BIBLIOGRAPHY

- W. Choomanee, P. Honyam and J. Sanwong, Regularity in semigroups of transformations with invariant sets, Int. J. Pure Appl. Math., 87 (2013), No. 1, 151-164.
- [2] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. I and II, Mathematical Surveys, No. 7, American Mathematical Society, Providence, R.I. 1961 and 1967.
- [3] P. A. Grillet, Intersections of maximal ideals in semigroups, Amer. Math. Monthly., 76 (1969), No. 5, 503-509.
- [4] P. Honyam and J. Sanwong, Semigroup of transformations with invariant sets, J. Korean Math. Soc., 48 (2011), No. 2, 289-300.
- [5] J. M. Howie, Fundamentals of semigroup theory, London Mathematics Society Monographs, New Series, vol. 12, Clarendon Press, Oxford, 1995.
- [6] T. W. Hungerford, Algebra, Springer-Verlag, New York, 1974.
- [7] K. D. Magill Jr., Subsemigroups of S(X), Math. Japon., 11 (1966), 109-115.
- [8] S. Nenthein, P. Youngkhong and Y. Kemprasit, Regular elements of some transformation semigroups, Pure Math. Appl., 16 (2005), No. 3, 307-314.
- [9] J. Sanwong, B.Singha and R. P. Sullivan, Maximal and minimal congruences on some semigroups, Acta Math. Sin. (Engl. Ser.), 25 (2009), No. 3, 455466.

Copyright[©] by Chiang Mai University AII rights reserved

MAXIMAL AND MINIMAL IDEALS IN TRANSFORMATION SEMIGROUPS WITH INVARIANT SETS

Attapol Praleah, Jintana Sanwong

Mathematics Department Faculty of Science, Chiang Mai University Chiang Mai, Thailand attapol_praleah@outlook.com

Abstract—Let X be a set and T(X) denote the semigroup (under composition) of transformations from X into itself. For a fixed nonempty subset Y of X, let

 $S(X,Y) = \{ \alpha \in T(X) : Y \alpha \subseteq Y \}.$

Then S(X,Y) is a semigroup of total transformations of X which leave a subset Y of X invariant. In this paper, existence and uniqueness of maximal and minimal ideals of S(X,Y) are proved. Moreover, we present a maximal congruence on S(X,Y) when X is a finite set.

Keywords—maximal ideals, minimal ideals, transformation semigroups with invariant sets.

I. INTRODUCTION

Let X be a set and $\emptyset \neq Y \subset X$. The semigroup we consider is S(X,Y) consists of all mappings in T(X)which leave $Y \subseteq X$ invariant. K. D. Magill [5] introduced and studied the semigroup S(X,Y) in 1996. In fact, if Y = X, then S(X, Y) = T(X). So we may regard S(X,Y) as a generalization of T(X). In 2005, S. Nenthein, P. Youngkhong, and Y. Kemprasit [7] showed that S(X,Y) is a regular semigroup if and only if X = Y or Y contains exactly. one element. and Reg $S(X,Y) = \{ \alpha \in S(X,Y) : X \alpha \cap Y = Y \alpha \}$ is the set of all regular elements of S(X,Y). Moreover, they counted the numbers of regular elements in S(X,Y) for a finite set X. The numbers were given in terms of the cardinalities of Xand Y. Later in 2013, W. Choomanee, P. Honyam and J. Sanwong [1] studied left regular, right regular and intraregular elements of S(X,Y) and consider the relationships between these elements. Moreover, they counted the number of left regular elements of S(X, Y) when X is a finite set.

As far back in 1952, Malcev [6] determined ideals of T(X). In 2011 P. Honyam and J. Sanwong [4] characterized when S(X,Y) is isomorphic to T(Z) for some set Z and prove that every semigroup A can be embedded in $S(A^1, A)$. Then they described Green's relations and ideals on S(X,Y) and applied these results to obtain its group H – classes and ideals.

