32.11	0.70	0.38	< 0.01	1.608
4C-2	66.78	32.03	0.76	0.43	< 0.01	1.612
4D-2	67.00	31.85	0.82	0.33	< 0.01	1.626
4E-2	67.08	31.68	0.85	0.39	< 0.01	1.637
4A-3	66.81	32.19	0.60	0.41	< 0.01	1.605
4B-3	66.88	32.09	0.69	0.33	< 0.01	1.611
4C-3	66.78	32.05	0.83	0.35	< 0.01	1.611
4D-3	66.91	31.87	0.85	0.38	< 0.01	1.623
4E-3	67.09	31.82	0.76	0.33	< 0.01	1.630
4A-4	66.72	32.22	0.65	0.41	< 0.01	1.601
4B-4	66.89	32.06	0.69	0.37	< 0.01	1.613
4C-4	66.78	32.07	0.83	0.32	< 0.01	1.610
4D-4	66.95	31.85	0.84	0.36	< 0.01	1.625
4E-4	66.85	31.92	0.88	0.36	< 0.01	1.619
4A-5	66.64	32.18	0.73	0.46	< 0.01	1.601
4B-5	66.84	32.10	0.67	0.38	< 0.01	1.610
4C-5	66.90	31.96	0.82	0.33	< 0.01	1.618
4D-5	66.87	31.90	0.85	0.38	< 0.01	1.620
4E-5	67.07	31.80	0.82	0.32	< 0.01	1.631

Table 7 (Cont'd)


Sample	Content (% w/w)					Ca/P (Mole ratio)
	Ca	P	Si	Sr	Na	
5A-2	66.94	32.06	0.58	0.41	< 0.01	1.614
5B-2	67.02	31.98	0.59	0.41	< 0.01	1.620
5C-2	67.04	32.01	0.63	0.32	< 0.01	1.619
5D-2	67.24	31.82	0.63	0.31	< 0.01	1.633
5E-2	67.13	31.76	0.77	0.34	< 0.01	1.634
5A-3	66.74	32.23	0.68	0.36	< 0.01	1.601
5B-3	67.00	31.99	0.60	0.41	< 0.01	1.619
5C-3	67.22	31.84	0.63	0.30	< 0.01	1.632
5D-3	67.17	31.88	0.63	0.32	< 0.01	1.629
5E-3	67.03	31.83	0.81	0.33	< 0.01	1.628
5A-4	66.92	32.07	0.60	0.41	< 0.01	1.613
5B-4	66.97	32.00	0.60	0.43	< 0.01	1.618
5C-4	66.94	32.10	0.65	0.31	< 0.01	1.612
5D-4	67.07	31.95	0.64	0.35	< 0.01	1.623
5E-4	67.03	31.88	0.78	0.31	< 0.01	1.626
5A-5	66.97	32.01	0.60	0.42	< 0.01	1.617
5B-5	67.08	31.95	0.55	0.41	< 0.01	1.623
5C-5	67.11	31.92	0.63	0.33	< 0.01	1.625
5D-5	67.14	31.94	0.61	0.31	< 0.01	1.625
5E-5	66.93	31.97	0.77	0.34	< 0.01	1.619

The elements were detected by XRF in **Table 7**. The Ca/P mole ratios showed in this table also confirmed the accuracy of the results obtained during this study from the semi quantitative technique of determining the phase composition of the all samples through the comparison of the XRD peak intensities of the final phases. The XRF results revealed that Ca/P mole ratios of these samples lower than the theoretical value of 1.67. All samples were contained the main element of calcium and phosphorus. Minor elements were silicon and strontium. A trace element of sodium was found. The chemical formula corresponds to the after mentioned chemical analysis with considering the charge compensation of the deficient calcium by substituting PO_4^{3-} with CO_3^{2-} and creating a vacancy on OH^- site which showed as followed $\text{Ca}_{10-x}\text{V}(\text{PO}_4)_{6-x}(\text{CO}_3)_x(\text{OH})_{2-2x}\text{O}_x\text{V}_x$; the apatite network with the space group $\text{P}6_3/\text{m}$ can accepted different substitutions of their compositions producing substitutional impurities atoms and vacancies (V) if the ions replacing Ca^{2+} , PO_4^{3-} and OH^- .

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่
Copyright© by Chiang Mai University
All rights reserved

3.5.2 The IR spectra of sintered samples at different temperatures and soaking times in **Figure 25**

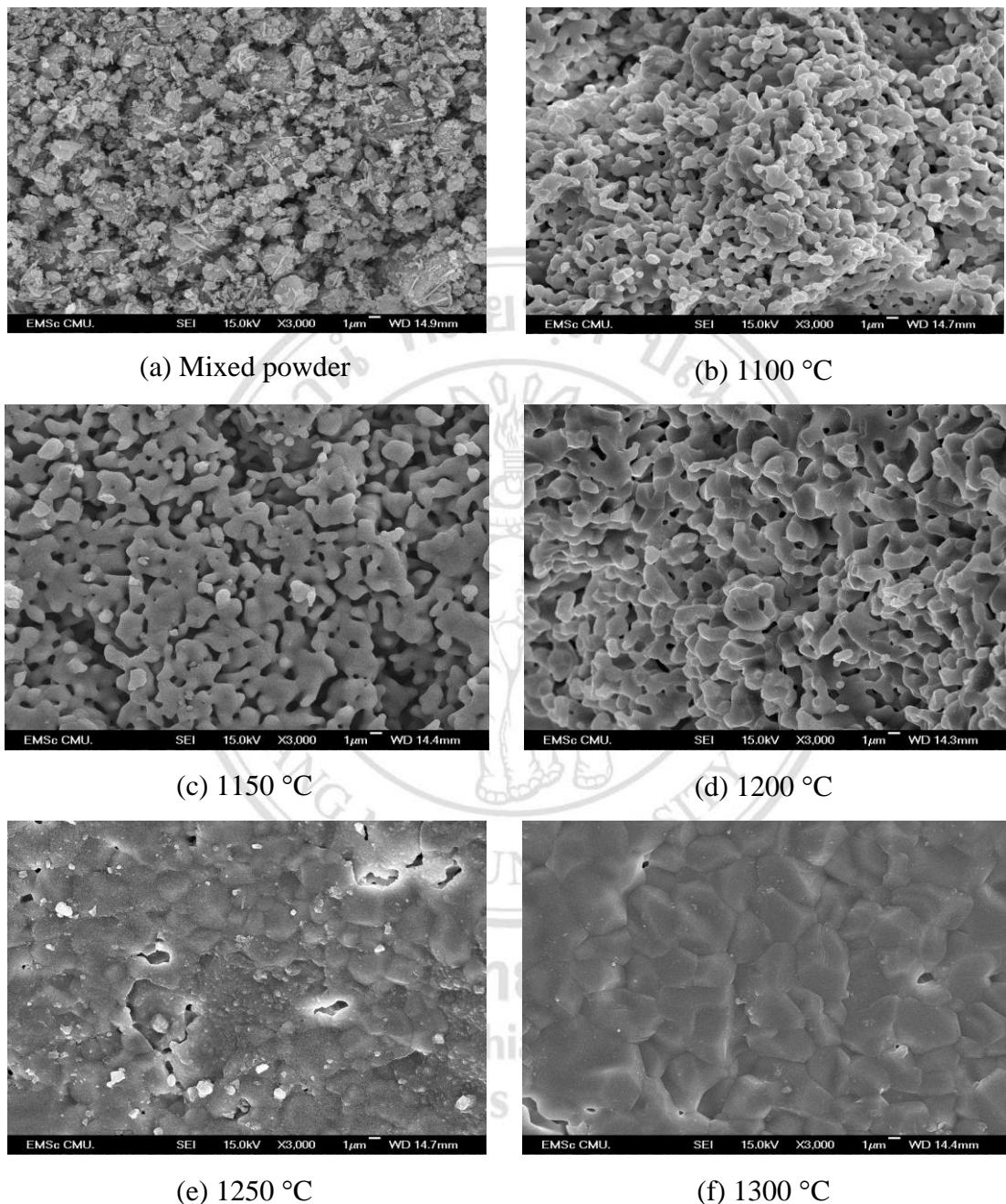
Figure 25 FTIR spectra of mixed powder and sintered samples with ratio of 1.69 at 1100 °C (5A-2), 1150 °C (5B-2), 1200 °C (5C-2), 1250 (5D-2) and 1300 °C (5E-2) for 2 hours.

