CHAPTER 2

Preliminaries

2.1 Elementary Concepts

In this thesis, we assume that X is a finite set and Y a nonempty subset of X and

the cardinality of a set X is denoted by |X]|.

Definition 2.1.1. A semigroup is a pair (S,-) in which S is a nonempty set and - is a
binary associative operation on S, i.e., the equation (z -y) -z = x - (y - z) holds for all

x,y,z € 5.

Definition 2.1.2. Let S be a semigroup.
() If there exists an element 1 of S such that

rl=x=1x forallz €S,

then 1 is called an identity element of S and S is called a semigroup with identity or a
monoid.

(74) If there exists an element 0 of S such that
20=0=0x forall x € S,
then 0 is called a zero element of S and S is called a semigroup with zero.

A nonempty subset T' of a semigroup S is called a subsemigroup of S if xy € T for

all z,y € T.

Definition 2.1.3. Let A # @. Then a relation R on A is an equivalence relation on A

provided R is:

reflexive: (a,a) € R for all a € A;
symmetric: if (a,b) € R, then (b,a) € R for all a,b € A;
transitive: if (a,b) € R and (b,c) € R, then (a,c) € R for all a,b,c € A.

Definition 2.1.4. Let S be a semigroup. A relation R on the set S is called left compatible

(with the operation on 5) if



(for all s,t,a € S) if (s,t) € R, then (as,at) € R,
and right compatible if
(for all s,t,a € S) if (s,t) € R, then (sa,ta) € R.

It is called compatible if R is left and right compatible. A left [right] compatible equivalence
relation is called a left [right] congruence. A compatible equivalence relation is called a

congruence.

Definition 2.1.5. A partially ordered set is a nonempty set A together with a relation R

on A (called a partial ordering of A) which is reflexive and transitive and
antisymmetric: if (a,b) € R and (b,a) € R, then a = b for all a,b € A.

If R is a partial ordering of A, then we usually write a < b in place of (a,b) € R. In this

notation the conditions reflexive, transitive and antisymmetric become (for all a,b,c € A):

a < a;

ifa<bandb<e¢, then a <¢;

if a <band b <a, then a = b.

We write a < bif a < b and a # b.

Elements a,b € A are said to be comparable, provided a < b or b < a. However, two
given elements of a partially ordered set need not be comparable. A partial ordering of a
set A such that any two elements are comparable is called a linear ordering.

Let (A, <) be a partially ordered set. An element a € A is mazrimal in A if for every
c € A, if a <e¢, then a =c. An upper bound of a nonempty subset B of A is an element
d € A such that b < d for every b € B. A nonempty subset B of A that is linearly ordered

by < is called a chain in A.

Theorem 2.1.1. [6] (Zorn’s Lemma) If A is a nonempty partially ordered set such that

every chain in A has an upper bound in A, then A contains a mazximal element.

Definition 2.1.6. A partially ordered set (L, <) is called a join-semilattice and a meet-
semilattice if each two-element subset {a,b} C L has a join (i.e. the least upper bound)
and a meet (i.e. the greatest lower bound), denoted by a Vb and a Ab, respectively. (L, <)

is called a lattice if it is both a join-semilattice and a meet-semilattice.



Definition 2.1.7. A partially ordered set (L, <) is a complete lattice if every nonempty

subset A of L has both the greatest lower bound and the least upper bound.

2.2 Ideals and Green’s Relations

Definition 2.2.1. A nonempty subset A of a semigroup S is called a left ideal of S if
SA C A, aright ideal of S'if AS C A, and an (two-sided) ideal of S if it is both a left and
a right ideal.

Note that if S has the identity, then A is an ideal of S if SAS is contained in A.

Theorem 2.2.1. [5] Let I = {I; : j € J} be a family of ideals of S. Then |J I; is an
ideal of S. g,
Theorem 2.2.2. [5] Let I = {I; : j € J} be a family of ideals of S. If () I; # 0, then
() 1; is an ideal of S. <
JjeJ

We note that if A and B are ideals of a semigroup S, then AU B and A N B are
ideals of S.

