
CHAPTER 3

Main Results

Throughout this section, we assume that X is a finite set and Y a nonempty subset

of X. We consider the subset of S(X,Y ) as follow.

Let |X| = a, |Y | = b and |X \ Y | = c. For each of cardinals r, s, t such that

2 ≤ r ≤ a′, 2 ≤ s ≤ b′ and 1 ≤ t ≤ c′, we define

S(r, s, t) = {α ∈ S(X,Y ) : |Xα| < r, |Y α| < s and |Xα \ Y | < t}.

In [4], the ideals of S(X,Y ) are precisely the sets K(Z) for some nonempty subset

Z of S(X,Y ) defined by

K(Z) = {α ∈ S(X,Y ) : |Xα| ≤ |Xβ|, |Y α| ≤ |Y β| and

|Xα \ Y | ≤ |Xβ \ Y | for some β ∈ Z}.

Then we see that Z ⊆ K(Z) and Z1 ⊆ Z2 implies that K(Z1) ⊆ K(Z2). For convenience,

if Z = {α1, ..., αn} is a finite set, we write K(α1, ..., αn) in stead of K(Z).

3.1 Some Properties of K(Z)

In [4] the ideals of S(X,Y ) are of the form K(Z) for some nonempty subset Z of

S(X,Y ). The following proposition gives the relation between K(Z) and S(r, s, t).

Proposition 3.1.1. Let β ∈ S(X,Y ) with |Xβ| = r, |Y β| = s and |Xβ\Y | = t. Then

K(β) = S(r + 1, s+ 1, t+ 1).

Proof. By the definition, we have

K(β) = {α ∈ S(X,Y ) : |Xα| ≤ |Xβ|, |Y α| ≤ |Y β| and |Xα \ Y | ≤ |Xβ \ Y |},

= {α ∈ S(X,Y ) : |Xα| ≤ r, |Y α| ≤ s and |Xα \ Y | ≤ t},

= {α ∈ S(X,Y ) : |Xα| < r + 1, |Y α| < s+ 1 and |Xα \ Y | < t+ 1},

= S(r + 1, s+ 1, t+ 1).

Proposition 3.1.2. Let β, γ ∈ S(X,Y ). Then K(β, γ) = K(β) ∪K(γ).
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Proof. Let α ∈ K(β, γ). Then α ∈ S(X,Y ) with |Xα| ≤ |Xδ|, |Y α| ≤ |Y δ| and |Xα\Y | ≤

|Xδ \ Y | for some δ ∈ {β, γ}. If δ = β, then |Xα| ≤ |Xβ|, |Y α| ≤ |Y β| and |Xα \ Y | ≤

|Xβ \ Y |. If δ = γ, then |Xα| ≤ |Xγ|, |Y α| ≤ |Y γ| and |Xα \ Y | ≤ |Xγ \ Y |. So

α ∈ K(β) or α ∈ K(γ). Thus α ∈ K(β) ∪ K(γ) and then K(β, γ) ⊆ K(β) ∪ K(γ).

Conversely, assume that α ∈ K(β) ∪ K(γ). Then α ∈ K(β) or α ∈ K(γ). If α ∈ K(β),

then |Xα| ≤ |Xβ|, |Y α| ≤ |Y β| and |Xα \Y | ≤ |Xβ \Y |. Thus α ∈ K(β, γ). If α ∈ K(γ),

then |Xα| ≤ |Xγ|, |Y α| ≤ |Y γ| and |Xα \ Y | ≤ |Xγ \ Y |. Thus α ∈ K(β, γ) and then

K(β) ∪K(γ) ⊆ K(β, γ). Hence K(β, γ) = K(β) ∪K(γ).

By Mathematical Induction and Proposition 3.1.2, we have the following corollary.

Corollary 3.1.3. Let β1, β2, ..., βn ∈ S(X,Y ). Then

K(β1, β2, ..., βn) = K(β1) ∪K(β2) ∪ ... ∪K(βn).

Proposition 3.1.4. Let α, β ∈ S(X,Y ). Then K(α) = K(β) if and only if |Xα| = |Xβ|,

|Y α| = |Y β| and |Xα \ Y | = |Xβ \ Y |.