In this paper, we determine maximal and minimal ideals of S(X,Y). We also present a maximal congruence on S(X,Y) when X is a finite set.

II. PRELIMINARIES AND NOTATIONS

In this section, we list some known results, definitions and notations that will be used throughout this paper.

Let X be a set and Y a nonempty subset of X. Then S(X,Y) is a semigroup with identity 1_X , the identity map on X. Green's relation on S(X,Y) are given by P. Honyam and J. Sanwong [4], which are needed in characterizing ideals on S(X,Y).

Lemma 2.1. [4] Let $\alpha, \beta \in S(X, Y)$. Then

- (1) $\alpha L\beta$ if and only if $X\alpha = X\beta$ and $Y\alpha = Y\beta$;
- (2) $\alpha R \beta$ if and only if $\pi_{\alpha} = \pi_{\beta}$ and $\pi_{\alpha}(Y) = \pi_{\beta}(Y)$
- (3) $\alpha J \beta$ if and only if $|X\alpha| = |X\beta|, |Y\alpha| = |Y\beta|$ and $|X\alpha \setminus Y| = |X\beta \setminus Y|$ Let *p* be any cardinal number such that

 $p' = \min\{q : q > p\}.$

Note that p' always exists since the cardinals are wellordered and when p is finite we have p' = p + 1 = the successor of p.

To describe ideals of S(X,Y), we let |X| = a, |Y| = b and $|X \setminus Y| = c$. For each cardinals r, s, t such that $2 \le r \le a', \ 2 \le a \le b'$ and $1 \le t \le c'$, we define $S(r, s, t) = \{\alpha \in S(X, Y) : |X\alpha| < r, |Y\alpha| < s\}$

s and
$$|X\alpha \setminus Y < t|$$
.

Theorem 2.2. [4] The set S(r, s, t) is an ideal of S(X, Y).

To obtain ideals of S(X,Y), we need the following notation. Let Z be a nonempty subset of S(X,Y), and let $K(Z) = \{\alpha \in S(X,Y) : |X\alpha| \le |X\beta|, |Y\alpha| \le |Y\beta| \text{ and } \}$

$$|X\alpha| \setminus Y \leq |X\alpha \setminus Y|$$
 for some $\beta \in Z$ }.

Then we see that $Z \subseteq K(Z)$ and $Z_1 \subseteq Z_2$ implies that $K(Z_1) \subseteq K(Z_2)$.

Theorem 2.3. [4] The ideals of S(X,Y) are precisely the set K(Z) for some nonempty subset Z of S(X,Y).

Let G(A) be the group of permutation on the set A. Define

 $G(X,Y) = \left\{ \alpha \in G(X) : \alpha \Big|_{Y} \in G(Y) \right\},\$

Where $Y \subseteq X$ and $\alpha|_Y$ is the restriction of α on the set Y. Then G(X,Y) is a subgroup of the permutation group G(A). If X is a finite set with n elements and Y a nonempty subset of X with m elements, then we define

$$J_{r,s,t} = \left\{ \alpha \in S(X,Y) : |X\alpha| = r, |Y\alpha| = s \text{ and } |X\alpha \setminus Y| = t \right\}$$

and

 $J_k = \left\{ \alpha \in S(X, Y) : |X\alpha| = k \right\}$

where $1 \le r \le n$, $1 \le s \le m$, $0 \le t \le n-m$ and $1 \le k \le n$. Thus $J_{r,s,t}$ is a J – class of S(X,Y), J_1 is the set of all constant maps with image in Y and $J_n = G(X,Y)$.