These samples were the optimize condition which, obtained from XRD and XRF data. The FTIR spectra of mixed powder revealed the broad band at around 2500-3700 cm^{-1} corresponds to the absorbed hydrate of lattice OH^- ions. Water molecules appear at 1647 cm^{-1} . The HPO_4^{2-} ions are observed at 876 cm^{-1} band, which exists in non-stoichiometric HA. The IR spectrum of sample ratio 1.69, sintered at 1100 $^{\circ}\text{C}$ for 2 hours was showed the bands corresponding to PO_4^{3-} group at 1087, 1019, 960, 598 and 562 cm^{-1} , along with the bands at 3570 and 629 cm^{-1} (librational mode) identified to OH^- group. In addition, bands at 1369 cm^{-1} can be observed, corresponding to vibration modes of carbonate group. The position of the carbonate band indicates that the CO_3^{2-} groups were substituted the PO_4^{3-} positions. The band of HPO_4^{2-} at 1212 cm^{-1} showed the formation of β -TCP which was phosphate group.

The IR spectrum of sample ratio 1.69, sintered at 1150 $^{\circ}\text{C}$ for 2 hours was showed the bands corresponding to PO_4^{3-} group at 1087, 1019, 959, 598 and 563 cm^{-1} , along with the bands at 3570 and 629 cm^{-1} (librational mode) identified to OH^- group. In addition, bands at 1369 cm^{-1} could be observed, corresponding to vibration modes of carbonate group. The position of the carbonate band indicated that the CO_3^{2-} groups were substituted the PO_4^{3-} positions. The band of HPO_4^{2-} at 1212 cm^{-1} showed the formation of β -TCP which is phosphate group.

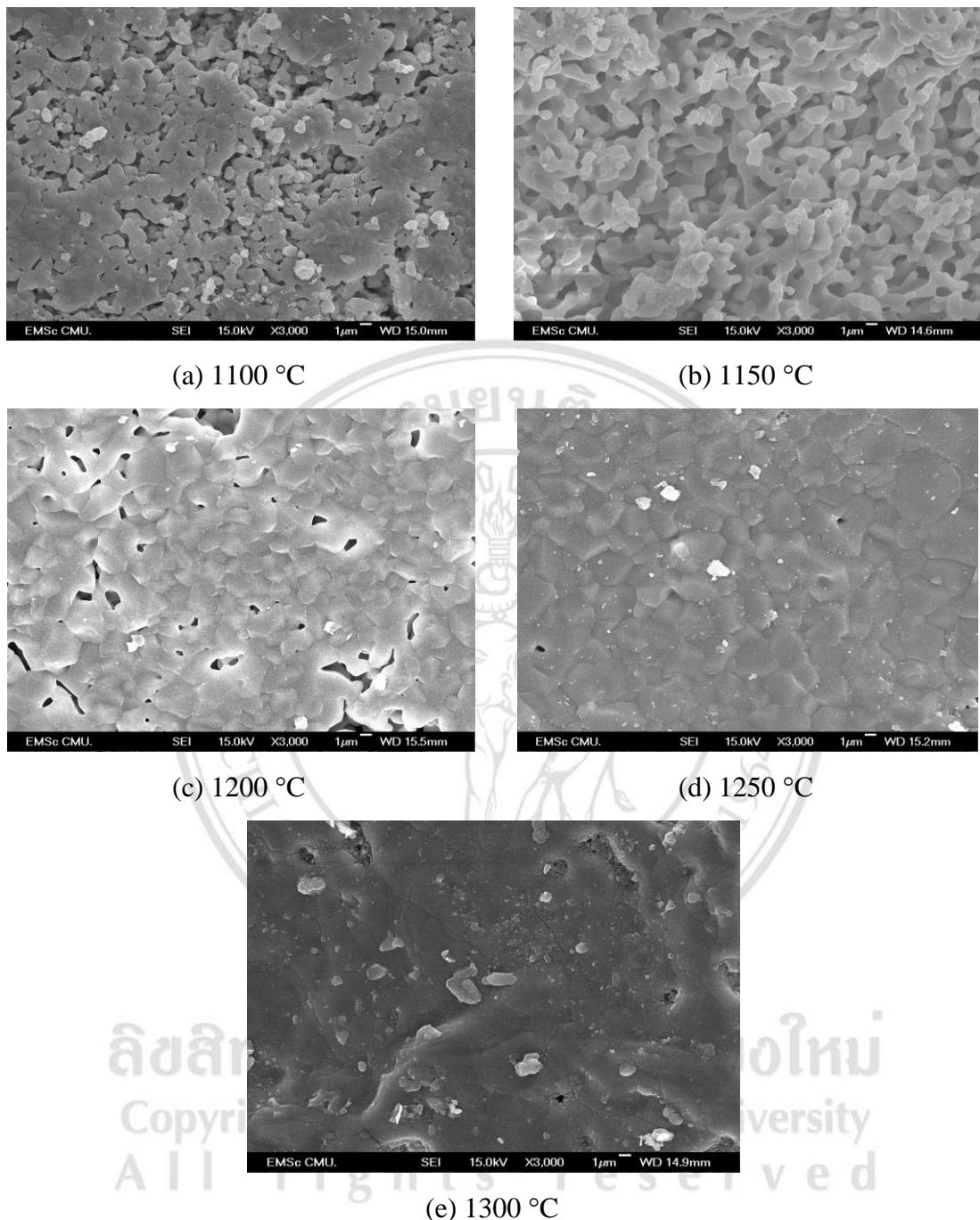
The IR spectrum of sample with ratio 1.69, sintered at 1200 $^{\circ}\text{C}$ for 2 hours, was showed the bands corresponding to PO_4^{3-} group at 1087, 1017, 959, 598 and 562 cm^{-1} , along with the bands at 3570 and 628 cm^{-1} (librational mode) identified to OH^- group. In addition, bands at 1369 cm^{-1} could be observed, corresponding to vibration modes of carbonate group. The position of the carbonate band indicated that the CO_3^{2-} groups were substituted the PO_4^{3-} positions. The band of HPO_4^{2-} at 1212 cm^{-1} showed the formation of β -TCP which was phosphate group.