Proof. Assume that K(α) = K(β). Since β ∈ K(β), we have β ∈ K(α). Then |Xβ| ≤

|Xα|, |Y β| ≤ |Y α| and |Xβ \ Y | ≤ |Xα \ Y |. Since α ∈ K(α), we obtain that α ∈ K(β).

Then |Xα| ≤ |Xβ|, |Y α| ≤ |Y β| and |Xα\Y | ≤ |Xβ\Y |. Thus |Xα| = |Xβ|, |Y α| = |Y β|

and |Xα \ Y | = |Xβ \ Y |. Conversely, we may assume that |Xα| = |Xβ|, |Y α| = |Y β|

and |Xα \ Y | = |Xβ \ Y |.

γ ∈ K(α) ⇔ γ ∈ S(X,Y ), |Xγ| ≤ |Xα|, |Y γ| ≤ |Y α| and |Xγ \ Y | ≤ |Xα \ Y |;

⇔ γ ∈ S(X,Y ), |Xγ| ≤ |Xβ|, |Y γ| ≤ |Y β| and |Xγ \ Y | ≤ |Xβ \ Y |;

⇔ γ ∈ K(β).

Proposition 3.1.5. Let α ∈ S(X,Y ). Then K(α) is a principal ideal of S(X,Y ).

Proof. Let S = S(X,Y ) and α ∈ S. We prove that K(α) = SαS. Let β ∈ K(α).

Then |Xβ| ≤ |Xα|, |Y β| ≤ |Y α| and |Xβ \ Y | ≤ |Xα \ Y |. By Lemma 2.3.5, we have

β = λαµ for some λ, µ ∈ S. Thus β ∈ SαS. Conversely, let γ ∈ SαS. Then γ = θαη

for some θ, η ∈ S. Again by Lemma 2.3.5, we obtain that |Xγ| ≤ |Xα|, |Y γ| ≤ |Y α| and

|Xγ \ Y | ≤ |Xα \ Y |. So γ ∈ K(α). Hence K(α) is a principal ideal of S(X,Y ).

Theorem 3.1.6. The ideals of S(X,Y ) are precisely the set K(α1) ∪ ... ∪K(αn), where

α1, ..., αn ∈ S(X,Y ).
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Proof. By Corollary 3.1.3, we obtain that

K(α1) ∪ ... ∪K(αn) = K(α1, α2, ..., αn).

Then K(α1) ∪ ... ∪K(αn) is an ideal of S(X,Y ) by Theorem 2.3.7.

Let I be an ideal of S(X,Y ). By Theorem 2.3.7, we get that I = K(Z) for some

∅ ̸= Z ⊆ S(X,Y ). Since S(X,Y ) is a finite set, we can let Z = {α1, ..., αn}. By Corollary

3.1.3, we get that

I = K(Z),

= K(α1, ..., αn),

= K(α1) ∪ ... ∪K(αn).

If X is a finite set with n elements and Y a nonempty subset of X with m elements,

then we define

Jr,s,t = {α ∈ S(X,Y ) : |Xα| = r, |Y α| = s and |Xα \ Y | = t}

and

Jk = {α ∈ S(X,Y ) : |Xα| = k}

where 1 6 r 6 n, 1 6 s 6 m, 0 6 t 6 n−m and 1 6 k 6 n. Thus Jr,s,t is a J -class and

Jk is a union of J -classes.

Example 1. Let X = {1, 2, 3} and Y = {1, 2}. Then S(X,Y ) has 12 elements, namely

1X =

1 2 3

1 2 3

 , X1 =

1 2 3

1 1 1

 , X2 =

1 2 3

2 2 2

 ,

β1 =

1 2 3

1 1 2

 , β2 =

1 2 3

1 2 1

 , β3 =

1 2 3

1 2 2

 ,

β4 =

1 2 3

2 1 1

 , β5 =

1 2 3

2 1 2

 , β6 =

1 2 3

2 2 1

 ,

α =

1 2 3

2 1 3

 , µ1 =

1 2 3

2 2 3

 , and µ2 =

1 2 3

1 1 3

 .

