CHAPTER 2

Preliminaries

2.1 Elementary Concepts

In this thesis, we assume that X is a finite set and Y a nonempty subset of X and the cardinality of a set X is denoted by |X|.

Definition 2.1.1. A semigroup is a pair (S, \cdot) in which S is a nonempty set and \cdot is a binary associative operation on S, i.e., the equation $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ holds for all $x, y, z \in S$.

Definition 2.1.2. Let S be a semigroup.

(i) If there exists an element 1 of S such that

$$x1 = x = 1x$$
 for all $x \in S$,

then 1 is called an identity element of S and S is called a *semigroup with identity* or a monoid.

(ii) If there exists an element 0 of S such that

x0 = 0 = 0x for all $x \in S$,

then 0 is called a zero element of S and S is called a semigroup with zero.

A nonempty subset T of a semigroup S is called a *subsemigroup* of S if $xy \in T$ for all $x, y \in T$.

Definition 2.1.3. Let $A \neq \emptyset$. Then a relation R on A is an *equivalence relation* on A provided R is:

reflexive: $(a, a) \in R$ for all $a \in A$;

symmetric: if $(a, b) \in R$, then $(b, a) \in R$ for all $a, b \in A$;

transitive: if $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$ for all $a, b, c \in A$.

Definition 2.1.4. Let S be a semigroup. A relation R on the set S is called *left compatible* (with the operation on S) if

(for all
$$s, t, a \in S$$
) if $(s, t) \in R$, then $(as, at) \in R$,

and right compatible if

(for all
$$s, t, a \in S$$
) if $(s, t) \in R$, then $(sa, ta) \in R$.

It is called *compatible* if R is left and right compatible. A left [right] compatible equivalence relation is called a *left [right] congruence*. A compatible equivalence relation is called a *congruence*.

Definition 2.1.5. A partially ordered set is a nonempty set A together with a relation R on A (called a partial ordering of A) which is reflexive and transitive and

antisymmetric: if
$$(a, b) \in R$$
 and $(b, a) \in R$, then $a = b$ for all $a, b \in A$.

If R is a partial ordering of A, then we usually write $a \le b$ in place of $(a, b) \in R$. In this notation the conditions reflexive, transitive and antisymmetric become (for all $a, b, c \in A$):

$$a \le a;$$

if $a \le b$ and $b \le c$, then $a \le c;$
if $a \le b$ and $b \le a$, then $a = b$.

We write a < b if $a \leq b$ and $a \neq b$.

Elements $a, b \in A$ are said to be *comparable*, provided $a \leq b$ or $b \leq a$. However, two given elements of a partially ordered set need not be comparable. A partial ordering of a set A such that any two elements are comparable is called a *linear ordering*.

Let (A, \leq) be a partially ordered set. An element $a \in A$ is maximal in A if for every $c \in A$, if $a \leq c$, then a = c. An upper bound of a nonempty subset B of A is an element $d \in A$ such that $b \leq d$ for every $b \in B$. A nonempty subset B of A that is linearly ordered by \leq is called a *chain* in A.

Theorem 2.1.1. [6] (Zorn's Lemma) If A is a nonempty partially ordered set such that every chain in A has an upper bound in A, then A contains a maximal element.

Definition 2.1.6. A partially ordered set (L, \leq) is called a *join-semilattice* and a *meet-semilattice* if each two-element subset $\{a, b\} \subseteq L$ has a join (i.e. the least upper bound) and a meet (i.e. the greatest lower bound), denoted by $a \lor b$ and $a \land b$, respectively. (L, \leq) is called a *lattice* if it is both a join-semilattice and a meet-semilattice.

Definition 2.1.7. A partially ordered set (L, \leq) is a *complete lattice* if every nonempty subset A of L has both the greatest lower bound and the least upper bound.

2.2 Ideals and Green's Relations

Definition 2.2.1. A nonempty subset A of a semigroup S is called a *left ideal* of S if $SA \subseteq A$, a *right ideal* of S if $AS \subseteq A$, and an *(two-sided) ideal* of S if it is both a left and a right ideal.