The IR spectrum of sample ratio 1.69, sintered at 1250 $^{\circ}\text{C}$ for 2 hours, was showed the bands corresponding to PO_4^{3-} group at 1087, 1017, 958, 597 and 562 cm^{-1} , along with the bands at 3570 and 628 cm^{-1} (librational mode) identified to OH^- group. In addition, bands at 1369 cm^{-1} could be observed, corresponding to vibration modes of carbonate group. The position of the carbonate band indicated that the CO_3^{2-} groups


are substituted the PO_4^{3-} positions. The band of HPO_4^{2-} at 1212 cm^{-1} showed the formation of β -TCP which was phosphate group.

The IR spectrum of sample ratio 1.69, sintered at 1300°C for 2 hours, was showed the bands corresponding to PO_4^{3-} group at 1087, 1019, 958, 597 and 562 cm^{-1} , along with the bands at 3570 and 628 cm^{-1} (librational mode) identified to OH^- group. In addition, bands at 1369 cm^{-1} could be observed, corresponding to vibration modes of carbonate group. The position of the carbonate band indicated that the CO_3^{2-} groups were substituted the PO_4^{3-} positions. The band of HPO_4^{2-} at 1212 cm^{-1} showed the formation of β -TCP which was phosphate group.

In the FTIR spectra of powder sintered from 1100 to 1300°C the bands identified to PO_4^{3-} , OH^- , CO_3^{2-} and HPO_4^{2-} groups was the same of all conditions. However, the difference of all samples was observed that the CO_3^{2-} and HPO_4^{2-} bands reduced in peak area at 1300°C for 2 hours when compared with other condition. This study was in agreement with the characterization of XRD and chemical analysis. The results of characterization showed that all samples was a type B carbonate HA due to substituting a tetrahedral groups with CO_3^{2-} groups and was calcium deficient HA due to substituted of HPO_4^{2-} groups in the position of PO_4^{3-} groups that characterized nonstoichiometric HA.


ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่
Copyright[©] by Chiang Mai University
All rights reserved

3.6 Microstructure characterization by SEM

Figure 26 SEM images of fracture surfaces of green body (a) and sintered sample with ratio 1.69 at various temperatures for 2 hours ((b) – (f)). ($\times 3,000$)