So K(1X) = S(X,Y ) = K(α), K(X1) = J1 = K(X2), K(β1) = K(β6) = J1 ∪ J2,1,0,

K(β2) = K(β3) = K(β4) = K(β5) = J1 ∪J2,1,0 ∪J2,2,0 and K(µ1) = K(µ2) = J1 ∪J2,1,0 ∪

J2,1,1. Thus there are only five principal ideals of S(X,Y ):

12



K(1X), K(X1), K(β1), K(β2), and K(µ1).

But K(β2) ∪ K(µ1) = K(β2, µ1) = J1 ∪ J2,1,0 ∪ J2,1,1 ∪ J2,2,0 is not a principal ideal of

S(X,Y ).

K(1X)

K(µ1) ∪K(β2)

K(µ1) K(β2)

K(β1)

K(X1)

Figure 1

3.2 The Lattice of Ideals of S(X, Y )

Let J be the set of all ideals of S(X,Y ). Then (J ,⊆) is a partially ordered set

with the following properties.

Proposition 3.2.1. J1 is the minimum ideal of S(X,Y ) and is a right zero semigroup.

Proof. We prove that J1 = S(2, 2, 1). It is clear that J1 ⊆ S(2, 2, 1). Let α ∈ S(2, 2, 1).

Then |Xα| < 2, |Y α| < 2, |Xα \ Y | < 1 and thus |Xα| = 1 = |Y α|. So α is the constant

map and α ∈ J1. Therefore, J1 is an ideal of S(X,Y ). To show that J1 is the minimum

ideal, let I be an ideal of S(X,Y ) and β ∈ J1. Then there exists ∅ ̸= Z ⊆ S(X,Y ) such

that I = K(Z). Let γ ∈ Z. Then |Xγ|, |Y γ| ≥ 1 and |Xγ \ Y | ≥ 0, so |Xβ| = 1 ≤ |Xγ|,

|Y β| = 1 ≤ |Y γ| and |Xβ \ Y |= 0 ≤| Xγ \ Y |. Thus β ∈ I, that is J1 ⊆ I as required.

Hence J1 is the minimum ideal of S(X,Y ). Next, we show that J1 is a right zero semigroup.

Let λ, µ ∈ J1. Then |Xλ| = 1 = |Xµ| and let Xλ = {a}, Xµ = {b} where a, b ∈ Y . Let

x ∈ X. Thus x(λµ) = (xλ)µ = aµ = b = xµ. Hence λµ = µ.

Proposition 3.2.2. (I ,⊆) is a complete lattice.
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Proof. Let ∅ ̸= S ⊆ I be such that S = {Ii | i ∈ Ω} for some nonempty index set Ω.

We show that the least upper bound of S is
∪
i∈Ω

Ii. By Theorem 2.2.1,
∪
i∈Ω

Ii ∈ I . Since

Ij ⊆
∪
i∈Ω

Ii for all j ∈ Ω, we obtain that
∪
i∈Ω

Ii is an upper bound of S . Let A be an upper

bound of S and a ∈
∪
i∈Ω

Ii. Then a ∈ Ik for some k in Ω. Since A is an upper bound of

S , we have a ∈ Ik ⊆ A. Thus
∪
i∈Ω

Ii ⊆ A. So
∪
i∈Ω

Ii is the least upper bound of S . Now,

we show that the greatest lower bound of S is
∩
i∈Ω

Ii. Since J1 ⊆ Ii for all i ∈ Ω, we

have J1 ⊆
∩
i∈Ω

Ii. Then
∩
i∈Ω

Ii ̸= ∅. So
∩
i∈Ω

Ii ∈ I by Theorem 2.2.2. Since
∩
i∈Ω

Ii ⊆ Ij

for all j in Ω, we obtain that
∩
i∈Ω

Ii is a lower bound of S . Let B be a lower bound of S

and b ∈ B. Since B ⊆ Ii for all i in Ω, we obtain b ∈ Ii for all i in Ω. Thus b ∈
∩
i∈Ω

Ii.