For any semigroup S, the notation S! means S itself if S contains the identity

element, otherwise, we let S' = S U {1} and define the binary operation on S! by

l-s=s=s-1forallse S, 1-1=1 and
a-b=abforall a,b e S.

Then S' becomes a semigroup with the identity element 1.
For any element ¢ in S,
the smallest left ideal of S containing a is Sa U {a} = S'a,
the smallest right ideal of S containing a is aS U {a} = aS*, and
the smallest ideal of S containing a is SaSUaS U Sa U {a} = StaS!,
which we call the principal left ideal, principal right ideal and principal ideal generated by
a, respectively.

An ideal I such that I C S and I # S is called a proper ideal of S.
Definition 2.2.2. Let I be a proper ideal of a semigroup S. Then

pr=(IxI)Ulg



is a congruence on S where 1g = {(a,a)|la € S}. Note that zpry if and only if either z =y

or both = and y belong to I. The relation p; is called a Rees congruence.

Lemma 2.2.3. Let S be a semigroup and I be an ideal of S. Suppose that § is a congruence

on S such that 1¢ € 6 C pr. If xdy for all z,y € I, then § = py.

Proof. Suppose that ¢ is a congruence on S such that 1g C § C p; and xdy for all x,y € I.
Let (a,b) € p;. Thena=0bor a,b€ I. If a =0, then (a,b) € 0. If a,b € I, then (a,b) € §

by our supposition. O

In 1951, J.A. Green defined the equivalence relations £, R and J on S by the rules
that, for a,b € S,
alb if and only if S'a = S'b,
aRb if and only if aS* = bS' and
aJb if and only if StaSt = §ipst.

Then he defined the equivalence relations
H=LNRand D= LoR,

and obtained that the composition of £ and R is commutative. This follows that D is
the join £ VR, that is, D is the smallest equivalence relation containing £ UR. Moreover,
HCLCDC Jand HC R C D C J. But, in commutative semigroups, we have
H=L=R=D=J. The relations L, R, H, D, and J are called Green’s relations on
S.

Theorem 2.2.4. [5] Let S be a semigroup and a,b € S. Then

(1) aLlb if and only if a = xb and b = ya for some x,y € S*;

(2) aRb if and only if a = bx and b = ay for some xz,y € S*;

(3) aJb if and only if a = xby and b = uav for some z,y,u,v € S*.

2.3 Transformation Semigroups

In this section, we list some known results, definitions and notations about trans-

formation semigroups that will be used throughout this thesis.



2.3.1 The Semigroups T(X)

Let X be a nonempty set and T'(X) denote the set of all transformations from X into
itself. Then T'(X) is a semigroup under the composition of maps, that is, if «, 5 € T'(X),
then af € T'(X) is defined by

z(apf) = (za)p for all x € X

and it is called the full transformation semigroup on X.
For a nonempty subset A of X, we let id4 denote the identity map on A. Then it

is clear that idx is the identity element of T'(X).

Definition 2.3.1. Let S be a semigroup with identity 1. An element a € S is called a
unit of S if there exists b € S such that ab =1 = ba.

Lemma 2.3.1. [4] Let S be a semigroup with identity 1 and
G={x €S :xisaunitof S}.
Then G is a maximal subgroup of S having 1 as the identity.

We call the subgroup G of S (in lemma 2.3.1) the group of unit of S.
Let G(X) be the set of all injective maps from X onto X. Then G(X) is a group of
units of T'(X).

