

CONTENTS

	Page
Acknowledgement	iii
Abstract in Thai	iv
Abstract in English	vi
List of Tables	xi
List of Figures	xii
List of Abbreviations and Symbols	xv
Statement of originality in Thai	xvii
Statement of originality in English	xviii
Chapter 1 Introduction	1
1.1 Statement and Significance of the Problem	1
1.2 Literature Review	3
1.3 Principles, Models, Rationale or Hypothesis	7
1.4 Objectives of this thesis	20
1.5 Scope and Study	20
Chapter 2 Experimental	21
2.1 Materials and equipments	21
2.1.1 Materials	21
2.1.2 Equipments	21
2.2 The manufacturing of synthetic HA	22
2.2.1 Preparation of mixed powder	22
2.2.2 Forming of a green body	23
2.2.3 Sintering of a green body	24
2.2.4 Characterization of sintered samples	25

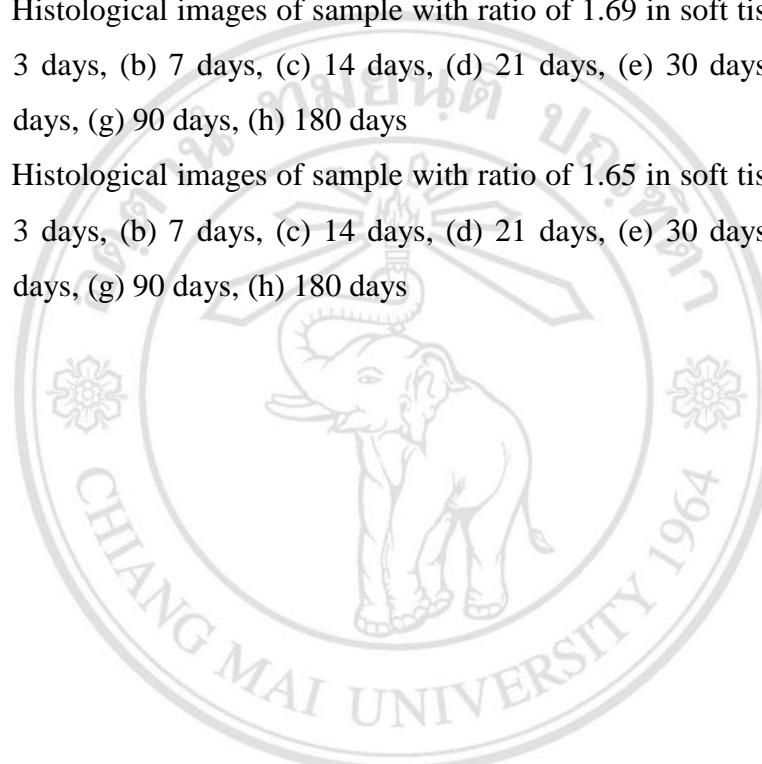
	Page
2.2.5 Preparation of laboratory rats	29
2.2.6 Preparation of samples for implantation	29
2.2.7 Processing of implantation and sample collecting	30
2.2.8 Biological evaluation	31
2.2.9 Statistical assessment of observed data	33
Chapter 3 Results	34
3.1 Raw material characteristics	34
3.2 Physical properties of mixed powder	36
3.3 Physical properties of sintered samples	40
3.4 Phase characterization of samples powder after sintered using XRD technique	53
3.5 Chemical properties of sintered samples	70
3.5.1 Chemical analysis (XRF)	70
3.5.2 FTIR analysis	76
3.6 Microstructure characterization by SEM	79
3.7 Mechanical properties of sintered samples	85
3.7.1 Hardness	85
3.7.2 Flexural bending strength	88
3.8 Biological characterization	91
Chapter 4 Discussions	97
Chapter 5 Conclusion and Suggestions	102
References	104
List of Publications	114

	Page
Appendix	115
Appendix A Density and porosity	115
Appendix B Hardness	117
Appendix C Flexural bending strength	118
Appendix D Data JCPDS files	119
Appendix E Surgical Pathology reports	122
Appendix F Certificate of Approval For Use of Animals	139
Curriculum Vitae	140