The following convenient notation will be used in this paper: given $\alpha \in S(X, Y)$ we write

$$\alpha = \begin{pmatrix} X_i \\ a_i \end{pmatrix}$$

and take as understood that the subscript *i* belongs to some (unmentioned) index set I, the abbreviation $\{a_i\}$ denote

$$\{a_i : i \in I\}$$
, and that $X\alpha = \{a_i\}$ and $a_i\alpha^{-1} = X_i$

With the above notation, for any $\alpha \in S(X,Y)$ we can write

$$\alpha = \begin{pmatrix} A_i & B_j & C_k \\ a_i & b_j & c_k \end{pmatrix},$$

can be empty.

where $A_i \cap Y \neq \emptyset; B_j, C_k \subseteq X \setminus Y; \{a_i\} \subseteq Y; \{b_j\} \subseteq Y \setminus \{a_i\}$ and $\{c_k\} \subseteq X \setminus Y$. Here, *I* is a nonempty set, but *J* or *K*

III. RESULTS

From now on, we let X be a finite set with n elements and Y a nonempty subset of X with m elements. Let \mathscr{J} be the set of all ideals of S(X,Y). Then (\mathscr{J}, \subseteq) is a partially ordered set with the following property.

Theorem 3.1. J_1 is a minimum ideal of S(X, Y).

Proof: We prove that $J_1 = S(2,2,1)$. It is clear that $J_1 \subseteq S(2,2,1)$. Let $\alpha \in S(2,2,1)$. Then $|X\alpha| < 2, |Y\alpha| < 2, |X\alpha \setminus Y| < 1$ and d thus $|X\alpha| = 1 = |Y\alpha|$. So α is a constant map and $\alpha \in J_1$. Therefore, J_1 is an ideal of S(X,Y). To show that J_1 is a minimum ideal, let I be an ideal of S(X,Y) and $\beta \in J_1$. Then there exists $\emptyset \neq Z \subseteq S(X,Y)$ such that I = K(Z). Let $\gamma \in Z$. Then $|X\gamma|, |Y\gamma| \ge 1$, so $|X\beta| = 1 \le |X\gamma|, |Y\beta| = 1 \le |Y\gamma|$ and $|X\beta \setminus Y| = 0 \le |X\gamma \setminus Y|$. Thus $\beta \in I$, i.e., $J_1 \subseteq I$ as required. + **Lemma 3.2.** If |Y| = 1 and $J_{2,s,t} \neq \emptyset$, then $J_1 \cup J_{2,s,t}$ is an ideal of S(X,Y) if and only if s = 1 = t.

Proof: Assume that |Y| = 1 and $J_{2,s,t} \neq \emptyset$. Suppose that $J_1 \cup J_{2,s,t}$ is an ideal of S(X,Y). Let $\alpha \in J_{2,s,t}$. Since $Y\alpha \subseteq Y$, we have $1 \le |Y\alpha| \le |Y| = 1$, so $|Y\alpha| = 1$ which implies that $s = |Y\alpha| = 1$. Since $|X\alpha| = 2$ and $Y = Y\alpha$, we have $|X\alpha \setminus Y| = |X\alpha \setminus Y\alpha| = 2-1=1$, that is t = 1.

Conversely, assume that s = 1 = t. First we show that $J_1 \cup J_{2,1,1} = S(3,2,2)$. Let $\alpha \in J_1 \cup J_{2,1,1}$. Then $\alpha \in J_1$ or $\alpha \in J_{2,1,1}$. If $\alpha \in J_1$, then $|X\alpha| = 1 < 3, |Y\alpha| \le |X\alpha| = 1 < 2$ and $|X\alpha \setminus Y| = 1 - 1 = 0 < 2$. thus $\alpha \in S(3,2,2)$. If $\alpha \in J_{2,1,1}$, www.ijtra.com Special Issue 11 (Nov-Dec 2014), PP. 32-35 then $|X\alpha| = 2 < 3$, $|Y\alpha| = 1 < 2$ and $|X\alpha \setminus Y| = 1 < 2$. Thus $\alpha \in S(3, 2, 2)$. For the other containment, let $\alpha \in S(3, 2, 2)$. Then $|X\alpha| \le 2$, $|Y\alpha| \le 1$ and $|X\alpha \setminus Y| \le 1$. If $|X\alpha| = 1$, then $\alpha \in J_1$. if $|X\alpha| = 2$, then $|X\alpha \setminus Y| = |X\alpha \setminus Y\alpha| = 2-1=1$. Then $\alpha \in J_{2,1,1}$. Hence $J_1 \cup J_{2,1,1} = S(3, 2, 2)$ is an ideal. +