2.3.2 Transformation Semigroups with Invariant Sets
Fix a nonempty subset Y of X, let
SX,)Y)={aeT(X):YaCY}

Then S(X,Y) is a semigroup of total transformations on X which leave a subset ¥ of X

invariant and
E={aeSX,)Y): XanY =Ya}

is the set of all regular elements of S(X,Y).
As in Clifford and Preston [2] vol 2, p. 241, we shall use the notation

X
o=
Qa;



to mean that o € T'(X) and take as understood that the subscript ¢ belongs to some
(unmentioned) index set I, the abbreviation {a;} denotes {a; : i € I'}, and that Xa = {a;}
and a;a"! = X;.
With the above notation, for any a € S(X,Y’) we can write
Ai Bj Ck

o=
a; bj Ck

where A;NY # @; B;,C, CX\Y; {a;} CY, {b;} CY \ {a;} and {c} € X \ Y. Here,
I is a nonempty set, but J or K can be empty.

Lemma 2.3.2. [4] The following statements are equivalent:
(1) E is a regular subsemigroup of S(X,Y);

(2) S(X,Y) is a reqular semigroup;

B)X=Yorl|Y|=1

Lemma 2.3.3. [4] S(X,Y) has the zero element if and only if |Y| = 1.

We note that for any a € S(X,Y), the symbol 7, denotes the decomposition of X
induced by the map a, namely 7, = {za~! : 2 € Xa}. For a nonempty subset Z of X,
we denote 74 (Z) by 7o(Z) = {za™t i 2 € Xan Z}. Thus 7o (Y) = {ya~t:y € XanY}.

Green’s relations on S(X,Y) are given by P. Honyam and J. Sanwong [4]. For

convenience, we present them here.

Lemma 2.3.4. [4] Let o, 5 € S(X,Y). Then

(1) aLp if and only if Xao= X and Yo =Y 5;

(2) aRB if and only if mq = g and 7o (Y) = m3(Y');

(3) a7 B if and only if | Xa| = |XB], [Yel =|VB| and | Xa\Y]| = |XA\Y].

Lemma 2.3.5. Let a, 5 € S(X,Y). Then o = A\Bu for some A\, € S(X,Y) if and only
if | Xa| < |XB|,[Ya| < |YB| and [Xa\ Y] < [XB\ Y.

Let G(X) be the group of permutations on the set X. Define
G(X,Y) = {a € G(X) s a lye GV},

where Y C X and « |y is the restriction of @ on the set Y. Then G(X,Y) is a subgroup

of the permutation group G(X). Moreover, G(X,Y) is a group of units of S(X,Y).



Let X be a finite set with n elements and Y a nonempty subset of X with m

elements, then we define
Jrst={a e S(X,)Y):|Xa|=r, |Ya|=sand [Xa\Y|=1t}
and
Jpy={a e S(X,Y): | Xa| =k}

where 1 <r<n, 1<s<m, 0<t<n—mand1l<k<n. Thus J,,; is a J-class of

S(X,Y) and J; is the set of all constant maps with image in Y.

Let p be any cardinal number and let

p' =min{q:q> p}

Note that p’ always exists since the cardinals are well-ordered and when p is finite we have
p' = p+ 1 is the successor of p.
As shown by Malcev, the ideals of T'(X) for any set X are precisely the sets:

T, ={a e T(X): |Xa| <7},

where 2 < r < | X|" (see also [2] vol 2, Theorem 10.59).
To describe ideals of S(X,Y) for any set X and any nonempty subset Y of X, we
let | X| =a, |Y] = band |X \ Y| = c¢. In addition, for each cardinals r,s,¢ such that

2<r<da,2<s<bandl<t<c, we define
S(r,s,t) ={a e S(X,Y): | Xa|<r |[Ya| <s and |[Xa\Y| <t}
Theorem 2.3.6. [4] The set S(r,s,t) is an ideal of S(X,Y).

To obtain ideals of S(X,Y’) we need the following notation. Let Z be a nonempty
subset of S(X,Y). Define

K(Z)={ae S(X,Y) :|Xa| <|XB],|Yal <|Y3| and

| Xa\ Y| <|Xp\Y| for some 5 € Z}.
Then we see that Z C K(Z) and Z; C Z implies that K(Z1) C K(Z2).

Theorem 2.3.7. [4] The ideals of S(X,Y") are precisely the sets K(Z) for some nonempty
subset Z of S(X,Y).