Hence B ⊆
∩
i∈Ω

Ii. So
∩
i∈Ω

Ii is the greatest lower bound of S . Hence (I ,⊆) is a complete

lattice.

Lemma 3.2.3. If |Y | = 1 and J2,s,t ̸= ∅, then J1 ∪ J2,s,t is an ideal of S(X,Y) if and only

if s = 1 = t.

Proof. Assume that |Y | = 1 and J2,s,t ̸= ∅. Suppose that J1 ∪ J2,s,t is an ideal of S(X,Y ).

Let α ∈ J2,s,t. Since Y α ⊆ Y , we have 1 ≤ |Y α| ≤ |Y | = 1, so |Y α| = 1 which implies that

s = |Y α| = 1. Since |Xα| = 2 and Y = Y α, we have |Xα \ Y | = |Xα \ Y α| = 2− 1 = 1,

that is t = 1.

Conversely, assume that s = 1 = t. First, we show that J1 ∪ J2,1,1 = S(3, 2, 2).

Let α ∈ J1 ∪ J2,1,1. Then α ∈ J1 or α ∈ J2,1,1. If α ∈ J1, then |Xα| = 1 < 3, |Y α| =

|Xα| = 1 < 2 and |Xα \ Y | = 1 − 1 = 0 < 2. Thus α ∈ S(3, 2, 2). If α ∈ J2,1,1, then

|Xα| = 2 < 3, |Y α| = 1 < 2 and |Xα \ Y | = 1 < 2. Thus α ∈ S(3, 2, 2). For the other

containment, let α ∈ S(3, 2, 2). Then |Xα| ≤ 2, |Y α| ≤ 1 and |Xα \ Y | ≤ 1. If |Xα| = 1,

then α ∈ J1. If |Xα| = 2, then |Xα \ Y | = |Xα \ Y α| = 2− 1 = 1. Then α ∈ J2,1,1. Hence

J1 ∪ J2,1,1 = S(3, 2, 2) is an ideal of S(X,Y ).

Since J1 is the minimum ideal of S(X,Y ), we define a minimal ideal in S(X,Y ) as

follows. An ideal I of S(X,Y ) is a minimal ideal if J is an ideal such that J1 ⊆ J ⊆ I,

then either J = J1 or J = I.

Theorem 3.2.4. If |Y | = 1, then J1 ∪ J2,1,1 is the unique minimal ideal of S(X,Y ).

Proof. Suppose that Y = {a}. By Lemma 3.2.3, we have J1∪J2,1,1 is an ideal of S(X,Y ).

Next, we show that J1∪J2,1,1 is a minimal ideal of S(X,Y ). Let J be an ideal of S(X,Y )

such that J1 ⊆ J ⊆ J1 ∪ J2,1,1. Suppose that J ( J1 ∪ J2,1,1. It is clear that J1 ⊆ J. By
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our supposition, there exists α ∈ J2,1,1 but α /∈ J. We show that J ⊆ J1 by supposing this

is false, so J * J1. Then there exists β ∈ J such that β /∈ J1. Since α, β ∈ J2,1,1, we can

write

α =

A X \A

a b


where Y ⊆ A, b ∈ X \ Y and

β =

B X \B

a c


where Y ⊆ B, c ∈ X \ Y . Let γ, θ ∈ S(X,Y ) be defined by

γ =

A X \A

a v

 , θ =

Y X \ Y

a b


where v ∈ X \B. Consider

γβθ =

A X \A

a v

B X \B

a c

Y X \ Y

a b


=

A X \A

a b

 = α.

Then α = γβθ ∈ J which is a contradiction. So J = J1. Hence J1 ∪ J2,1,1 is a minimal

ideal of S(X,Y ). Finally, we show that J1 ∪J2,1,1 is the unique minimal ideal of S(X,Y ).