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่
 Copyright[©] by Chiang Mai University
 All rights reserved

LIST OF TABLES

	Page	
Table 1	Composition of CaCO_3 and $\text{NH}_4\text{H}_2\text{PO}_4$	22
Table 2	The histological grading scale for foreign body reaction	31
Table 3	Results of lose weight	37
Table 4	Results of reaction	37
Table 5	Effect of sintering temperature on density and apparent porosity	40
Table 6	Phase composition of all sintered samples	63
Table 7	The Ca/P mole ratios and total elements of all sintered samples	70
Table 8	Results of hardness value (HV) of all sintered samples	85
Table 9	Results of flexural bending strength value (MPa) of all sintered samples	88
Table 10	Results of foreign body reaction on soft tissue response after implantation for sample bodies with ratios Ca/P 1.69 and 1.65 at 1300 °C for 2 hours	92


ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่
Copyright[©] by Chiang Mai University
All rights reserved

LIST OF FIGURES

		Page
Figure 1	HA structure projected down the c-axis on the basal plane	9
Figure 2	Theoretical positions of the ionic species within the unit cell of HA	10
Figure 3	The initial, intermediate and final stages of sintering	12
Figure 4	The difference between coarsening and sintering	13
Figure 5	Pathways for the transport of material during the initial stage of sintering	13
Figure 6	Pattern of a general heating schedule	14
Figure 7	Phase diagram of CaO-P ₂ O ₅	16
Figure 8	Firing profile of the sintering schedule of sintered samples	24
Figure 9	Samples for implantations	29
Figure 10	Processing of implantations	31
Figure 11	Flow chart of synthetic HA	32
Figure 12	XRD pattern of the CaCO ₃ powders at 650 °C 5 hours	34
Figure 13	Particle size distribution of mixed powder (a) before milling (b) after milling	35
Figure 14	DTA/TG analyses curves of mixed powder of Ca/P ratio 1.67	36
Figure 15	Apparent densities of Ca/P ratios 1.65, 1.66, 1.67, 1.68 and 1.69 at different temperatures and times	45
Figure 16	Bulk densities of Ca/P ratios 1.65, 1.66, 1.67, 1.68 and 1.69 at different temperatures and times	47
Figure 17	True densities of Ca/P ratios 1.65, 1.66, 1.67, 1.68 and 1.69 at different temperatures and times	49
Figure 18	Apparent porosities of Ca/P ratios 1.65, 1.66, 1.67, 1.68 and 1.69 at different temperatures and times	51

	Page	
Figure 19	XRD patterns of sample powders with Ca/P ratio 1.65 at different temperatures and times in compared with JCPDS file of HA, β -TCP and CaO	53
Figure 20	XRD patterns of sample powders with Ca/P ratio 1.66 at different temperatures and times in compared with JCPDS file of HA, β -TCP and CaO	55
Figure 21	XRD patterns of sample powders with Ca/P ratio 1.67 at different temperatures and times in compared with JCPDS file of HA, β -TCP and CaO	57
Figure 22	XRD patterns of sample powders with Ca/P ratio 1.68 at different temperatures and times in compared with JCPDS file of HA, β -TCP and CaO	59
Figure 23	XRD patterns of sample powders with Ca/P ratio 1.69 at different temperatures and times in compared with JCPDS file of HA, β -TCP and CaO	61
Figure 24	HA Contents of Ca/P ratios 1.65, 1.66, 1.67, 1.68 and 1.69 at different temperatures and times	68
Figure 25	FTIR spectra of mixed powder and sample powders with Ca/P ratio 1.69 at 1100 °C (5A-2), 1150 °C (5B-2), 1200 °C (5C-2), 1250 °C (5D-2) and 1300 °C (5E-2) for 2 hours	76
Figure 26	SEM images of fracture surfaces of green body (a) and sintered sample with ratio 1.69 at various temperatures for 2 hours ((b) - (f)). (x 3,000)	79
Figure 27	SEM images of fracture surfaces with sample Ca/P ratio 1.69 at various temperatures for 5 hours. (x 3,000)	81
Figure 28	SEM images of fracture surfaces with sample Ca/P ratio 1.65 at various temperatures for 5 hours. (x 3,000)	83