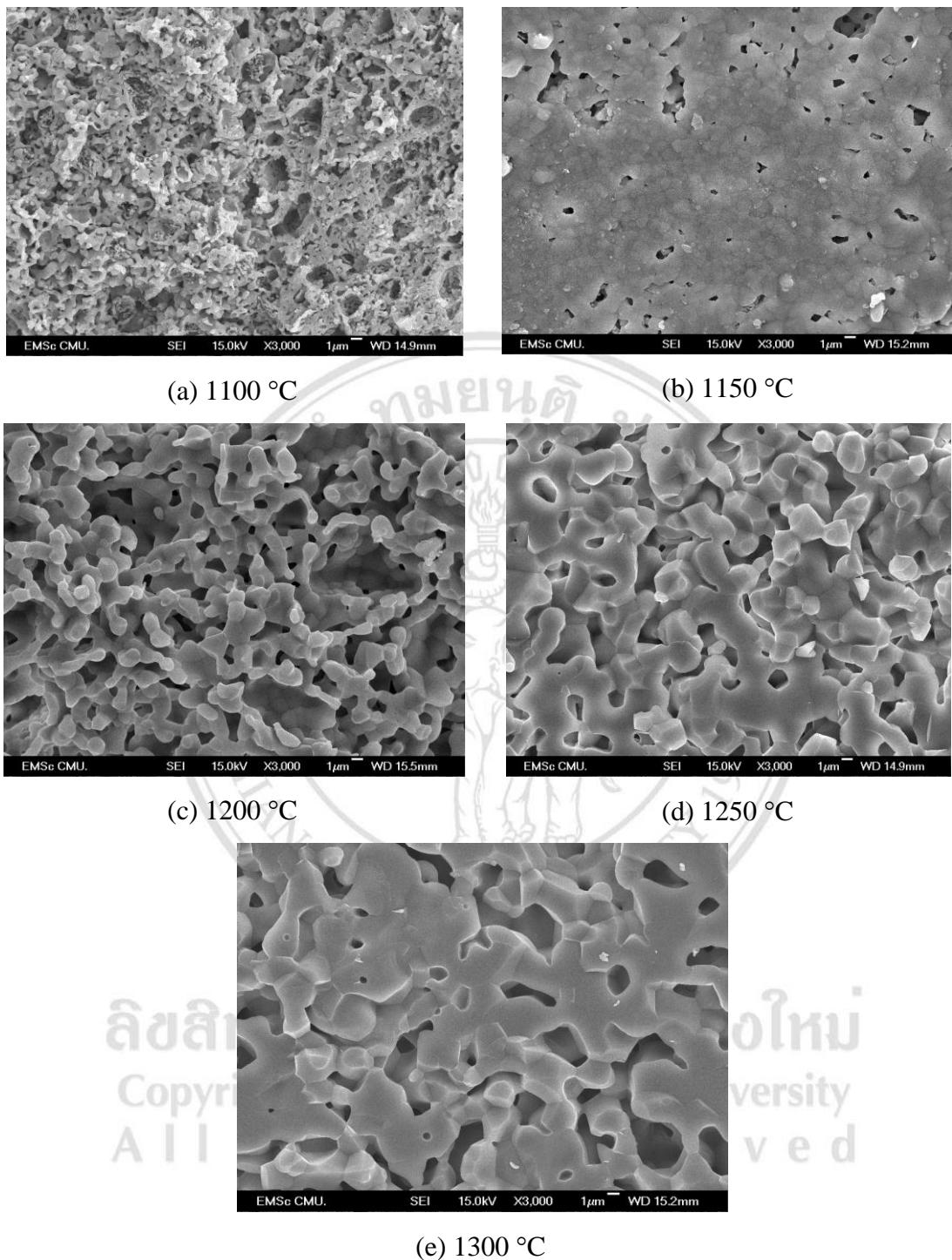

The SEM showed fracture surface of green bodies in **Figure 26(a)**. The mixed powder consisted of mixtures of fine and hard particles. The hard particles were agglomerates and had the irregular shape. This figure was the optimized condition for synthesis HA of this research. The sample with ratio of 1.69 was sintered at 1100 to 1300 °C for 2 hours. **Figure 26(b)** showed fracture surface of sample with ratio of 1.69 at 1100 °C. It could be seen that grain size range from 0.5 to 1 μm . An apparent porosity had about 51 to 55 % of total area. The pore size range from 1 to 10 μm . **Figure 26(c)** showed the fracture surface of sample with ratio of 1.69 at 1150 °C. The increase of grain size had size range from 1 to 2 μm . An apparent porosity had about 50 % of total area. The pore size range from 1 to 4 μm . **Figure 26(d)** showed the fracture surface of sample with ratio of 1.69 at 1200 °C, and the increase of grain sizes was a range from 1.2 to 4 μm . An apparent porosity had about 45 to 50 % of total area. The total pore size range from 1 to 8 μm , while small pores had a size range from 1 to 2 μm and the bigger pore had a size range from 3 to 8 μm . This temperature showed the formation of closed pores. Some area of this figure showed the formation of the grain boundary crack. **Figure 26(e)** showed the fracture surface of sample with ratio of 1.69 at 1250 °C. There were more increase of grains size at 1200 °C and grain size in range of 2.5 to 4.5 μm . An apparent porosity had about 30 % of total area. The tiny pores had size less than 1 μm and observed on grain boundary. The opened pores showed the formation with size about 5 μm . **Figure 26(f)** showed the fracture surface of sample with ratio of 1.69 at 1300 °C. It could be seen grain growth clearly seen in this figure. The grain sizes were range from 3 to 8 μm . The formations of closed pores were observed that more than at 1250 °C. In **figure 26(f)** showed the image from SEM that could not be seen the crack between grain boundary but some of grain boundary remain the small pores which separated from the closed pores. Some area of this figure showed open pore that had sizes lower than 10 μm .

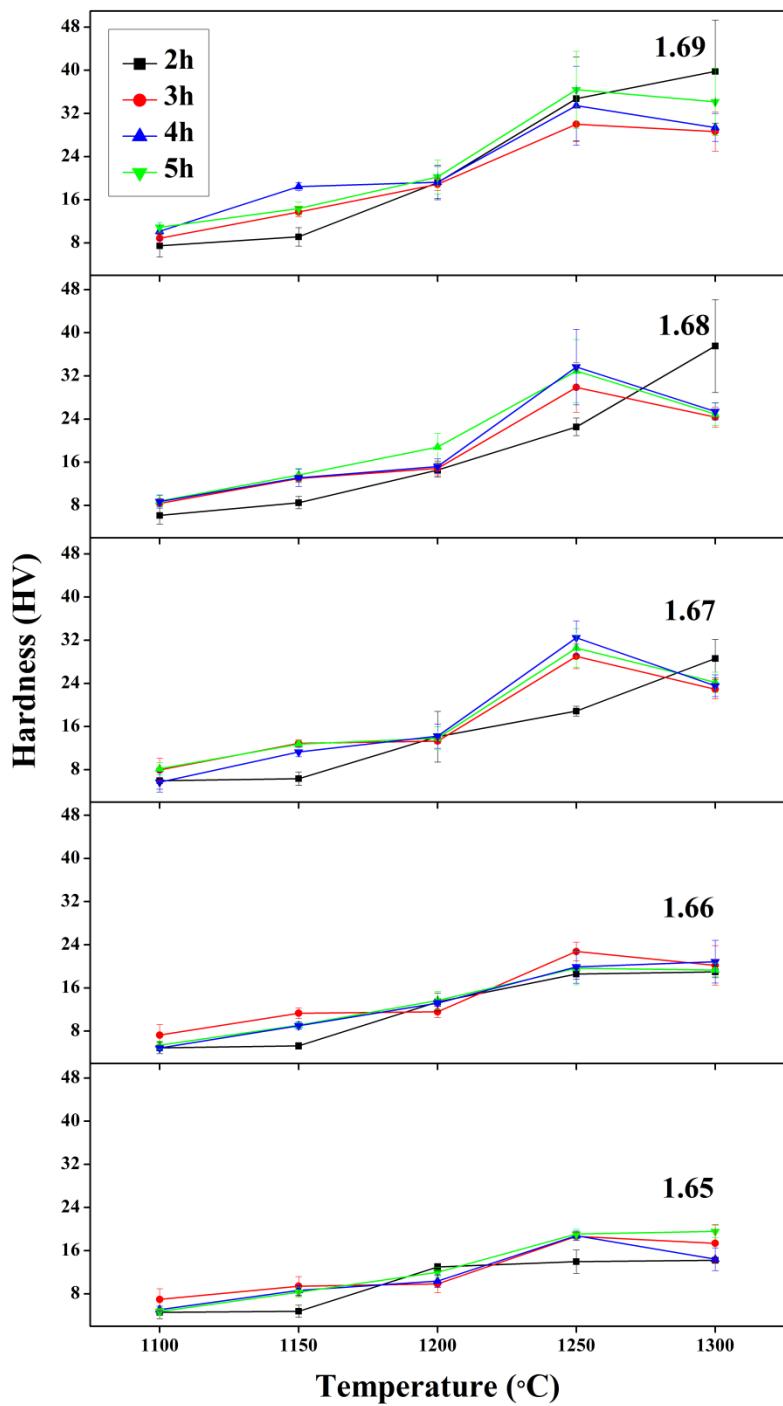
Figure 27 SEM images of fracture surfaces of sintered sample with ratio 1.69 at various temperatures for 5 hours. (x3,000)

The sample with ratio of 1.69 was sintered at temperatures range from 1100 to 1300 °C for 5 hours. **Figure 27(a)** showed the fracture surface of sample at 1100 °C which grain size in the range of 1 to 1.3 μm . An apparent porosity had higher than 50 % of total area. The average pore size range from 1 to 10 μm . **Figure 27(b)** showed the fracture surface of sample at 1150 °C. The increase of grain size had size range from 1.2 to 4 μm . An apparent porosity had about 50 to 52 % of total area. The pore size range from 1 to 8 μm . **Figure 27(c)** showed the fracture surface of samples at 1200 °C, and the increased of grain size was a range from 1.5 to 5 μm . An apparent porosity had about 47 to 50 % of total area. **Figure 27(d)** showed the fracture surface of sample at 1250 °C. An average grain size was range from 2 to 7 μm . An apparent porosity had about 30 % of total area. The tiny pores which had size less than 1 μm were observed on grain boundary, and some opened pores showed the formation of pore size higher than 1 μm . **Figure 27(e)** showed the fracture surface of sample at 1300 °C. An abnormal of grain growth was clearly seen in this figure. The grain size was range from 6 to 12 μm . This phenomenon had been on surface of grain and grain boundary at this temperature which seen the crack on grain and crack internal grain.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่
Copyright© by Chiang Mai University
All rights reserved

Figure 28 SEM images of surface fracture of sintered sample with ratio of 1.65 at various temperatures for 2 hours. (x3,000)

