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Abstract—Let X be a set and T (X ) denote the semigroup

(under composition) of transformations from X into itself. For a
fixed nonempty subset Y of X, let
S(X,Y)={aeT(X):YacY}|.

Then

of X which leave a subset Y of X invariant. In this paper,
existence and uniqueness of maximal and minimal ideals of
S(x,y) are proved. Moreover, we present a maximal congruence

S(X,Y)is a semigroup of total transformations

on S(X,Y)when X is a finite set.
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. INTRODUCTION

Let X be asetand D #Y < X. The semigroup we
consider is S(X,Y) consists of all mappings in T(X)
which leave Y < X invariant. K. D. Magill [5] introduced
and studied the semigroup S(X,Y)in 1996. In fact, if
Y=X, thenS(X,Y)=T(X). So we may regard
S(X,Y) as a generalization of T (X).In 2005, S. Nenthein,
P. Youngkhong, and Y. Kemprasit [7] showed that
S(X,Y)is a regular semigroup if and only if X =Y or Y
contains exactly one element, and
Reg S(X,Y)={a eS(X,Y): XanY =Ya} is the set of
all regular elements of S(X,Y). Moreover, they counted the
numbers of regular elements in S(X,Y) for a finite set X.
The numbers were given in terms of the cardinalities of X
and Y. Later in 2013, W. Choomanee, P. Honyam and J.
Sanwong [1] studied left regular, right regular and intra-
regular elements of S(X,Y) and consider the relationships
between these elements. Moreover, they counted the number
of left regular elements of S(X,Y) when X is a finite set.

As far back in 1952, Malcev [6] determined ideals of
T (X ) In 2011 P. Honyam and J. Sanwong [4] characterized

when S(X,Y) is isomorphic to T (Z) for some set Z and

prove that every semigroup A can be embedded in S(A', A).
Then they described Green’s relations and ideals on S(X,Y)

and applied these results to obtain its group H — classes and
ideals.
In this paper, we determine maximal and minimal ideals of

S(X,Y). We also present a maximal congruence on
S(X,Y) when X is a finite set.

Il. PRELIMINARIES AND NOTATIONS
In this section, we list some known results, definitions and
notations that will be used throughout this paper.

Let X be a set and Y a nonempty subset of X. Then
S(X,Y)is a semigroup with identityl, , the identity map
on X . Green’s relation on S(X,Y)are given by P. Honyam
and J. Sanwong [4], which are needed in characterizing ideals
on S(X,Y).

Lemma 2.1. [4] Let &, S S(X,Y). Then
(1) aLgifandonlyif Xa=Xfand Ya =Y [ ;
(2) eRpgifandonlyif 7z, =7 and 7, (Y)=7,(Y)

(3) ad pifand only if |Xa|=|X B|.|Yo|=]Y p|and
|Xa\Y|=|XB\Y|
Let p be any cardinal number such that
p'=min{q:q> p}.

Note that P’always exists since the cardinals are well-

ordered and when pis finite we have p'=p+1= the
successor of p.

To describe ideals of S(X,Y), we let |X|=a, |Y|=b and
r,s,t such that

|X\Y|=c. For each cardinals

2<r<a’, 2<a<b’and1<t<c’, we define
S(r,s,t) ={a e S(X,Y): |Xa| <r, |Ya| <
sand [Xa\Y <tf}.

Theorem 2.2. [4] The set S(r,S,t) isanideal of S(X,Y).

To obtain ideals of S(X,Y), we need the following
notation. Let Z be a nonempty subset of S(X,Y) , and let
K(Z) ={a eS(X,Y):|Xa|<|XB|.|Ya|<|Y B| and

[Xa|\Y <|Xa\Y| for some g € Z}.

Then we see that Z < K(Z) and Z, = Z, implies that
K(Z,)=K(Z,).
Theorem 2.3. [4] The ideals of S(X,Y) are precisely the set
K (Z) for some nonempty subset Z of S(X,Y).

Let G(A) be the group of permutation on the set A.
Define
G(X,Y) ={a e G(X): alYe G(Y)},

Where Y < X and a|Y is the restriction of & on the set Y.

Then G(X,Y) is a subgroup of the permutation group G(A).
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If X is a finite set with n elements and Y a nonempty
subset of X with m elements, then we define

Jrst={aeS(X.Y):|Xa|=r|Ya|=sand [Xa\Y|=t}
and
J ={aeS(X,Y):|Xa| =k}
wherel<r<n, 1<s<m,0<t<n-m and 1<k<n. Thus
Jrst isaJ —class of S(X,Y), Jp is the set of all constant
maps with image in Y and J, =G(X,Y).