Note that if S has the identity, then A is an ideal of S if SAS is contained in A.

Theorem 2.2.1. [5] Let $I = \{I_j : j \in J\}$ be a family of ideals of S. Then $\bigcup_{j \in J} I_j$ is an ideal of S.

Theorem 2.2.2. [5] Let $I = \{I_j : j \in J\}$ be a family of ideals of S. If $\bigcap_{j \in J} I_j \neq \emptyset$, then $\bigcap_{i \in J} I_j$ is an ideal of S.

We note that if A and B are ideals of a semigroup S, then $A \cup B$ and $A \cap B$ are ideals of S.

For any semigroup S, the notation S^1 means S itself if S contains the identity element, otherwise, we let $S^1 = S \cup \{1\}$ and define the binary operation on S^1 by

> $1 \cdot s = s = s \cdot 1$ for all $s \in S$, $1 \cdot 1 = 1$ and $a \cdot b = ab$ for all $a, b \in S$.

Then S^1 becomes a semigroup with the identity element 1.

For any element a in S,

the smallest left ideal of S containing a is $Sa \cup \{a\} = S^1a$,

the smallest right ideal of S containing a is $aS \cup \{a\} = aS^1$, and

the smallest ideal of S containing a is $SaS \cup aS \cup Sa \cup \{a\} = S^1aS^1$

which we call the *principal left ideal*, *principal right ideal* and *principal ideal generated by* a, respectively.

An ideal I such that $I \subseteq S$ and $I \neq S$ is called a *proper ideal* of S.

Definition 2.2.2. Let I be a proper ideal of a semigroup S. Then

$$\rho_I = (I \times I) \cup 1_S$$

is a congruence on S where $1_S = \{(a, a) | a \in S\}$. Note that $x \rho_I y$ if and only if either x = y or both x and y belong to I. The relation ρ_I is called a *Rees congruence*.

Lemma 2.2.3. Let S be a semigroup and I be an ideal of S. Suppose that δ is a congruence on S such that $1_S \subsetneq \delta \subseteq \rho_I$. If $x \delta y$ for all $x, y \in I$, then $\delta = \rho_I$.

Proof. Suppose that δ is a congruence on S such that $1_S \subsetneq \delta \subseteq \rho_I$ and $x\delta y$ for all $x, y \in I$. Let $(a, b) \in \rho_I$. Then a = b or $a, b \in I$. If a = b, then $(a, b) \in \delta$. If $a, b \in I$, then $(a, b) \in \delta$ by our supposition.

In 1951, J.A. Green defined the equivalence relations \mathcal{L} , \mathcal{R} and \mathcal{J} on S by the rules that, for $a, b \in S$,

 $a\mathcal{L}b$ if and only if $S^1a = S^1b$, $a\mathcal{R}b$ if and only if $aS^1 = bS^1$ and $a\mathcal{J}b$ if and only if $S^1aS^1 = S^1bS^1$.

Then he defined the equivalence relations

$$\mathcal{H} = \mathcal{L} \cap \mathcal{R} \text{ and } \mathcal{D} = \mathcal{L} \circ \mathcal{R},$$

and obtained that the composition of \mathcal{L} and \mathcal{R} is commutative. This follows that \mathcal{D} is the join $\mathcal{L} \lor \mathcal{R}$, that is, \mathcal{D} is the smallest equivalence relation containing $\mathcal{L} \cup \mathcal{R}$. Moreover, $\mathcal{H} \subseteq \mathcal{L} \subseteq \mathcal{D} \subseteq \mathcal{J}$ and $\mathcal{H} \subseteq \mathcal{R} \subseteq \mathcal{D} \subseteq \mathcal{J}$. But, in commutative semigroups, we have $\mathcal{H} = \mathcal{L} = \mathcal{R} = \mathcal{D} = \mathcal{J}$. The relations \mathcal{L} , \mathcal{R} , \mathcal{H} , \mathcal{D} , and \mathcal{J} are called Green's relations on S.