Since J_1 is the minimum ideal of S(X,Y), we define a minimum ideal in S(X,Y) as follows. An ideal $J_1 \oslash I$ of S(X,Y) is a minimal ideal if J is an ideal such that $J_1 \oslash J \subseteq I$, then J = I.

Theorem 3.3. If |Y| = 1, then $J_1 \cup J_{2,1,1}$ is the unique minimal ideal of S(X, Y).

Proof: Suppose that $Y = \{a\}$. By Lemma 3.2, we have $J_1 \cup J_{2,1,1}$ is an ideal of S(X,Y). Next, we show that $J_1 \cup J_{2,1,1}$ is a minimal ideal of S(X,Y). Let J be an ideal of S(X,Y) such that $J_1 \subseteq J \subseteq J_1 \cup J_{2,1,1}$. Suppose that $J \oslash J_1 \cup J_{2,1,1}$. It is clear that $J_1 \subseteq J$. By assumption, we have exists $\alpha \in J_{2,1,1}$ but $\alpha \notin J$. We show that $J \subseteq J_1$ by supposing this is false, so $J \not\subset J_1$. Then there exists $\beta \in J$, but $\beta \notin J_1$. Since $\alpha, \beta \in J_{2,1,1}$, we can write

$$\alpha = \begin{pmatrix} A & X \setminus A \\ a & b \end{pmatrix}$$

Where $Y \subseteq A, a \in Y, b \in X \setminus Y$ and
$$\beta = \begin{pmatrix} B & X \setminus B \\ a & c \end{pmatrix}$$

Where $Y \subseteq B$, $c \in X \setminus Y$. Let $\gamma, \theta \in S(X, Y)$ be defined by

$$\gamma = \begin{pmatrix} A & X \setminus A \\ u & v \end{pmatrix}, \quad \theta = \begin{pmatrix} Y & X \setminus Y \\ a & b \end{pmatrix},$$

Where $u \in B \cap Y, v \in X \setminus B$. Consider
$$\gamma \beta \theta = \begin{pmatrix} A & X \setminus A \\ u & v \end{pmatrix} \begin{pmatrix} B & X \setminus B \\ a & c \end{pmatrix} \begin{pmatrix} Y & X \setminus Y \\ a & b \end{pmatrix}$$
$$= \begin{pmatrix} A & X \setminus A \\ a & b \end{pmatrix} = \alpha.$$

Then $\alpha = \gamma \beta \theta \in J$, which is a contradiction. So $J = J_1$.

Hence, $J_1 \cup J_{2,1,1}$ is a minimal ideal of S(X,Y). Finally, we show that $J_1 \cup J_{2,1,1}$ is a unique minimal ideal of S(X,Y). We show that M = N. Since N is an ideal of S(X,Y), we get that N = K(Z) for some $\emptyset \neq Z \subseteq S(X,Y)$. Since $J_1 \emptyset N$, there exists $\alpha \in N$ with $|X\alpha| \ge 2$. Since $\alpha \in N = K(Z)$, we obtain that $|X\alpha| \le |X\beta|, |Y\alpha| \le |Y\beta|$ and $|X\alpha \setminus Y| \le |X\beta \setminus Y|$ for some $\beta \in Z$. [Let $\gamma \in J_{2,1,1}$. Then $|X\gamma| = 2$ and so $|X\gamma| \le |X\alpha| \le |X\beta|$. Since |Y| = 1, we have $|Y\gamma| = 1 = |Y\alpha| \le |Y\beta|$ and $|X\gamma \setminus Y| = 1 \le |X\alpha \setminus Y| \le |X\beta \setminus Y|$. Then $\gamma \in K(Z) = N$. Thus $J_{2,1,1} \subseteq N$ and so $J_1 \cup J_{2,1,1} \subseteq N$ which implies that M = N.