Let M = J1 ∪ J2,1,1 and N be a minimal ideal of S(X,Y ). We show that M = N. Since

N is an ideal of S(X,Y ), we get that N = K(Z) for some ∅ ̸= Z ⊆ S(X,Y ). Since

J1 ( N , there exists α ∈ N with |Xα| ≥ 2. Since α ∈ N = K(Z), we obtain that

|Xα| ≤ |Xβ|, |Y α| ≤ |Y β| and |Xα\Y | ≤ |Xβ\Y | for some β ∈ Z. Let γ ∈ J2,1,1. Then

|Xγ| = 2 and so |Xγ| ≤ |Xα| ≤ |Xβ|. Since |Y | = 1, we have |Y γ| = 1 = |Y α| ≤ |Y β|

and |Xγ\Y | = 1 ≤ |Xα\Y | ≤ |Xβ\Y |. Then γ ∈ K(Z) = N. Thus J2,1,1 ⊆ N and so

J1 ∪ J2,1,1 ⊆ N which implies by the minimality of N that M = N .

However, minimal ideals of a semigroup S does not always exist.

Example 2. Let N be the set of all natural numbers. Then N is a semigroup under the

addition. Thus I is an ideal of N if and only if I = {n ∈ N : n ≥ a} for some a ∈ N. We

show that N does not contain minimal ideals. Assume that M is a minimal ideal of N.
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Then M = {m ∈ N : m ≥ a} for some a ∈ N. But there exists M ′ = {m′ ∈ N : m′ ≥ a+1}

such that M ′ ⊆ M and M ′ ̸= M since a ∈ M and a /∈ M ′ which is a contradiction. Then

N does not contain minimal ideals.

If X = Y , then S(X,Y ) = T (X), and [5] has been characterized the ideals of T (X)

for any set X. So we will consider only the case where Y is a nonempty proper subset of

X.

Lemma 3.2.5. If |Y | > 1 and J2,s,t ̸= ∅, then J1 ∪ J2,s,t is an ideal of S(X,Y ) if and

only if s = 1, t = 0.

Proof. Assume that |Y | > 1 and J2,s,t ̸= ∅.

Suppose that J1 ∪ J2,s,t is an ideal. Let α ∈ J2,s,t. Then |Xα| = 2, |Y α| = s and

|Xα \ Y | = t. Since |Xα| = 2 and 1 ≤ |Y α| ≤ |Xα| = 2, we have 1 ≤ s ≤ 2, so

0 ≤ |Xα \Y | ≤ 1. Thus 0 ≤ t ≤ 1. So there are four possible cases: s = 2 and t = 0; s = 2

and t = 1; s = 1 = t; or s = 1 and t = 0.

If s = 2 and t = 1, then |Xα| = 2 = |Y α|. Since Y α ⊆ Xα, we obtain that

Xα = Y α and thus t = |Xα \ Y | = |Y α \ Y | = 0 which is a contradiction.

If s = 2 and t = 0, then J1 ∪ J2,s,t = J1 ∪ J2,2,0. Let β ∈ J2,2,0 be such that

β =

a X \ {a}

a b


where a, b ∈ Y and a ̸= b. Let γ ∈ S(X,Y ) defined by

γ =

Y X \ Y

a b

 .

So

γβ =

Y X \ Y

a b

 /∈ J1 ∪ J2,2,0.

Then J1 ∪ J2,2,0 is not an ideal which is a contradiction.

If s = 1 = t, then J1 ∪ J2,s,t = J1 ∪ J2,1,1. Let λ ∈ J2,1,1. So |Xλ| = 2 and Y λ ⊆ Y ,

thus we can write

λ =

A X \A

u v
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where u ∈ Y ⊆ A and v ∈ X \ Y . Since |Y | > 1, there exists u ̸= w ∈ Y and define

µ ∈ S(X,Y ) by

µ =

Y X \ Y

u w

 .

So

λµ =

A X \A

u w

 /∈ J1 ∪ J2,1,1.

Thus J1 ∪ J2,1,1 is not an ideal which is a contradiction. Therefore, s = 1 and t = 0.

Conversely, assume that s = 1 and t = 0. We show that J1 ∪ J2,1,0 = S(3, 2, 1).