Theorem 2.2.4. [5] Let S be a semigroup and $a, b \in S$. Then

- (1) all b if and only if a = xb and b = ya for some $x, y \in S^1$;
- (2) a $\mathcal{R}b$ if and only if a = bx and b = ay for some $x, y \in S^1$;
- (3) a $\mathcal{J}b$ if and only if a = xby and b = uav for some $x, y, u, v \in \mathcal{J}b$

2.3 Transformation Semigroups

In this section, we list some known results, definitions and notations about transformation semigroups that will be used throughout this thesis.

nversity

2.3.1 The Semigroups T(X)

Let X be a nonempty set and T(X) denote the set of all transformations from X into itself. Then T(X) is a semigroup under the composition of maps, that is, if $\alpha, \beta \in T(X)$, then $\alpha\beta \in T(X)$ is defined by

$$x(\alpha\beta) = (x\alpha)\beta$$
 for all $x \in X$,

and it is called the *full transformation semigroup* on X.

For a nonempty subset A of X, we let id_A denote the identity map on A. Then it is clear that id_X is the identity element of T(X).

Definition 2.3.1. Let S be a semigroup with identity 1. An element $a \in S$ is called a *unit* of S if there exists $b \in S$ such that ab = 1 = ba.

Lemma 2.3.1. [4] Let S be a semigroup with identity 1 and

$$G = \{x \in S : x \text{ is a unit of } S\}.$$

Then G is a maximal subgroup of S having 1 as the identity.

We call the subgroup G of S (in lemma 2.3.1) the group of unit of S.

Let G(X) be the set of all injective maps from X onto X. Then G(X) is a group of units of T(X).

2.3.2 Transformation Semigroups with Invariant Sets

Fix a nonempty subset Y of X, let

$$S(X,Y) = \{ \alpha \in T(X) : Y\alpha \subseteq Y \}.$$

Then S(X, Y) is a semigroup of total transformations on X which leave a subset Y of X invariant and

$$E = \{ \alpha \in S(X,Y) : X\alpha \cap Y = Y\alpha \}$$

is the set of all regular elements of S(X, Y).

As in Clifford and Preston [2] vol 2, p. 241, we shall use the notation

$$\alpha = \begin{pmatrix} X_i \\ a_i \end{pmatrix}$$

to mean that $\alpha \in T(X)$ and take as understood that the subscript *i* belongs to some (unmentioned) index set *I*, the abbreviation $\{a_i\}$ denotes $\{a_i : i \in I\}$, and that $X\alpha = \{a_i\}$ and $a_i\alpha^{-1} = X_i$.

With the above notation, for any $\alpha \in S(X, Y)$ we can write

$\alpha =$	(A_i)	B_j	C_k	
	$\langle a_i$	b_j	c_k ,	,

where $A_i \cap Y \neq \emptyset$; $B_j, C_k \subseteq X \setminus Y$; $\{a_i\} \subseteq Y, \{b_j\} \subseteq Y \setminus \{a_i\}$ and $\{c_k\} \subseteq X \setminus Y$. Here, I is a nonempty set, but J or K can be empty.

Lemma 2.3.2. [4] The following statements are equivalent:

- (1) E is a regular subsemigroup of S(X, Y);
- (2) S(X,Y) is a regular semigroup;
- (3) X = Y or |Y| = 1.

Lemma 2.3.3. [4] S(X,Y) has the zero element if and only if |Y| = 1.

We note that for any $\alpha \in S(X, Y)$, the symbol π_{α} denotes the decomposition of X induced by the map α , namely $\pi_{\alpha} = \{x\alpha^{-1} : x \in X\alpha\}$. For a nonempty subset Z of X, we denote $\pi_{\alpha}(Z)$ by $\pi_{\alpha}(Z) = \{x\alpha^{-1} : x \in X\alpha \cap Z\}$. Thus $\pi_{\alpha}(Y) = \{y\alpha^{-1} : y \in X\alpha \cap Y\}$.