The following convenient notation will be used in this
paper: given o € S(X,Y) we write

(%),

and take as understood that the subscript i belongs to some
(unmentioned) index set |, the abbreviation {aj}denote

{gj:iel},and that X ={aj}and aia_lzxi.
With the above notation, for any « e S(X,Y) we can
write
[A Bj Ck]
a: L
8 bj o
where A NY = J;Bj,Cy < X \Y;{ai}gY;{bj}gY \{a}

and {cx}< X\Y. Here, | is a nonempty set, but J or K

can be empty.
Ill. RESULTS

From now on, we let X be a finite set with n elements
and Y a nonempty subset of X with m elements. Let ~ be
the set of all ideals of S(X,Y). Then (_~,<)is a partially
ordered set with the following property.
Theorem 3.1. Jq is a minimum ideal of S(X,Y).

Proof: We prove that J1 =S(2,2,1). It is clear that
J1©5(2.21). Leta €5(2,2,1). Then|Xa| < 2,[Y o < 2| X \Y|<1an

d thus |Xa|=1=|Ya|.So « is a constant map and

o € J1. Therefore, Jqis an ideal of S(X,Y). To show that Jp
is @ minimum ideal, let | be an ideal of S(X,Y) and € Jq.
Then there exists @=Z < S(X,Y) such that | =K(Z). Let
y€Z. Then |Xy|,[Y7|21 so |XB|=1<|Xy|.]Y B =1<|Yy| and
|XB\Y|=0<|Xy\Y|.Thus Bel,ie., Jy | asrequired.+
Lemma 3.2. If [Y|=1and Jp st =@, then Jj Ul st isan
ideal of S(X,Y) ifand only if s=1=t.

Proof: Assume that |Y|=1and Jp st #. Suppose that
Jpuldp st is an ideal of S(X,Y). Let aeJpgt. Since
YacY, we have 1<|Ya|<|Y|=150 |Ya|=1which implies
that s=|Ya|=1. Since |Xa|=2 and Y =Ya,we have
|Xa\Y|=|Xa\Ya|=2-1=1 thatis t=1.

Conversely, assume that s=1=t. First we show that
N J2’1’1 =5@B,2,2). Let aeJiu J2’1,1. Then «a € Jqor

aeldp1q. If aeldqthen |Xa|=1<3|Ya|<|Xa|=1<2
and [Xa\Y|[=1-1=0<2. thus ¢ €5(3,2,2). If aecJpqy,
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then [Xa|=2<3|Ya|=1<2 and |Xa\Y|=1<2.Thus

a €S(3,2,2). For the other containment, let o <S(3,2,2).
Then |Xa|<2|Ya|<l and |Xa\Y|<LIf |Xa|=1then
if |Xa|:2,then |Xa\Y|:|Xa\Ya|:2—1:1.
Then a eJp11. Hence J1 U211 =S(3,2,2) isanideal. +

ael.

Since Jq is the minimum ideal of S(X,Y), we define a
minimum ideal in S(X,Y) as follows. An ideal J1 @1 of
S(X,Y) is a minimal ideal if J is an ideal such that
J1oP cl, thend =1.

Theorem 3.3. If |Y| =1 then Jj U Jp 11 is the unique minimal
ideal of S(X,Y).

Proof: Suppose that Y ={a}. By Lemma 3.2, we have
Jyudp11 is an ideal of S(X,Y). Next, we show that

JpUJp11is a minimal ideal of S(X,Y). Let J be an ideal
of S(X,Y) such thatljcpcIulplg.
that J © J1 U Jp 1. Itis clear that Jy = J . By assumption, we

Suppose

have exists aeJpqibut a¢J. We show that J = Jy by

supposing this is false, so J & J1. Then there exists S J , but
B &J1.Since a, B €11, We can write

[A X\Aj
a:
a b

Where Y c A,aeY,be X\Y and
F B X\B
“la ¢
Where Y = B, ce X \Y. Let ,6 e S(X,Y) be defined by
(A X\AJ (Y X\Y]
Y= , 0= ’
u s a b
W here ue BNY,ve X \B. Consider
)- A X\AYB X\B)Y X\Y
780 = v la ¢ Jla b
(A X\Aj
= =qa.
a b
Then a = yf6 € J, which is a contradiction. So J = J1 .
Hence, J1wJp11is a minimal ideal of S(X,Y). Finally, we