Lemma 3.4. If |Y| > 1 and $J_{2,s,t} \neq \emptyset$, then $J_1 \cup J_{2,s,t}$ is an ideal of S(X,Y) if and only if s = 1, t = 0.

Proof: Assume that |Y| > 1 and $J_{2,s,t} \neq \emptyset$.

Suppose that $J_1 \cup J_{2,s,t}$ is an ideal. Let $\alpha \in J_{2,s,t}$. Then $|X\alpha| = 2$, $|Y\alpha| = s$ and $|X\alpha \setminus Y| = t$. Since $|X\alpha| = 2$ and $1 \le |Y\alpha| \le |X\alpha| = 2$, we have $1 \le s \le 2$, so $0 \le |X\alpha \setminus Y| \le 1$. Thus $0 \le t \le 1$. So there are four possible cases: s = 2 and t = 0; s = 2 and t = 1; s = 1 = t; or s = 1 and t = 0.

If s = 2 and t = 1, then $|X\alpha| = 2 = |Y\alpha|$. Since $Y\alpha \subseteq X\alpha$, we obtain that $X\alpha = Y\alpha$ and thus $t = |X\alpha \setminus Y| = |Y\alpha \setminus Y| = 0$ which is a contradiction.

If s = 2 and t = 0, then $J_1 \cup J_{2,s,t} = J_1 \cup J_{2,2,0}$. Let $\beta \in J_{2,2,0}$. So $|X\alpha| = 2 = |Y\beta|$ and $Y\beta \subseteq Y$, thus we can write

 $\beta = \begin{pmatrix} A & B \\ a & b \end{pmatrix}$

where $A \cap Y \neq \emptyset \neq B \cap Y$; $a, b \in Y$. Since $\emptyset \neq Y \emptyset X$, there exists $c \in B$ and define $\gamma \in S(X, Y)$ by

 $\gamma = \begin{pmatrix} C & X \setminus C \\ a & c \end{pmatrix}$ where $Y \subseteq C$. So $\gamma \beta = \begin{pmatrix} C & X \setminus C \\ a & b \end{pmatrix} \notin J_1 \cup J_{2,2,0}.$

Then $J_1 \cup J_{2,2,0}$ is not an ideal is a contradiction.

If s = 1 = t, then $J_1 \cup J_{2,s,t} = J_1 \cup J_{2,1,1}$. Let $\lambda \in J_{2,1,1}$. So $|X\lambda| = 2$ and $Y\lambda \subseteq Y$, thus we can write $\lambda = \begin{pmatrix} A & X \setminus A \\ u & v \end{pmatrix}$

where $Y \subseteq A$; $u \in Y$, $v \in X \setminus Y$. Since |Y| > 1, there exists $u \neq w \in Y$ and define $\mu \in S(X, Y)$ by

$$\mu = \begin{pmatrix} Y & X \setminus Y \\ u & w \end{pmatrix}$$

So
$$\lambda \mu = \begin{pmatrix} A & X \setminus A \\ u & w \end{pmatrix} \notin J_1 \cup J_{2,1,1}.$$

Thus $J_1 \cup J_{2,1,1}$ is not an ideal which is a contradiction. Therefore, s = 1 and t = 0.

Conversely, assume that s = 1 and t = 0. We show that $J_1 \cup J_{2,1,0} = S(3,2,1)$.