The sample with ratio of 1.65 was sintered at temperatures range from 1100 to 1300 °C for 2 hours. **Figure 28(a)** showed the fracture surface of 1.65 samples at 1100 °C. It could be seen that grain size was 1 μm . An apparent porosity had about 54 to 57% of total area. **Figure 28(b)** showed the fracture surface of sample ratio of 1.65 at 1150 °C. The increase of grain size had range from 1 to 1.5 μm . An apparent porosity had about 56 % of total area. An average pore size range from 1 to 6 μm . **Figure 28(c)** showed the fracture surface of sample at 1200 °C. This figure showed the increase of grains size was a range from 1.2 to 3 μm . An apparent porosity had about 50 % of total area. The pore size range from 1 to 10 μm . **Figure 28(d)** showed the fracture surface of sample at 1250 °C. The grain size was range 1.3 to 5.2 μm . An apparent porosity had about 50 % of total area. This figure showed that opened pores and closed pores remained in the microstructure. This phenomenon had effected on the density and mechanical properties due to amounts of β -TCP had excess. **Figure 28(e)** showed the fracture surface of sample at 1300 °C. Grain growth was clearly seen in this figure. The grain size was range 3 to 7 μm but an apparent porosity had about 50 % of total area. When compared to the sample with ratio of 1.69 at 1300 for 2 hours, apparent porosity had much difference between two conditions in the same temperature.


ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่
Copyright© by Chiang Mai University
All rights reserved

3.7 Mechanical properties of sintered samples.

3.7.1 Hardness

Table 8 Results of hardness value (HV) of all sintered samples

Sintering condition		Ca/P				
		1.65	1.66	1.67	1.68	1.69
2 h	1100°C	4.58 ± 0.58	4.91 ± 0.54	5.98 ± 0.80	6.16 ± 0.79	7.48 ± 1.05
	1150°C	4.78 ± 0.56	5.27 ± 0.31	6.36 ± 0.62	8.52 ± 0.57	9.13 ± 0.85
	1200°C	12.97 ± 0.34	13.38 ± 0.81	14.13 ± 2.36	14.56 ± 1.34	19.20 ± 3.19
	1250°C	13.96 ± 1.09	18.58 ± 0.50	18.87 ± 0.46	22.58 ± 0.81	34.73 ± 3.89
	1300°C	14.25 ± 0.28	18.98 ± 0.54	28.60 ± 1.78	37.55 ± 4.30	39.80 ± 4.78
3 h	1100°C	6.96 ± 1.01	7.28 ± 0.97	7.98 ± 1.07	8.38 ± 0.44	8.88 ± 0.42
	1150°C	9.43 ± 0.90	11.34 ± 0.50	12.90 ± 0.31	12.98 ± 0.33	13.75 ± 0.43
	1200°C	9.85 ± 0.82	11.56 ± 0.51	13.33 ± 0.22	14.88 ± 0.68	18.86 ± 0.58
	1250°C	18.66 ± 0.37	22.78 ± 0.87	29.04 ± 1.14	29.90 ± 2.31	30.02 ± 1.61
	1300°C	17.37 ± 1.75	20.20 ± 1.81	22.92 ± 0.89	24.38 ± 0.94	28.64 ± 1.82
4 h	1100°C	5.05 ± 0.14	5.38 ± 0.38	8.18 ± 0.57	8.80 ± 0.54	10.18 ± 0.81
	1150°C	8.64 ± 0.45	9.00 ± 0.32	12.75 ± 0.30	13.65 ± 0.62	18.45 ± 0.37
	1200°C	10.38 ± 0.58	13.68 ± 0.86	13.84 ± 1.07	18.48 ± 1.28	19.25 ± 1.47
	1250°C	18.78 ± 0.45	19.92 ± 1.55	30.56 ± 1.81	32.94 ± 2.92	33.45 ± 3.66
	1300°C	14.44 ± 1.07	19.34 ± 0.63	24.22 ± 0.93	24.92 ± 1.06	29.42 ± 1.29
5 h	1100°C	4.73 ± 0.28	4.87 ± 0.23	5.70 ± 0.92	8.72 ± 0.61	10.90 ± 0.44
	1150°C	8.32 ± 0.48	9.00 ± 0.32	11.28 ± 0.44	13.12 ± 0.80	14.38 ± 0.58
	1200°C	12.00 ± 0.45	13.20 ± 0.27	14.22 ± 1.12	15.24 ± 0.69	20.25 ± 1.58
	1250°C	19.08 ± 0.52	19.92 ± 1.70	32.47 ± 1.57	33.67 ± 3.51	36.40 ± 3.57
	1300°C	19.56 ± 0.57	20.88 ± 1.98	23.56 ± 1.01	25.43 ± 0.78	34.16 ± 3.12