Let α ∈ J1 ∪ J2,1,0. Then α ∈ J1 or α ∈ J2,1,0. If α ∈ J1, then |Xα| = 1 < 3, |Y α| ≤

|Xα| = 1 < 2 and |Xα \ Y | = 1 − 1 = 0 < 1. Thus α ∈ S(3, 2, 1). If α ∈ J2,1,0, then

|Xα| = 2 < 3, |Y α| = 1 < 2 and |Xα \ Y | = 0 < 1. Thus α ∈ S(3, 2, 1). For the other

containment, let α ∈ S(3, 2, 1). Then |Xα| ≤ 2, |Y α| = 1 and |Xα \ Y | = 0. If |Xα| = 1,

then α ∈ J1. If |Xα| = 2, |Y α| = 1 and |Xα \ Y | = 0, then α ∈ J2,1,0.

Theorem 3.2.6. If |Y | > 1, then J1 ∪ J2,1,0 is the unique minimal ideal of S(X,Y ).

Proof. Suppose that |Y | > 1. By Lemma 3.2.5, we have J1 ∪ J2,1,0 is an ideal of S(X,Y ).

To show that J1 ∪ J2,1,0 is a minimal ideal of S(X,Y ), let J be an ideal of S(X,Y ) such

that J1 ⊆ J ( J1 ∪ J2,1,0. It is clear that J1 ⊆ J. By assumption, we have there exists

α ∈ J2,1,0 but α /∈ J. We prove that J ⊆ J1 by supposing this is false. Then there exists

β ∈ J, but β /∈ J1. Since α, β ∈ J2,1,0, we can write

α =

A X \A

a b


where a, b ∈ Y ⊆ A and

β =

B X \B

a′ c


where a′, c ∈ Y ⊆ B. Let γ, θ ∈ S(X,Y ) be defined by

γ =

A X \A

u v

 , θ =

a
′

X \ {a′}

a b


where u ∈ Y and v ∈ X \B. So

γβθ =

A X \A

u v

B X \B

a′ c

a
′

X \ {a′}

a b
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=

A X \A

a b

 = α.

Then α = γβθ ∈ J which is a contradiction. Hence J1∪J2,1,0 is a minimal ideal of S(X,Y ).

Now, we show that J1 ∪J2,1,0 is the unique minimal ideal of S(X,Y ). Let M = J1 ∪J2,1,0

and N be a minimal ideal of S(X,Y ). Since N is an ideal of S(X,Y ), we get that

N = K(Z) for some ∅ ̸= Z ⊆ S(X,Y ). Since J1 ( N , there exists α ∈ N with |Xα| ≥ 2.

Since α ∈ N = K(Z), we obtain that |Xα| ≤ |Xβ|, |Y α| ≤ |Y β| and |Xα\Y | ≤ |Xβ\Y |

for some β ∈ Z. Let γ ∈ J2,1,0. Then |Xγ| = 2 and so |Xγ| = 2 ≤ |Xα| ≤ |Xβ|. Since

γ ∈ J2,1,0, we have |Y γ| = 1 ≤ |Y α| ≤ |Y β| and |Xγ\Y | = 0 ≤ |Xα\Y | ≤ |Xβ\Y |. Then

γ ∈ K(Z) = N. Thus J2,1,0 ⊆ N and so J1 ∪ J2,1,0 ⊆ N which implies by the minimality

of N that M = N .

Example 3. Let X = {1, 2, 3, 4}, Y = {1, 2}. Consider the ideals of S(X,Y ) in the

following diagram.

S(5, 3, 3)

S(4, 3, 3)

S(3, 3, 1) ∪ S(4, 2, 3) S(4, 3, 2)

S(4, 2, 3) S(3, 3, 1) ∪ S(4, 2, 2)

S(4, 2, 2) S(3, 3, 2)

S(3, 2, 2) S(3, 3, 1)

S(3, 2, 1)

S(2, 2, 1)

Figure 2

From example 3, it is clear that S(3, 2, 1) = J1 ∪ J2,1,0 is the unique minimal ideal
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of S(X,Y ).

Now, we will define the maximal ideal of S(X,Y ). Let I be a proper ideal of

S(X,Y ). I is said to be a maximal ideal if J is an ideal such that I ⊆ J ⊆ S(X,Y ), then

either J = I or J = S(X,Y ).

