
CHAPTER 2

Preliminaries

2.1 Elementary Concepts

In this thesis, we assume that X is a finite set and Y a nonempty subset of X and

the cardinality of a set X is denoted by |X|.

Definition 2.1.1. A semigroup is a pair (S, ·) in which S is a nonempty set and · is a

binary associative operation on S, i.e., the equation (x · y) · z = x · (y · z) holds for all

x, y, z ∈ S.

Definition 2.1.2. Let S be a semigroup.

(i) If there exists an element 1 of S such that

x1 = x = 1x for all x ∈ S,

then 1 is called an identity element of S and S is called a semigroup with identity or a

monoid.

(ii) If there exists an element 0 of S such that

x0 = 0 = 0x for all x ∈ S,

then 0 is called a zero element of S and S is called a semigroup with zero.

A nonempty subset T of a semigroup S is called a subsemigroup of S if xy ∈ T for

all x, y ∈ T .

Definition 2.1.3. Let A ̸= ∅. Then a relation R on A is an equivalence relation on A

provided R is:

reflexive: (a, a) ∈ R for all a ∈ A;

symmetric: if (a, b) ∈ R, then (b, a) ∈ R for all a, b ∈ A;

transitive: if (a, b) ∈ R and (b, c) ∈ R, then (a, c) ∈ R for all a, b, c ∈ A.

Definition 2.1.4. Let S be a semigroup. A relation R on the set S is called left compatible

(with the operation on S) if
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(for all s, t, a ∈ S) if (s, t) ∈ R, then (as, at) ∈ R,

and right compatible if

(for all s, t, a ∈ S) if (s, t) ∈ R, then (sa, ta) ∈ R.

It is called compatible if R is left and right compatible. A left [right] compatible equivalence

relation is called a left [right] congruence. A compatible equivalence relation is called a

congruence.

Definition 2.1.5. A partially ordered set is a nonempty set A together with a relation R

on A (called a partial ordering of A) which is reflexive and transitive and

antisymmetric: if (a, b) ∈ R and (b, a) ∈ R, then a = b for all a, b ∈ A.

If R is a partial ordering of A, then we usually write a ≤ b in place of (a, b) ∈ R. In this

notation the conditions reflexive, transitive and antisymmetric become (for all a, b, c ∈ A):

a ≤ a;

if a ≤ b and b ≤ c, then a ≤ c;

if a ≤ b and b ≤ a, then a = b.

We write a < b if a ≤ b and a ̸= b.

Elements a, b ∈ A are said to be comparable, provided a ≤ b or b ≤ a. However, two

given elements of a partially ordered set need not be comparable. A partial ordering of a

set A such that any two elements are comparable is called a linear ordering.

Let (A,≤) be a partially ordered set. An element a ∈ A is maximal in A if for every

c ∈ A, if a ≤ c, then a = c. An upper bound of a nonempty subset B of A is an element

d ∈ A such that b ≤ d for every b ∈ B. A nonempty subset B of A that is linearly ordered

by ≤ is called a chain in A.

Theorem 2.1.1. [6] (Zorn’s Lemma) If A is a nonempty partially ordered set such that

every chain in A has an upper bound in A, then A contains a maximal element.

Definition 2.1.6. A partially ordered set (L,≤) is called a join-semilattice and a meet-

semilattice if each two-element subset {a, b} ⊆ L has a join (i.e. the least upper bound)

and a meet (i.e. the greatest lower bound), denoted by a∨b and a∧b, respectively. (L,≤)

is called a lattice if it is both a join-semilattice and a meet-semilattice.
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Definition 2.1.7. A partially ordered set (L,≤) is a complete lattice if every nonempty

subset A of L has both the greatest lower bound and the least upper bound.

2.2 Ideals and Green’s Relations

Definition 2.2.1. A nonempty subset A of a semigroup S is called a left ideal of S if

SA ⊆ A, a right ideal of S if AS ⊆ A, and an (two-sided) ideal of S if it is both a left and

a right ideal.

Note that if S has the identity, then A is an ideal of S if SAS is contained in A.

Theorem 2.2.1. [5] Let I = {Ij : j ∈ J} be a family of ideals of S. Then
∪
j∈J

Ij is an

ideal of S.

Theorem 2.2.2. [5] Let I = {Ij : j ∈ J} be a family of ideals of S. If
∩
j∈J

Ij ̸= ∅, then∩
j∈J

Ij is an ideal of S.

We note that if A and B are ideals of a semigroup S, then A ∪ B and A ∩ B are

ideals of S.