	Page	
Figure 29	Vickers hardness of Ca/P ratios 1.65, 1.66, 1.67, 1.68 and 1.69 at different temperatures and times	86
Figure 30	Flexural bending strength of Ca/P ratios 1.65, 1.66, 1.67, 1.68 and 1.69 at different temperatures and times	89
Figure 31	Histological images of sample with ratio of 1.69 in soft tissue; (a) 3 days, (b) 7 days, (c) 14 days, (d) 21 days, (e) 30 days, (f) 45 days, (g) 90 days, (h) 180 days	91
Figure 32	Histological images of sample with ratio of 1.65 in soft tissue; (a) 3 days, (b) 7 days, (c) 14 days, (d) 21 days, (e) 30 days, (f) 45 days, (g) 90 days, (h) 180 days	91

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่
 Copyright[©] by Chiang Mai University
 All rights reserved

LIST OF ABBREVIATIONS AND SYMBOLS

α	alpha
β	beta
\emptyset	diameter
σ	flexural bending strength
μ	micron
ν	poisson ratio
θ	theta
a.u.	arbitrary unit
ACH	air changes per hour
\AA	angstrom
AAS	atomic absorption spectroscopy
As	arsenic
BCP	biphasic calcium phosphate
BET	brunauer–emmett–teller
Ca	calcium
Cd	cadmium
Cu-K α	copper energy level k alpha
DCPD	dicalcium phosphate dehydrate
dB	decibel
IU/kg	drug per kilogram of body weight
$^{\circ}\text{C}$	degree of celsius
EDS	energy dispersive spectrometry
FTIR	fourier transform infrared spectroscopy
g	gram
HA	hydroxyapatite
h	hour
JCPDS	joint committee on powder diffraction standards
Pb	lead

lux	luminous flux
Hg	mercury
MPa	mega pascal
mm	millimeter
min	minute
N	newton
nm	nanometer
P	phosphorus
ppm	parts per million
RIR	relative intensity ratio
cm ⁻¹	reciprocal centimeter
rpm	revolutions per minute
SBF	simulated body fluid
Si	silicon
SEM	scanning electron microscopy
Na	sodium
Sr	strontium
TCP	tricalcium phosphate
TTCP	tetracalcium phosphate
TGA-DSC	thermo gravimetric analysis-differential scanning calorimetry
HV	vickers hardness
XRD	x-ray diffraction
XRF	x-ray fluorescence