=

show that JywJpq1 is a unique minimal ideal of S(X,Y).
We show that M = N. Since N is an ideal of S(X,Y), we
get that N = K(Z) for some &= Z < S(X,Y).Since J1 O N,
there exists e N with |Xa|>2.Since aeN =K(Z), we
obtain that |Xa|<|XA|,|[Ya|<|YB| and |Xa\Y|<|Xp\Y|for
some BeZ. |Let yely1q. Then |Xy|=2and so|Xy|<|Xa|<|XA.
[Y|=Lwe have |Yy|=1=|Yo|<|YB]  and
|Xy\Y|=1<|Xa\Y|<|XB\Y|. Then yeK(Z)=N. Thus
and so

Since

J211¢N
M =N.
Lemma 3.4. If [Y|>1and Jp st # @, then JyUlp st isan
ideal of S(X,Y) ifand only if s=1,t=0.

J1 w211 < Nwhich implies that
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Proof: Assume that |Y|>1and Jp st # @

Suppose that J1 U Jp gt isanideal. Let & € Jp g t. Then
|Xa|=2, [Ya|=s and | X \Y|=t.Since |X | =2and
1S|Ya|S|Xa|=2, we 1<s<2, SO
0<|Xa\Y|<1. Thus 0<t<l.
possible cases: S=2 and t=0;s=2and t=1,s=1=t;
orS=1andt=0.

If s=2 and t=1 then |Xa|:2:|Ya|. Since
Yac Xa, Xa=Ya
t =|Xa\Y| = |Ya\Y| =0 which is a contradiction.

If s=2 and t=0, then J,UJ,  =J,UJ,,,. Let
B, g So |Xa|=2=|Y,B| and YS Y, thus we
can write

A B
)
where ANY #0#BnNY; a,beyY.
D#Y @ X, there exists C € B and define ]/ES(X,Y)
by

C X\C
e )
where Y < C. So

C X\C
= a b & ‘]1UJ2,2,0-

have

So there are four

we obtain that and thus

Since

Then J; U J,,, isnotan ideal is a contradiction.
If s=1=t, then J,UJ, =] Uy, Let
A€d,,;. 50 |XA=2and YACY, thuswe can write
(A X \A]
ﬂ/:
u v
where Y A; ueY,ve X\Y. Since |Y|>1, there
exists U=WeY and define 1 € S(X,Y) by
[Y X \YJ
;Ll:
u w
So
) A X\A 303
= gJ,Ud,,
H u W 1~Y211

Thus Jlqu'lvl is not an ideal which is a contradiction.

Therefore, S=1and t =0.
Conversely, assume that S=1 and t =0. We show that

J,Ud,.,=5(321).

Let €, U, . Thenaed oraeld,, . If el
then |Xa|=1<3, [Ya|<|Xa|=1<2 and
|Xa\Y|=1—1=O<1. Thus aeS(3,2,1). For the
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aesS (3, 2,1). Then

|Xa|£2, |Ya|=1 and |Xa\Y|=0. If |Xa|:1, then
ael,. If [Xa|=2, [Ya|=1 and |[Xa\Y|=0, then

other containment, let

aed,  +
Theorem 3.5. If |Y|>1, then J, U J, , is the unique
minimal ideal of S (X ,Y).

Proof: Suppose that |Y| >1. By Lemma 3.4, we have
Jy Uy is an ideal of S(X,Y). To show that
J,Ud,., is a minimal ideal of S(X,Y), let J be an
ideal of S(X,Y) suchthat J, € J @ J, UJ, . Itis clear
that J; U J. By assumption we have there exists & € J,,

but & €J. We prove that J < J; by supposing this false.

Then there exists e J, but feJ,. Since a,feJ,,,,
we can write

A X\A
o=
a b
where Y € A; a,beY and
B X\B
p=|_,
a C
where Y < B; a’,ceY. Let 7,9€S(X,Y) be defined
by

7:(3 X\)A} 9:(: X\b{a}]

where Ue BNY, ve X \B. so

A X\A)B X\B)fa X\{a
o e T

A X\A

{a \ jza.

Then a=yf0<J, which is a contradiction. Hence,
J,UJ,., is a minimal ideal of S(X,Y). Now, we show
that J, U J,, , is a unique minima ideal of S(X,Y). Let
M=J,UJ,,, and N be a minimal ideal of S(X,Y).
Since N is an ideal of S(X,Y),We get that N = K(Z)
for some S =7 gS(X,Y). Since J, @ N, there exists
aeN with |Xa|22. Since e N = K(Z),we obtain
that |Xa| <|X |, [Ya| <Y | and [Xa\Y|<[XB\Y]

for some BeZ. Let y€J,,, Then |[Xy|=2 and so
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|X7/|:2:|Xa|S|X,B|. Since |Y|>1, we have
Yy|=1<|Ya|<|Y B] and [ X \Y|=0<|Xa \Y|<
|XB\Y|. Then y e K(Z)=N. Thus J,,, =N andso
J; UJ, 0 €N which implies that M = N.