Theorem 3.2.7. Let S be a semigroup with identity 1. If S contains a proper ideal, then

S has a maximal ideal.

Proof. Suppose that S contains a proper ideal, say A.

Let A = {B ⊆ S | B is a proper ideal of S containing A}. Since A ∈ A, we have A ̸= ∅.

Let ⊆ be a partial ordering of the set A. In order to apply Zorn’s Lemma, we must show

that every nonempty chain C = {Ij |j ∈ J} of A has an upper bound in A. Let I = ∪
j∈J

Ij .

By Theorem 2.2.1, I is an ideal of S. Now, we show that I is a proper ideal. We assume

that I is not a proper ideal. Then 1 ∈ S = I. Thus 1 ∈ I = ∪
j∈J

Ij . We obtain that 1 ∈ Ij0

for some j0 ∈ J. So Ij0 = S, i.e., Ij0 is not a proper ideal. This leads to a contradiction.

Hence I is a proper ideal of S. Since A ⊆ Ij for all j ∈ J , we have A ⊆ ∪
j∈J

Ij = I. And

since Ij ⊆ ∪
j∈J

Ij = I for all j ∈ J , we obtain that I is an upper bound of C . Then every

nonempty chain has an upper bound in A. By Zorn’s Lemma, we obtain that A contains

a maximal element, say M . That is, if N is an element of A and M ⊆ N, then M = N.

Next, we prove that M is a maximal ideal of S. Since M ∈ A, we have M ̸= S. If P is an

ideal of S such that M ⊆ P ⊆ S. Suppose that P ̸= S. So P ∈ A and M ⊆ P . We get

M = P by the maximality of M .

The following example shows that the condition “S is a semigroup with identity” is

necessary.

Example 4. Let S be a left zero semigroup and |S| > 1. Suppose that S contains an

identity, say e. Let e ̸= a ∈ S. Then ea = a and so e = a which is a contradiction. Thus

S does not contain an identity. Let I be an ideal of S and i ∈ I. Then a = ai ∈ I for all

a ∈ S. So I = S. Hence S has no a maximal ideal.

Example 5. Let S = {x ∈ R : x > 1}. Then S is a semigroup under the multiplication.

We first prove that I is an ideal of S if and only if I = [a,∞) or I = (a,∞) for some

a ∈ S.
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Proof. Let I be an ideal of S. Since I has a lower bound, we obtain that the greatest

lower bound of I exists, say a. We consider the following two cases.

Case 1: a ∈ I. We show that I = [a,∞). Let x ∈ I. Since a is the greatest lower

bound of I, we have a ≤ x and so x ∈ [a,∞). For the other containment, let y ∈ [a,∞). If

y = a, then y ∈ I. If y > a, then choose 1 < z =
y

a
∈ S. Thus y = az ∈ I. So I = [a,∞).

Case 2: a /∈ I. We show that I = (a,∞). Let x ∈ I. Since a is the greatest lower

bound of I ,we have a < x and so x ∈ (a,∞). For the other containment, let y ∈ (a,∞).

Since a is a greatest lower bound of I, we have that there exists k ∈ I such that a < k < y,

then choose 1 < m =
y

k
∈ S. Thus y = mk ∈ I. So I = (a,∞).

Conversely, we assume that I = [a,∞) or I = (a,∞) for some a ∈ S.

Case 1: I = [a,∞). Let x ∈ I and y ∈ S. Then x ≥ a and y > 1. Thus xy ≥ a

and so xy ∈ I. Since S is commutative, we get that yx ∈ I. So I is an ideal of S.

Case 2: I = (a,∞). Let x ∈ I and y ∈ S. Then x > a and y > 1. Thus xy > a

and so xy ∈ I. Since S is commutative, yx ∈ I. So I is an ideal of S.