Let $\alpha \in J_1 \cup J_{2,1,0}$. Then $\alpha \in J_1$ or $\alpha \in J_{2,1,0}$. If $\alpha \in J_1$, then $|X\alpha| = 1 < 3$, $|Y\alpha| \le |X\alpha| = 1 < 2$ and $|X\alpha \setminus Y| = 1 - 1 = 0 < 1$. Thus $\alpha \in S(3, 2, 1)$. For the www.ijtra.com Special Issue 11 (Nov-Dec 2014), PP. 32-35 other containment, let $\alpha \in S(3,2,1)$. Then $|X\alpha| \le 2$, $|Y\alpha| = 1$ and $|X\alpha \setminus Y| = 0$. If $|X\alpha| = 1$, then $\alpha \in J_1$. If $|X\alpha| = 2$, $|Y\alpha| = 1$ and $|X\alpha \setminus Y| = 0$, then $\alpha \in J_{2,1,0}$ +

Theorem 3.5. If |Y| > 1, then $J_1 \cup J_{2,1,0}$ is the unique minimal ideal of S(X,Y).

Proof: Suppose that |Y| > 1. By Lemma 3.4, we have $J_1 \cup J_{2,1,0}$ is an ideal of S(X,Y). To show that $J_1 \cup J_{2,1,0}$ is a minimal ideal of S(X,Y), let J be an ideal of S(X,Y) such that $J_1 \subseteq J \oslash J_1 \cup J_{2,1,0}$. It is clear that $J_1 \cup J$. By assumption we have there exists $\alpha \in J_{2,1,0}$ but $\alpha \in J$. We prove that $J \subseteq J_1$ by supposing this false. Then there exists $\beta \in J$, but $\beta \in J_1$. Since $\alpha, \beta \in J_{2,1,0}$, we can write

$$\alpha = \begin{pmatrix} A & X \setminus A \\ a & b \end{pmatrix}$$

where $Y \subseteq A$; $a, b \in Y$ and

$$\beta = \begin{pmatrix} B & X \setminus B \\ a' & c \end{pmatrix}$$

where $Y \subseteq B$; $a', c \in Y$. Let $\gamma, \theta \in S(X, Y)$ be defined by

$$\gamma = \begin{pmatrix} A & X \setminus A \\ u & v \end{pmatrix}, \quad \theta = \begin{pmatrix} a & X \setminus \{a\} \\ a & b \end{pmatrix}$$

where $u \in B \cap Y$, $v \in X \setminus B$. so

$$\gamma\beta\theta = \begin{pmatrix} A & X \setminus A \\ u & v \end{pmatrix} \begin{pmatrix} B & X \setminus B \\ a' & c \end{pmatrix} \begin{pmatrix} a & X \setminus \{a\} \\ a & b \end{pmatrix}$$
$$= \begin{pmatrix} A & X \setminus A \\ a & b \end{pmatrix} = \alpha.$$

Then $\alpha = \gamma \beta \theta \in J$, which is a contradiction. Hence, $J_1 \cup J_{2,1,0}$ is a minimal ideal of S(X,Y). Now, we show that $J_1 \cup J_{2,1,0}$ is a unique minima ideal of S(X,Y). Let $M = J_1 \cup J_{2,1,0}$ and N be a minimal ideal of S(X,Y). Since N is an ideal of S(X,Y), we get that N = K(Z)for some $\emptyset \neq Z \subseteq S(X,Y)$. Since $J_1 \emptyset N$, there exists $\alpha \in N$ with $|X\alpha| \ge 2$. Since $\alpha \in N = K(Z)$, we obtain that $|X\alpha| \le |X\beta|$, $|Y\alpha| \le |Y\beta|$ and $|X\alpha \setminus Y| \le |X\beta \setminus Y|$ for some $\beta \in Z$. Let $\gamma \in J_{2,1,0}$. Then $|X\gamma| = 2$ and so
$$\begin{split} |X\gamma| &= 2 = |X\alpha| \le |X\beta|. \quad \text{Since} \quad |Y| > 1, \quad \text{we have} \\ |Y\gamma| &= 1 \le |Y\alpha| \le |Y\beta| \text{ and } |X\alpha \setminus Y| = 0 \le |X\alpha \setminus Y| \le \\ |X\beta \setminus Y|. \quad \text{Then } \gamma \in K(Z) = N. \text{ Thus } J_{2,1,0} \subseteq N \text{ and so} \\ J_1 \cup J_{2,1,0} \in N \text{ which implies that } M = N. \end{split}$$

Lemma 3.6. $J_1 \cup J_2 \cup \ldots \cup J_k$ is an ideal of S(X,Y)where $1 \le k \le n$.