For any semigroup S, the notation S1 means S itself if S contains the identity

element, otherwise, we let S1 = S ∪ {1} and define the binary operation on S1 by

1 · s = s = s · 1 for all s ∈ S, 1 · 1 = 1 and

a · b = ab for all a, b ∈ S.

Then S1 becomes a semigroup with the identity element 1.

For any element a in S,

the smallest left ideal of S containing a is Sa ∪ {a} = S1a,

the smallest right ideal of S containing a is aS ∪ {a} = aS1, and

the smallest ideal of S containing a is SaS ∪ aS ∪ Sa ∪ {a} = S1aS1,

which we call the principal left ideal, principal right ideal and principal ideal generated by

a, respectively.

An ideal I such that I ⊆ S and I ̸= S is called a proper ideal of S.

Definition 2.2.2. Let I be a proper ideal of a semigroup S. Then

ρI = (I × I) ∪ 1S
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is a congruence on S where 1S = {(a, a)|a ∈ S}. Note that xρIy if and only if either x = y

or both x and y belong to I. The relation ρI is called a Rees congruence.

Lemma 2.2.3. Let S be a semigroup and I be an ideal of S. Suppose that δ is a congruence

on S such that 1S ( δ ⊆ ρI . If xδy for all x, y ∈ I, then δ = ρI .

Proof. Suppose that δ is a congruence on S such that 1S ( δ ⊆ ρI and xδy for all x, y ∈ I.

Let (a, b) ∈ ρI . Then a = b or a, b ∈ I. If a = b, then (a, b) ∈ δ. If a, b ∈ I, then (a, b) ∈ δ

by our supposition.

In 1951, J.A. Green defined the equivalence relations L, R and J on S by the rules

that, for a, b ∈ S,

aLb if and only if S1a = S1b,

aRb if and only if aS1 = bS1 and

aJ b if and only if S1aS1 = S1bS1.

Then he defined the equivalence relations

H = L ∩R and D = L ◦ R,

and obtained that the composition of L and R is commutative. This follows that D is

the join L∨R, that is, D is the smallest equivalence relation containing L∪R. Moreover,

H ⊆ L ⊆ D ⊆ J and H ⊆ R ⊆ D ⊆ J . But, in commutative semigroups, we have

H = L = R = D = J . The relations L, R, H, D, and J are called Green’s relations on

S.

Theorem 2.2.4. [5] Let S be a semigroup and a, b ∈ S. Then

(1) aLb if and only if a = xb and b = ya for some x, y ∈ S1;

(2) aRb if and only if a = bx and b = ay for some x, y ∈ S1;

(3) aJ b if and only if a = xby and b = uav for some x, y, u, v ∈ S1.

2.3 Transformation Semigroups

In this section, we list some known results, definitions and notations about trans-

formation semigroups that will be used throughout this thesis.
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2.3.1 The Semigroups T (X)

LetX be a nonempty set and T (X) denote the set of all transformations fromX into

itself. Then T (X) is a semigroup under the composition of maps, that is, if α, β ∈ T (X),

then αβ ∈ T (X) is defined by

x(αβ) = (xα)β for all x ∈ X,

and it is called the full transformation semigroup on X.

For a nonempty subset A of X, we let idA denote the identity map on A. Then it

is clear that idX is the identity element of T (X).

Definition 2.3.1. Let S be a semigroup with identity 1. An element a ∈ S is called a

unit of S if there exists b ∈ S such that ab = 1 = ba.

Lemma 2.3.1. [4] Let S be a semigroup with identity 1 and

G = {x ∈ S : x is a unit of S}.

Then G is a maximal subgroup of S having 1 as the identity.

We call the subgroup G of S (in lemma 2.3.1) the group of unit of S.

Let G(X) be the set of all injective maps from X onto X. Then G(X) is a group of

units of T (X).

2.3.2 Transformation Semigroups with Invariant Sets

Fix a nonempty subset Y of X, let

S(X,Y ) = {α ∈ T (X) : Y α ⊆ Y }.

Then S(X,Y ) is a semigroup of total transformations on X which leave a subset Y of X

invariant and

E = {α ∈ S(X,Y ) : Xα ∩ Y = Y α}

is the set of all regular elements of S(X,Y ).

As in Clifford and Preston [2] vol 2, p. 241, we shall use the notation

α =

Xi

ai
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to mean that α ∈ T (X) and take as understood that the subscript i belongs to some

(unmentioned) index set I, the abbreviation {ai} denotes {ai : i ∈ I}, and that Xα = {ai}

and aiα
−1 = Xi.