ข้อความแห่งการริเริ่ม

วิทยานิพนธ์นี้ให้ความสนใจในการศึกษากลไกการสังเคราะห์วัสดุเซรามิกไฮดรอกซีอะพาไทต์ ด้วยวิธีการแบบปฏิกริยาของแข็งกับของแข็ง ทำการเตรียมและหาลักษณะเฉพาะของวัสดุที่สังเคราะห์เพื่อนำไปใช้เป็นวัสดุปัลอกถ่ายกระดูกมนุษย์ที่สามารถเตรียมขึ้นได้ในประเทศไทย จากการวิจัยที่เกี่ยวข้องกับการสังเคราะห์ไฮดรอกซีอะพาไทต์และนำไปใช้งานได้จริงอย่างแพร่หลายทั่วโลก พบว่า ความจำเป็นของวัสดุปัลอกถ่ายกระดูกมนุษย์ ขึ้นกับความซับซ้อนของบาดแผลที่กระดูก เช่น ถ้ารอยแตกหักของกระดูกมีเล็กน้อย กระดูกก็จะสามารถซ่อมแซมตัวของกระดูกได้เอง ภายใน 2 ถึง 3 สัปดาห์ ดังนั้นการผ่าตัดเพื่อซ่อมแซมจึงไม่จำเป็น แต่ในกรณีที่มีอุบัติเหตุอย่างรุนแรงและเสียหายต่อรูปทรงของกระดูก กระดูกจะไม่สามารถซ่อมแซมตัวของกระดูกได้เอง ดังนั้นวัสดุปัลอกถ่ายกระดูกมนุษย์จึงมีความต้องการใช้เพื่อช่วยซ่อมแซมกระดูกโดยไม่สร้างความเสียหายต่อเนื้อเยื่อที่มีชีวิต ปัจจุบันวัสดุปัลอกถ่ายทดแทนกระดูกมนุษย์ แบ่งเป็น 3 ประเภท คือ ออโทกราฟท์ แอลโลกราฟท์ และซีโนกราฟท์ วัสดุทั้งสามประเภทยังคงมีความต้องการใช้งานอยู่มหากาลและไม่เพียงพอต่อความต้องการ ดังนั้นวิทยานิพนธ์นี้จึงมีแนวคิดในการสังเคราะห์ไฮดรอกซีอะพาไทต์เพื่อใช้เป็นวัสดุปัลอกถ่ายทดแทนกระดูกมนุษย์

ในงานวิจัยนี้เบื้องต้นของการศึกษาในสัตว์ทดลองเป็นการศึกษาเฉพาะปฏิกริยาของเนื้อเยื่อนุ่มต่อวัสดุสังเคราะห์ เพื่อประเมินความเข้ากันได้ในสิ่งมีชีวิตและยืนยันเรื่องความปลอดภัย ไม่เป็นพิษต่อเนื้อเยื่อ การศึกษาผลของปฏิกริยาชิ้นงานต่อเนื้อเยื่อกระดูกยังไม่ได้ศึกษา เนื่องจากต้องการศึกษาในอนาคต ยิ่งกว่านั้น สำหรับการศึกษาผลของปฏิกริยาของชิ้นตัวอย่างต่อเนื้อเยื่ออ่อนนั้นก็เป็นการทดลองเบื้องต้นที่สำคัญอย่างมากต่อการผลิตสร้างวัสดุสังเคราะห์เพื่อประยุกต์เป็นวัสดุปัลอกถ่ายทดแทนกระดูกมนุษย์ ซึ่งวัสดุสังเคราะห์ต้องมีการสัมผัสก์กับเนื้อเยื่ออ่อนโดยรอบ ไม่เฉพาะแค่การสัมผัสก์กระดูกเท่านั้น ดังนั้นในงานวิจัยนี้อาจจะสามารถนำไปประยุกต์ใช้เป็นวัสดุปัลอกถ่ายทดแทนกระดูกมนุษย์ได้

STATEMENT OF ORIGINALITY

This thesis interested in studying the mechanism of synthesis HA by solid state reaction method. The preparation and characterization of synthetic HA for application to bone graft can prepared in Thailand. From literature review found that the necessity of bone grafts depends on the complexity of the bone defects. For instance, if the defect is minor, bone has its own potential to self remodeling within a few weeks, therefore, surgery is not required. But, in the case of violent defects and loss of volume, bone would not heal itself. Therefore, grafting is required to restore function without damaging living tissues. Nowadays bone grafts have three classifications, which includes of autograft, allograft and xenograft. They still have vast need and quantity insufficient. Therefore, this thesis has an idea to synthesis HA for application human bone graft.

Preliminary study, animal experiment of this thesis was only studying in the soft tissue reaction on synthetic HA for evaluating biocompatibility and safety to soft tissues. Hard tissue reaction to sample implanted has not yet been study due to aim of future study. Moreover, to study the reaction of sample to soft tissue is a very important experimentation on producing bone graft, which this synthetic HA will be contact not only with bone, but also with the surrounding soft tissue. Therefore, this experiment may be applicable to use as human bone graft.

Copyright[©] by Chiang Mai University
All rights reserved