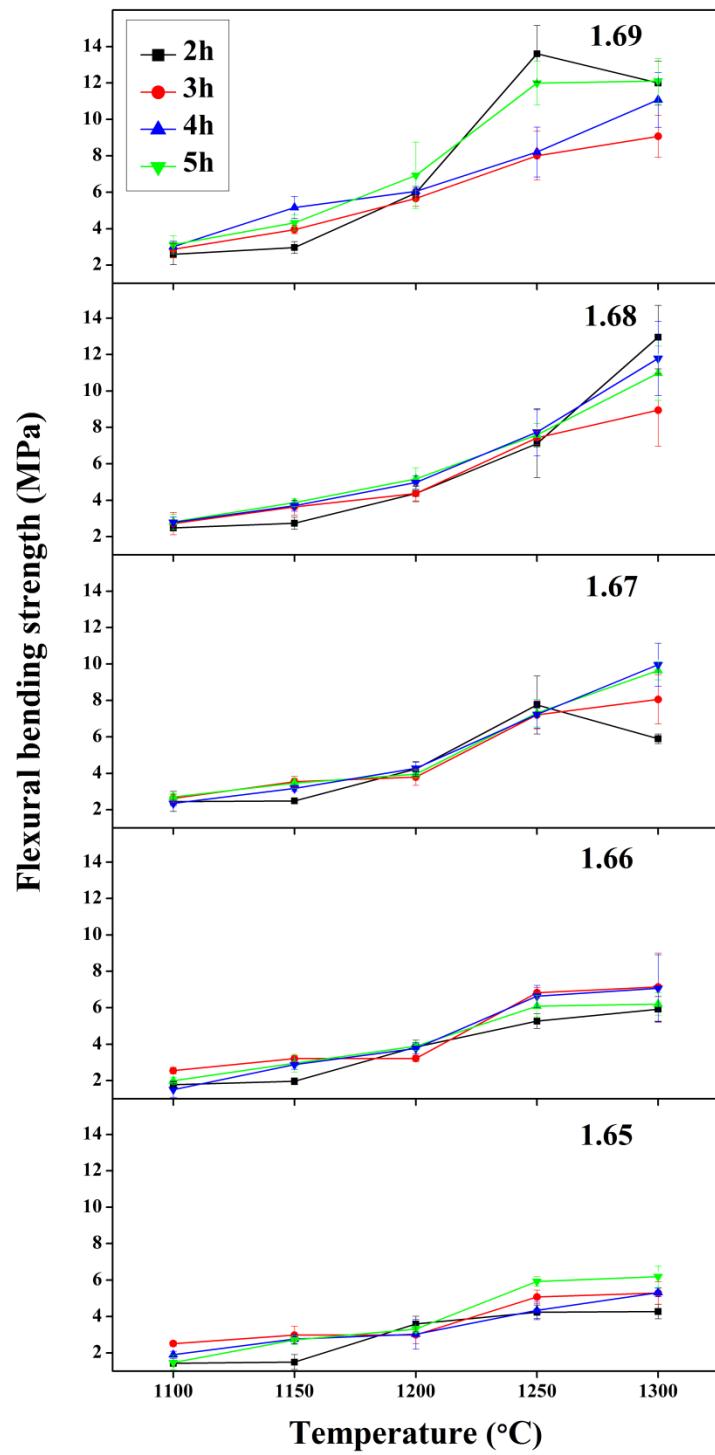
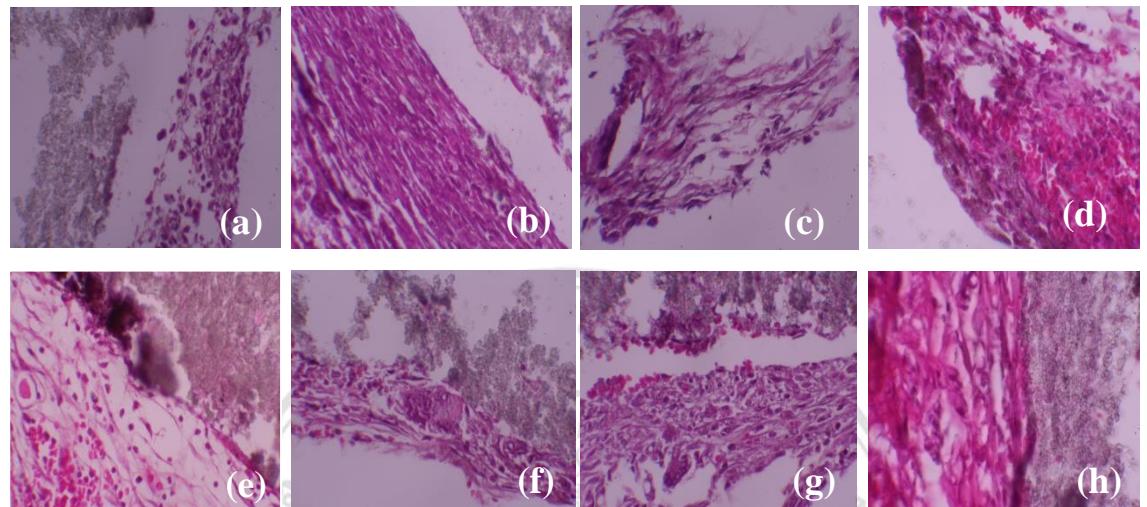

Figure 29 Hardness of sample ratios 1.65, 1.66, 1.67, 1.68 and 1.69 at different temperatures and soaking times.

Figure 29 showed the influence of sintering temperatures and soaking times on hardness of samples with ratios 1.65 to 1.69 at various temperatures from 1100 °C to 1300 °C for 2 to 5 hours. Hardness of the samples with ratio of 1.65 and 1.66 were observed after sintering at 1100 °C, and it had trend to increase, followed by the increase of the temperature at 1300 °C for 2 and 5 hours, but for 3 and 4 hours, hardness had trend to increase at 1250 °C and decrease at 1300 °C due to the existence of closed pores, grains growth or coalescence and point defects. Hardness of the samples with ratio of 1.67, 1.68 and 1.69 were observed after sintering at 1100 °C, and it had trend to increase, followed by the increase of the temperature at 1300 °C for 2 hours, but for 3, 4 and 5 hours, hardness had trend to increase at 1250 °C and decrease at 1300 °C. The maximum value of hardness of sample groups with ratio of 1.65 was 19.56 ± 0.57 HV at 1300 °C for 5 hours. The maximum value of hardness of sample groups with ratio of 1.66 was 22.78 ± 0.87 HV at 1250 °C for 3 hours. The maximum value of hardness of sample groups with ratio of 1.67 was 32.47 ± 1.57 HV at 1250 °C for 5 hours. The maximum value of hardness of sample groups with ratio of 1.68 was 37.55 ± 4.30 HV at 1300 °C for 2 hours. The maximum value of hardness of sample groups with ratio of 1.69 was 39.88 ± 4.78 HV at 1300 °C for 2 hours. This group was the optimized condition of the experimental due to highest when compared with other condition. However, it had hardness lower than theoretical hardness of pure HA (600 HV) due to affected of highly porous and point defect (OH^- , PO_4^{3-} and Ca^{2+}) of samples. These curves revealed a significant loss in hardness at 1300 °C which related with the apparent and bulk density change affected on sintering. These data were clearly exhibit that the maximum hardness corresponds to the maximum of density.

3.7.2 Flexural bending strength

Table 9 Results of flexural bending strength value (MPa) of all sintered samples


Sintering condition		Ca/P				
		1.65	1.66	1.67	1.68	1.69
2 h	1100°C	1.43 ± 0.18	1.78 ± 0.08	2.45 ± 0.25	2.48 ± 0.06	2.60 ± 0.26
	1150°C	1.50 ± 0.19	1.96 ± 0.09	2.49 ± 0.06	2.74 ± 0.15	2.97 ± 0.15
	1200°C	3.59 ± 0.19	3.84 ± 0.17	4.24 ± 0.18	4.37 ± 0.18	5.96 ± 0.12
	1250°C	4.23 ± 0.18	5.27 ± 0.18	7.75 ± 0.71	7.11 ± 0.83	13.60 ± 0.69
	1300°C	4.28 ± 0.18	5.93 ± 0.31	5.90 ± 0.12	12.96 ± 0.78	12.00 ± 0.54
3 h	1100°C	2.51 ± 0.06	2.55 ± 0.08	2.62 ± 0.10	2.72 ± 0.27	2.86 ± 0.21
	1150°C	2.98 ± 0.22	3.21 ± 0.07	3.54 ± 0.13	3.64 ± 0.20	3.95 ± 0.10
	1200°C	2.99 ± 0.22	3.22 ± 0.07	3.79 ± 0.20	4.37 ± 0.20	5.66 ± 0.19
	1250°C	5.07 ± 0.17	6.83 ± 0.13	7.20 ± 0.34	7.43 ± 0.16	8.01 ± 0.60
	1300°C	5.29 ± 0.28	7.14 ± 0.84	8.06 ± 0.60	8.95 ± 0.89	9.07 ± 0.51
4 h	1100°C	1.90 ± 0.08	1.99 ± 0.09	2.70 ± 0.09	2.81 ± 0.19	3.00 ± 0.15
	1150°C	2.76 ± 0.11	2.96 ± 0.22	3.46 ± 0.13	3.87 ± 0.09	5.16 ± 0.27
	1200°C	3.03 ± 0.37	3.89 ± 0.09	3.96 ± 0.10	5.18 ± 0.27	6.05 ± 0.12
	1250°C	4.34 ± 0.20	6.09 ± 0.27	7.31 ± 0.34	7.59 ± 0.28	8.21 ± 0.61
	1300°C	5.32 ± 0.11	6.20 ± 0.27	9.64 ± 0.22	10.98 ± 0.67	11.07 ± 0.67
5 h	1100°C	1.47 ± 0.18	1.51 ± 0.19	2.35 ± 0.06	2.79 ± 0.14	3.12 ± 0.22
	1150°C	2.71 ± 0.11	2.88 ± 0.11	3.17 ± 0.07	3.70 ± 0.14	4.32 ± 0.20
	1200°C	3.31 ± 0.07	3.77 ± 0.14	4.27 ± 0.15	4.97 ± 0.17	6.93 ± 0.81
	1250°C	5.93 ± 0.12	6.63 ± 0.27	7.23 ± 0.34	7.74 ± 0.58	11.99 ± 0.54
	1300°C	6.19 ± 0.27	7.06 ± 0.83	9.96 ± 0.08	11.79 ± 0.91	12.11 ± 0.54