With the above notation, for any α ∈ S(X,Y ) we can write

α =

Ai Bj Ck

ai bj ck

 ,

where Ai ∩ Y ̸= ∅; Bj , Ck ⊆ X \ Y ; {ai} ⊆ Y, {bj} ⊆ Y \ {ai} and {ck} ⊆ X \ Y . Here,

I is a nonempty set, but J or K can be empty.

Lemma 2.3.2. [4] The following statements are equivalent:

(1) E is a regular subsemigroup of S(X,Y );

(2) S(X,Y ) is a regular semigroup;

(3) X = Y or |Y | = 1.

Lemma 2.3.3. [4] S(X,Y ) has the zero element if and only if |Y | = 1.

We note that for any α ∈ S(X,Y ), the symbol πα denotes the decomposition of X

induced by the map α, namely πα = {xα−1 : x ∈ Xα}. For a nonempty subset Z of X,

we denote πα(Z) by πα(Z) = {xα−1 : x ∈ Xα ∩Z}. Thus πα(Y ) = {yα−1 : y ∈ Xα ∩ Y }.

Green’s relations on S(X,Y ) are given by P. Honyam and J. Sanwong [4]. For

convenience, we present them here.

Lemma 2.3.4. [4] Let α, β ∈ S(X,Y ). Then

(1) αLβ if and only if Xα = Xβ and Y α = Y β;

(2) αRβ if and only if πα = πβ and πα(Y ) = πβ(Y );

(3) αJ β if and only if |Xα| = |Xβ| , |Y α| = |Y β| and |Xα\Y | = |Xβ\Y |.

Lemma 2.3.5. Let α, β ∈ S(X,Y ). Then α = λβµ for some λ, µ ∈ S(X,Y ) if and only

if |Xα| ≤ |Xβ|, |Y α| ≤ |Y β| and |Xα \ Y | ≤ |Xβ \ Y |.

Let G(X) be the group of permutations on the set X. Define

G(X,Y ) = {α ∈ G(X) : α |Y ∈ G(Y )},

where Y ⊆ X and α |Y is the restriction of α on the set Y . Then G(X,Y ) is a subgroup

of the permutation group G(X). Moreover, G(X,Y ) is a group of units of S(X,Y ).
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Let X be a finite set with n elements and Y a nonempty subset of X with m

elements, then we define

Jr,s,t = {α ∈ S(X,Y ) : |Xα| = r, |Y α| = s and |Xα \ Y | = t}

and

Jk = {α ∈ S(X,Y ) : |Xα| = k}

where 1 6 r 6 n, 1 6 s 6 m, 0 6 t 6 n −m and 1 6 k 6 n. Thus Jr,s,t is a J -class of

S(X,Y ) and J1 is the set of all constant maps with image in Y .

Let p be any cardinal number and let

p′ = min{q : q > p}

Note that p′ always exists since the cardinals are well-ordered and when p is finite we have

p′ = p+ 1 is the successor of p.

As shown by Malcev, the ideals of T (X) for any set X are precisely the sets:

Tr = {α ∈ T (X) : |Xα| < r},

where 2 ≤ r ≤ |X|′ (see also [2] vol 2, Theorem 10.59).

To describe ideals of S(X,Y ) for any set X and any nonempty subset Y of X, we

let |X| = a, |Y | = b and |X \ Y | = c. In addition, for each cardinals r, s, t such that

2 ≤ r ≤ a′, 2 ≤ s ≤ b′ and 1 ≤ t ≤ c′, we define

S(r, s, t) = {α ∈ S(X,Y ) : |Xα| < r, |Y α| < s and |Xα \ Y | < t}.

Theorem 2.3.6. [4] The set S(r, s, t) is an ideal of S(X,Y ).

To obtain ideals of S(X,Y ) we need the following notation. Let Z be a nonempty

subset of S(X,Y ). Define

K(Z) = {α ∈ S(X,Y ) :|Xα| ≤ |Xβ|, |Y α| ≤ |Y β| and

|Xα \ Y | ≤ |Xβ \ Y | for some β ∈ Z}.

Then we see that Z ⊆ K(Z) and Z1 ⊆ Z2 implies that K(Z1) ⊆ K(Z2).

Theorem 2.3.7. [4] The ideals of S(X,Y ) are precisely the sets K(Z) for some nonempty

subset Z of S(X,Y ).
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