Proof: Let $\alpha \in J_1 \cup J_2 \cup ... \cup J_k$ and $\beta, \gamma \in S(X, Y)$. Then $\alpha \in J_{i_0}$ for some $1 \le i_0 \le k$ and thus $|X\alpha| = i_0$. Since $X\beta\alpha\gamma = (X\beta)\alpha\gamma \subseteq X\alpha\gamma$, we get that $|X\beta\alpha\gamma| \le |X\alpha\gamma| \le |X\alpha| = i_0$. Then $|X\beta\alpha\gamma| = p$ for some $1 \le p \le i_0$. Hence $\beta\alpha\gamma \in J_p \subseteq J_1 \cup J_2 \cup ... \cup J_k$.

An ideal $I \oslash S(X,Y)$ of S(X,Y) is a maximal ideal if J is an ideal such that $I \subseteq J \oslash S(X,Y)$, then I = J.

Lemma 3.7. Let S be a semigroup with identity 1. If S has a maximal ideal, then it is unique.

Proof: suppose that S has a maximal ideal, say M. Let M' be a maximal ideal of S. It is clear that $M \cup M'$ is an ideal and $1 \notin M \cup M'$. Since $M \subseteq M \cup M'$ and M is a maximal ideal, we have $M \cup M' = M$. Similarly, we have $M \cup M' = M'$. So $M = M \cup M' = M'$ and therefore, S has a unique maximal ideal of S.

If |X| = |Y| = 1, then S(X,Y) = G(X,Y). Thus $S(X,Y) \setminus G(X,Y) = \emptyset$. So we consider the case |X| > 1. **Theorem 3.8.** If |X| > 1, then $S(X,Y) \setminus G(X,Y)$ is a unique maximal ideal of S(X,Y).

Proof Let $a \in Y$ and α be the constant map with Then $\alpha \in S(X,Y) \setminus G(X,Y)$, $X\alpha = \{a\}$. so $S(X,Y) \setminus G(X,Y) \neq \emptyset$. By Lemma 3.6, we have $S(X,Y) \setminus G(X,Y) = S(X,Y) \setminus J_n = J_1 \cup J_2 \cup \ldots \cup J_{n-1}$ Is an ideal of S(X,Y). We show that $S(X,Y) \setminus G(X,Y)$ is a maximal ideal of S(X,Y). Let I be an ideal of S(X,Y) such that $S(X,Y) \subseteq I \oslash S(X,Y)$. We prove that $I = S(X,Y) \setminus G(X,Y)$ by supposing this is not true. Then there exist $\alpha \in I$ but $\alpha \notin S(X,Y) \setminus G(X,Y)$, i.e., $\alpha \in G(X,Y)$. Since G(X,Y) is a group, we obtain that $\alpha^{-1} \in G(X,Y)$ and $1_x = \alpha \alpha^{-1} \in I$. Thus I = S(X,Y)is а contradiction. which Therefore $I = S(X,Y) \setminus G(X,Y)$. So $S(X,Y) \setminus G(X,Y)$ is a maximal ideal of S(X,Y). By Lemma 3.7, we obtain that www.ijtra.com Special Issue 11 (Nov-Dec 2014), PP. 32-35 $S(X,Y) \setminus G(X,Y)$ is a unique maximal ideal of S(X,Y).

Let ρ be a congruence on a semigroup S. We recall that ρ is a maximal congruence if δ is a congruence on S with $\rho \emptyset \delta \subseteq S \times S$ implies $\delta = S \times S$.