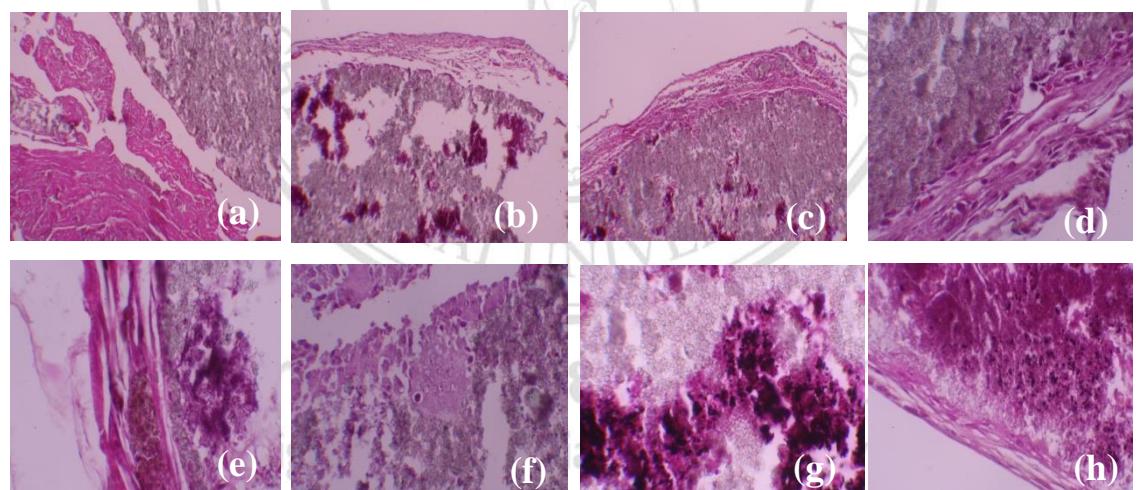

Figure 30 Flexural bending strength of sample ratios 1.65, 1.66, 1.67, 1.68 and 1.69 at different temperatures and times.

Figure 30 showed the variation of the bending strength, temperatures and times of samples with ratio of 1.65 to 1.69. The bending strength of the samples with ratio of 1.65, 1.66 and 1.68 were observed after sintering at 1100 °C, and it had trend to increase, followed by the increase of the temperature at 1300 °C for 2 to 5 hours. The bending strength of sample with ratio of 1.67 and 1.69 were observed after sintering at 1100 °C, and it had trend to increase at 1250 °C and to decrease at 1300 °C for 2 hours, while the bending strength for 3, 4 and 5 hours were increased to maximum value at 1300 °C. This could explain the phenomenon obtained from pore growth or pore became larger normal and caused by affected of CaO and β -TCP lead to internal stresses and cracking at grain boundaries of samples at 1300 °C and increasing of strength related with decreasing of close pores and increase of the finer grain sizes at high temperature. However, there were tendencies of lower strength when grain growth and porosity increased at higher temperature (above 1250 °C). The maximum value of bending strength of sample groups with ratio of 1.65 was 6.19 ± 0.27 MPa at 1300 °C for 5 hours. The maximum value of bending strength of sample groups with ratio of 1.66 was 7.14 ± 0.84 MPa at 1300 °C for 3 hours. The maximum value of bending strength of sample groups with ratio of 1.67 was 9.96 ± 0.08 MPa at 1300 °C for 5 hours. The maximum value of bending strength of sample groups with ratio of 1.68 was 12.96 ± 0.78 MPa at 1300 °C for 2 hours. The maximum value of bending strength of sample groups with ratio of 1.69 was 13.60 ± 0.69 MPa at 1250 °C for 2 hours. This group was the optimized condition of the experimental due to highest when compared with other condition. However, it had bending strength lower than theoretical bending strength of pure HA (115-200 MPa), but it was in range of cancellous bone (10-20 MPa).

3.8 Biological characterization

Figure 31 Histological images of sample with ratio of 1.69 in soft tissue; (a) 3 days, (b) 7 days, (c) 14 days, (d) 21 days, (e) 30 days, (f) 45 days, (g) 90 days, (h) 180 days

Figure 32 Histological images of sample with ratio of 1.65 in soft tissue; (a) 3 days, (b) 7 days, (c) 14 days, (d) 21 days, (e) 30 days, (f) 45 days, (g) 90 days, (h) 180 days

Table 10 Results of foreign body reaction on soft tissue response after implantation for sample bodies with ratios 1.69 and 1.65 at 1300 °C for 2 hours.

Tissue reaction	Ca/P mole ratios	Time periods (days)							
		3	7	14	21	30	45	90	180
Reaction grading	1.69	♦	♦♦	♦♦	♦♦	♦	♦♦	♦	♦
	1.65	♦	♦	♦♦	♦♦	♦♦	♦♦♦	♦♦♦♦	♦♦
Cellular infiltration into ceramic body	1.69	⊗	⊗	⊗	⊗	⊗	✓	⊗	⊗
	1.65	⊗	✓	✓	✓	✓	✓	✓	✓
Calcification in ceramic body	1.69	⊗	⊗	⊗	⊗	✓	✓	✓	✓
	1.65	✓	✓	✓	✓	✓	✓	✓	✓
Displacement of ceramic components into surrounding host tissue	1.69	✓	✓	⊗	✓	✓	✓	⊗	⊗
	1.65	✓	✓	✓	✓	✓	✓	✓	✓

Note: Symbol ♦ = mild reaction, ♦♦ = moderate reaction and ♦♦♦ = severe reaction

Symbol ⊗ = absent and ✓ = present

Microscopic description of the sections presented fragments of the samples with ratio of 1.69 with walling off fibro adipose tissue. At 3 days after implantation, those with ratio of 1.69 had mild foreign body reaction, while those with 1.65 had mild foreign body reaction. Moreover, a cellular infiltration into the bodies of sample with ratio 1.69 and 1.65 was absent. Furthermore, dystrophic calcification in the bulk sample with ratio of 1.69 and 1.65 was absent and present, respectively. This difference was caused by the fact that the quantity of CaO phase was higher in the samples with ratio 1.65 than those with ratio 1.69 according to XRD data. Besides, the degradation of body components of the samples with ratio of 1.69 and 1.65 into

surrounding host tissues was presented in both due to high solubility of β -TCP into the ceramic body (**Figure 31(a) and 32 (a)**).