Lemma 36. J,UJ,U...uJ, isan ideal of S(X,Y)

where 1<k <n.
Proof: Let

,B,}/ES(X,Y). Then a € J; for some 1<i, <k and

aelJ Ul,u...U], and

thus [Xa|=i,. Since XpBay=(XB)ay < Xay, we
|Xﬂa7/|£|Xa7|S|Xa|=io.
|X,80(7/|= p forsome 1< p <i,. Hence Say eJ, =

get that Then

Jul,u...uld,. +
An ideal IQS(X,Y) of S(X,Y) is a maximal ideal
if J isanideal suchthat | = J @S(X,Y), then | =J.

Lemma 3.7. LetS be a semigroup with identity 1. If S has
a maximal ideal, then it is unique.

Proof: suppose that S has a maximal ideal, say M. Let
M’ be a maximal ideal of S. Itis clear that M UM’ is an
ideal and 1¢ M UM’. Since M cM UM’ and M isa

maximal ideal, we have M UM’ =M. Similarly, we have
MUM' =M’ so M=M UM'=M" and therefore,
S has a unique maximal ideal of S.

If |X|:|Y|:1, then S(X,Y):G(X,Y). Thus
S(X,Y)\G(X,Y):@. So we consider the case |X|>1.
Theorem 3.8. If |X|>1, then S(X,Y)\G(X,Y) is a
unique maximal ideal of S(X ,Y).

Proof Let acY and a be the constant map with
Xa={a}. Then aeS(X,Y)\G(X,Y), so
S(X,Y)\G(X,Y)# O .By Lemma 3.6, we have
S(X,Y)\G(X,Y) =S(X,Y)\J, =3, ud,u..ud_,
Is an ideal of S(X,Y). We show that S(X,Y)\G(X,Y)
is a maximal ideal ofS(X,Y). Let | be an ideal of
S(X,Y)such that S(X,Y)g | @S(X,Y). We prove
that | = S(X,Y)\G(X,Y) by supposing this is not true.
Then there exist ¢ € | but a%S(X,Y)\G(X,Y), ie.,
a eG(X,Y). Since G(X,Y) is a group, we obtain that
a_leG(X,Y) and 1, —aatel. Thus | =S(X,Y)
which is a contradiction. Therefore
I:S(X,Y)\G(X,Y). So S(X,Y)\G(X,Y) is a
maximal ideal of S(X,Y). By Lemma 3.7, we obtain that
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S(X,Y)\G(X,Y) is a unique maximal ideal of
S(X,Y).

Let p be a congruence on a semigroup S . We recall
that o is a maximal congruence if O is a congruence on S
with p@ 6 < SxS impliesd=SxS.
Theorem 3.9 Let S :S(X,Y) and G :G(X,Y).Then
p= (S \GxS \G)U(G xG) is a maximal congruence

onsS.
Proof It is clear that o is a equivalence relation on S. Let

a,B,y€Sand(a, )€ p.Then (a,f)e(S\GxS\G) or
(a,ﬂ)erG. If (a,ﬂ)e(S\GxS\G), then
va,ay,yB, by € S\G since S\G
S(X,Y). Thus (ye,78).(ar. By)e(S\G)x(S\G)c p.

If (a, ﬂ) € G x G, we consider two cases.

is an ideal of

Case 1: ¥ € S\G. Since S\ G is an ideal, we have

(rer,18).(ay. By) €(S\G)x(S\G) < p.
Case 2: y€G. Then a,f,7€G and G is a
group, so we obtain that yor,ay € G and yf3, fy € G. Thus

(ya,18).(ay, Br)eGxG c p.
Next, we show that o is a maximal congruence onS .

Let & be a congruence on S such that p @ o < SxS.
pD S, there exists (a,ﬂ)e(5\p) with
aeS\G and feG. Let k be the order of 5. Then
1, = B6a* where a* € S\G since S\G s an ideal.
Now, Iet(/”t,,u)eSxS. So Ada“A and uda* . where

Since

a*A,a* e S\G so a*Apa® . Since p < 5, we have
a*Ada* . Thus Adu and & =S xS as required.
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