Theorem 3.9 Let S = S(X,Y) and G = G(X,Y). Then $\rho = (S \setminus G \times S \setminus G) \cup (G \times G)$ is a maximal congruence on S.

Proof It is clear that ρ is a equivalence relation on S. Let $\alpha, \beta, \gamma \in S$ and $(\alpha, \beta) \in \rho$. Then $(\alpha, \beta) \in (S \setminus G \times S \setminus G)$ or $(\alpha, \beta) \in G \times G$. If $(\alpha, \beta) \in (S \setminus G \times S \setminus G)$, then $\gamma \alpha, \alpha \gamma, \gamma \beta, \beta \gamma \in S \setminus G$ since $S \setminus G$ is an ideal of S(X,Y). Thus $(\gamma \alpha, \gamma \beta), (\alpha \gamma, \beta \gamma) \in (S \setminus G) \times (S \setminus G) \subseteq \rho$. If $(\alpha, \beta) \in G \times G$, we consider two cases.

Case 1: $\gamma \in S \setminus G$. Since $S \setminus G$ is an ideal, we have $(\gamma \alpha, \gamma \beta), (\alpha \gamma, \beta \gamma) \in (S \setminus G) \times (S \setminus G) \subseteq \rho$.

Case 2: $\gamma \in G$. Then $\alpha, \beta, \gamma \in G$ and G is a group, so we obtain that $\gamma \alpha, \alpha \gamma \in G$ and $\gamma \beta, \beta \gamma \in G$. Thus $(\gamma \alpha, \gamma \beta), (\alpha \gamma, \beta \gamma) \in G \times G \subseteq \rho$.

Next, we show that ρ is a maximal congruence on S. Let δ be a congruence on S such that $\rho \otimes \delta \subseteq S \times S$. Since $\rho \otimes \delta$, there exists $(\alpha, \beta) \in (\delta \setminus \rho)$ with $\alpha \in S \setminus G$ and $\beta \in G$. Let k be the order of β . Then $1_X = \beta^k \delta \alpha^k$ where $\alpha^k \in S \setminus G$ since $S \setminus G$ is an ideal. Now, let $(\lambda, \mu) \in S \times S$. So $\lambda \delta \alpha^k \lambda$ and $\mu \delta \alpha^k \mu$ where $\alpha^k \lambda, \alpha^k \mu \in S \setminus G$ so $\alpha^k \lambda \rho \alpha^k \mu$. Since $\rho \subseteq \delta$, we have $\alpha^k \lambda \delta \alpha^k \mu$. Thus $\lambda \delta \mu$ and $\delta = S \times S$ as required.

ACKNOWLEDGMENT

This research is supported by the Damrongchaitham Foundation. The first author would like to thank the Graduate School Chiang Mai University.

REFERENCES

- W. Choomanee, P. Honyam and J. Sanwong, Regularity in semigroups of transformations with invariant sets, IJPAM., 87 (2013), No. 1, 151-164.
- [2] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups. Vol. I and II, Mathematical Surveys, No. 7, American Mathematical Society, Providence, R.I. 1961 and 1967.
- [3] P. A. Grillet, Intersections of Maximal Ideals in Semigroups, MAA., 76 (1969), No. 5, 503-509.
- [4] P. Honyam and J. Sanwong, Semigroup of transformations with invariant sets, J. Korean Math. Soc., 48 (2011), No. 2, 289-300.
- [5] K. D. Magill Jr., Subsemigroups of S(X), Math. Japon., 11 (1966), 109-115.
- [6] A. I. Malcev, Symmetric groupoids, Mat. Sbornik N. S. 31(73) (1952), 136-151.
- [7] S. Nenthein, P. Youngkhong and Y. Kemprasit, Regular elements of some transformation semigroups, Pure Math. Appl., 16 (2005), No. 3, 307-314.