Green's relations on S(X, Y) are given by P. Honyam and J. Sanwong [4]. For convenience, we present them here.

Lemma 2.3.4. [4] Let $\alpha, \beta \in S(X, Y)$. Then

- (1) $\alpha \mathcal{L}\beta$ if and only if $X\alpha = X\beta$ and $Y\alpha = Y\beta$;
- (2) $\alpha \mathcal{R}\beta$ if and only if $\pi_{\alpha} = \pi_{\beta}$ and $\pi_{\alpha}(Y) = \pi_{\beta}(Y)$;
- (3) $\alpha \mathcal{J}\beta$ if and only if $|X\alpha| = |X\beta|, |Y\alpha| = |Y\beta|$ and $|X\alpha \setminus Y| = |X\beta \setminus Y|$.

Lemma 2.3.5. Let $\alpha, \beta \in S(X, Y)$. Then $\alpha = \lambda \beta \mu$ for some $\lambda, \mu \in S(X, Y)$ if and only if $|X\alpha| \leq |X\beta|, |Y\alpha| \leq |Y\beta|$ and $|X\alpha \setminus Y| \leq |X\beta \setminus Y|$.

Let G(X) be the group of permutations on the set X. Define $G(X,Y) = \{ \alpha \in G(X) : \alpha \mid_Y \in G(Y) \},$

where $Y \subseteq X$ and $\alpha \mid_Y$ is the restriction of α on the set Y. Then G(X, Y) is a subgroup of the permutation group G(X). Moreover, G(X, Y) is a group of units of S(X, Y). Let X be a finite set with n elements and Y a nonempty subset of X with m elements, then we define

$$J_{r,s,t} = \{ \alpha \in S(X,Y) : |X\alpha| = r, |Y\alpha| = s \text{ and } |X\alpha \setminus Y| = t \}$$

and

$$J_k = \{ \alpha \in S(X, Y) : |X\alpha| = k \}$$

where $1 \leq r \leq n$, $1 \leq s \leq m$, $0 \leq t \leq n-m$ and $1 \leq k \leq n$. Thus $J_{r,s,t}$ is a \mathcal{J} -class of S(X,Y) and J_1 is the set of all constant maps with image in Y.

Let p be any cardinal number and let

$$p' = \min\{q: q > p\}$$

Note that p' always exists since the cardinals are well-ordered and when p is finite we have p' = p + 1 is the successor of p.

As shown by Malcev, the ideals of T(X) for any set X are precisely the sets:

$$T_r = \{ \alpha \in T(X) : |X\alpha| < r \},\$$

where $2 \le r \le |X|'$ (see also [2] vol 2, Theorem 10.59).

To describe ideals of S(X, Y) for any set X and any nonempty subset Y of X, we let |X| = a, |Y| = b and $|X \setminus Y| = c$. In addition, for each cardinals r, s, t such that $2 \le r \le a', 2 \le s \le b'$ and $1 \le t \le c'$, we define

$$S(r,s,t) = \{ \alpha \in S(X,Y) : |X\alpha| < r, \ |Y\alpha| < s \ \text{ and } |X\alpha \setminus Y| < t \}.$$

Theorem 2.3.6. [4] The set S(r, s, t) is an ideal of S(X, Y).

To obtain ideals of S(X, Y) we need the following notation. Let Z be a nonempty subset of S(X, Y). Define

$$K(Z) = \{ \alpha \in S(X, Y) : |X\alpha| \le |X\beta|, |Y\alpha| \le |Y\beta| \text{ and} \\ |X\alpha \setminus Y| \le |X\beta \setminus Y| \text{ for some } \beta \in Z \}.$$

Then we see that $Z \subseteq K(Z)$ and $Z_1 \subseteq Z_2$ implies that $K(Z_1) \subseteq K(Z_2)$.

Theorem 2.3.7. [4] The ideals of S(X, Y) are precisely the sets K(Z) for some nonempty subset Z of S(X, Y).