At 7 days, an inflammatory response of the samples ratio of 1.69 and 1.65 was moderate and mild foreign body reaction respectively. The samples with ratio of 1.69 showed the increase of inflammatory cells, but the samples with ratio of 1.65 showed the constant of inflammatory cells in bodies. Apart from that, a cellular infiltration into the bodies of the samples with ratio of 1.69 and 1.65 was absent and present respectively because to the sample with ratio 1.69 had lower porosity than the sample with ratio 1.65. Further, dystrophic calcification in the bulk samples with ratio of 1.69 and 1.65 was absent and present respectively. This difference was caused by the fact that the quantity of CaO phase was higher in the samples with ratio 1.65 than those with ratio 1.69. Besides, the degradation of body components of the samples with ratio of 1.69 and 1.65 into surrounding host tissue was presented in both (**Figure 31(b) and 32(b)**).

At 14 days, an inflammatory response of the samples ratio of 1.69 and 1.65 was moderate foreign body reaction. The samples with ratio of 1.69 showed the constant of inflammatory cells, but the samples with ratio of 1.65 showed the increase of inflammatory cells in bodies. This phenomenon may be caused by high quantity of β -TCP phase in the sample with ratio of 1.65 which affected high solubility of the samples. Apart from that, a cellular infiltration into the bodies of samples with ratio of 1.69 and 1.65 was absent and present respectively which result was same at 7 days. Dystrophic calcification in the bulk samples with ratio of 1.69 and 1.65 was constant. Finally, the degradation of body components of the samples with ratio of 1.69 and 1.65 was absent and present respectively (**Figure 31(c) and 32(c)**).

At 21 days, an inflammatory response of the samples ratio of 1.69 and 1.65 was moderate foreign body reaction. The samples with ratio of 1.69 and 1.65 showed inflammatory were constant. A cellular infiltration into the bodies of samples with ratio of 1.69 and 1.65 was same at 14 days. Further, dystrophic calcification in the bulk samples with ratio of 1.69 and 1.65 was constant.

Finally, the degradation of body components of the samples with ratio of 1.69 and 1.65 was present. This result showed that samples with ratio of 1.69 had β -TCP which soluble from bodies (**Figure 31(d) and 32(d)**).

At 30 days, an inflammatory response of the samples ratio of 1.69 and 1.65 was mild and moderate foreign body reaction respectively. The samples with ratio of 1.69 showed the decrease of inflammatory cells, but the samples with ratio of 1.65 showed were constant of in bodies. Apart from that, a cellular infiltration into the bodies of the samples with ratio of 1.69 and 1.65 was absent and present respectively because to the sample with ratio 1.69 had lower porosity than the sample with ratio 1.65. Further, dystrophic calcification in the bulk samples with ratio of 1.69 and 1.65 was present in both because CaO phase still remained in bodies of both samples. Finally, the degradation of body components of the samples with ratio of 1.69 and 1.65 into surrounding host tissues was present in both due to high solubility of β -TCP into the bodies (**Figure 31(e) and 32(e)**).

At 45 days, an inflammatory response of the samples ratio of 1.69 and 1.65 was moderate and severe foreign body reaction respectively. The samples with ratio of 1.69 showed the increase of inflammatory cells, while the samples with ratio of 1.65 showed the increase of inflammatory cells in bodies. Apart from that, a cellular infiltration into the bodies of the samples with ratio of 1.69 and 1.65 was present in both. Further, dystrophic calcification in the bulk samples with ratio of 1.69 and 1.65 was present in both. Finally, the degradation of body components of the samples with ratio of 1.69 and 1.65 into surrounding host tissues was present in both (**Figure 31(f) and 32(f)**).

At 90 days, an inflammatory response of the samples ratio of 1.69 and 1.65 was mild and severe foreign body reaction respectively. The samples with ratio of 1.69 showed the decrease of, but the samples with ratio of 1.65 showed inflammatory cells were constant. This phenomenon may be caused by high quantity of β -TCP phase in the sample with ratio of 1.65 which affected high solubility of the samples too. What's more, a cellular infiltration into the bodies of the samples with ratio of 1.69 and 1.65 was absent and present respectively due to the difference of porosity.

Moreover, dystrophic calcification in the bulk samples with ratio of 1.69 and 1.65 was present in both due to CaO phase still remained in bodies of both samples. However, small areas of calcification into the samples with ratio of 1.69 were found, while large areas of calcification into the samples with ratio 1.65 were observed. Besides, the degradation of body components of the samples with ratio of 1.69 and 1.65 into surrounding host tissues was absent and present respectively. This difference may be caused by the fact that the samples with ratio of 1.69 started becoming stable in an animal body, but the samples with ratio of 1.65 was not stable due to continuously dissolution of ceramic components (**Figure 31(g) and 32(g)**).

At 180 days, an inflammatory response of the samples ratio of 1.69 and 1.65 was mild and moderate foreign body reaction respectively. The samples with ratio of 1.69 showed inflammatory cells were constant, but the samples with ratio of 1.65 showed the decrease of inflammatory cells in bodies. What's more, a cellular infiltration into the bodies of the samples with ratio of 1.69 and 1.65 was absent and present respectively. Moreover, dystrophic calcification in the bulk samples with ratio of 1.69 and 1.65 was present in both of samples. Besides, the degradation of body components of the samples with ratio of 1.69 and 1.65 into surrounding host tissues was absent and present respectively. This result may be caused by the fact that the samples with ratio of 1.69 was stable in an animal body, but the samples with ratio of 1.65 was not stable due to continuously dissolution of ceramic components (**Figure 31(h) and 32(h)**).

Table 10 revealed the overall picture throughout the time periods from 3 days to 180 days. The samples with Ca/P ratio of 1.69 had inflammation lower than those with Ca/P ratio of 1.65. This result indicated that the samples with ratio of 1.69 which had higher content of HA than those with ratio of 1.65. Therefore, the former had higher stability than the latter, and the former was non-resorbable material due to lower β -TCP while the latter was resorbable due to higher β -TCP. The apparent porosity of the samples with ratio of 1.65 was 51.2 % which was porous material, while the samples with ratio of 1.69 were 24.37 % which was rather dense material.

The apparent porosity was an important parameter that supported infiltration of cells into the samples bodies. SEM analysis of the samples with ratio of 1.69 revealed that pore size range from 1 to 10 μm , but infiltration of the cells into the body did not occur. The calcification was another factor that prevented cells from infiltrating into the sample bodies with ratio 1.69 because CaO phase in microstructure still remained.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่
Copyright[©] by Chiang Mai University
All rights reserved