We see that the semigroup S in Example 5, has no an identity element. Since [2,∞)

is an ideal of S such that [2,∞) ̸= S. Then S contains a proper ideal. Let I be a maximal

ideal of S and a is the greatest lower bound of I. Then I = [a,∞) or I = (a,∞). If

I = [a,∞), then we can choose 1 < b < a. Thus [a,∞) ( [b,∞) which contradicts the

maximality of I = [a,∞). If I = (a,∞), we can choose 1 < b < a. Thus (a,∞) ( (b,∞)

which is a contradiction.

Example 6. Let G be a group and I an ideal of G. It is clear that G contains an identity,

say e. If a ∈ I, then there exists a−1 ∈ G such that e = aa−1 ∈ I and then I = G. Thus

G has no a proper ideal. So G has no a maximal ideal.

Lemma 3.2.8. J1 ∪ J2 ∪ ... ∪ Jk is an ideal of S(X,Y ) where 1 ≤ k ≤ n.

Proof. Let α ∈ J1∪J2∪ ...∪Jk and β, γ ∈ S(X,Y ). Then α ∈ Ji0 for some 1 ≤ i0 ≤ k and

thus |Xα| = i0. Since Xβαγ = (Xβ)αγ ⊆ Xαγ, we get that |Xβαγ| ≤ |Xαγ| ≤ |Xα| =

i0. Then |Xβαγ| = p for some 1 ≤ p ≤ i0 ≤ k. Hence βαγ ∈ Jp ⊆ J1 ∪ J2 ∪ ... ∪ Jk.

Lemma 3.2.9. Let S be a semigroup with identity 1. If S has a maximal ideal, then it is

unique.

Proof. Suppose that S has a maximal ideal, say M . Let M ′ be a maximal ideal of S. It is

clear that M ∪M ′ is an ideal and 1 /∈ M ∪M ′. Since M ⊆ M ∪M ′ and M is a maximal

20



ideal, we have M ∪M ′ = M . Similarly, we have M ∪M ′ = M ′. So M = M ∪M ′ = M ′.

Therefore, S has the unique maximal ideal.

If |X| = |Y | = 1, then S(X,Y ) = G(X,Y ). Thus S(X,Y ) \ G(X,Y ) = ∅. So we

consider the case |X| > 1.

Theorem 3.2.10. If |X| > 1, then S(X,Y ) \ G(X,Y ) is the unique maximal ideal of

S(X,Y ).

Proof. Let a ∈ Y and α be the constant map withXα = {a}. Then α ∈ S(X,Y )\G(X,Y ),

so S(X,Y ) \G(X,Y ) ̸= ∅. By Lemma 3.2.8, we have

S(X,Y ) \G(X,Y ) = S(X,Y ) \ Jn = J1 ∪ J2 ∪ ... ∪ Jn−1

is an ideal of S(X,Y ). We show that S(X,Y ) \ G(X,Y ) is a maximal ideal of S(X,Y ).

Let I be an ideal of S(X,Y ) such that S(X,Y ) \ G(X,Y ) ⊆ I ( S(X,Y ). We prove

that I = S(X,Y ) \ G(X,Y ) by supposing this is not true. Then there exists α ∈ I but

α /∈ S(X,Y )\G(X,Y ), i.e., α ∈ G(X,Y ). Since G(X,Y ) is a group, we obtain that α−1 ∈

G(X,Y ) and idX = αα−1 ∈ I. Thus I = S(X,Y ) which is a contradiction. Therefore,

I = S(X,Y ) \G(X,Y ). So S(X,Y ) \G(X,Y ) is a maximal ideal of S(X,Y ). By Lemma

3.2.9, we obtain that S(X,Y ) \G(X,Y ) is the unique maximal ideal of S(X,Y ).

Example 7. By Example 3. Consider the ideals of S(X,Y ) in the following diagram.
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S(5, 3, 3)

S(4, 3, 3)

S(3, 3, 1) ∪ S(4, 2, 3) S(4, 3, 2)

S(4, 2, 3) S(3, 3, 1) ∪ S(4, 2, 2)

S(4, 2, 2) S(3, 3, 2)

S(3, 2, 2) S(3, 3, 1)

S(3, 2, 1)

S(2, 2, 1)

Figure 3

It is clear that S(4, 3, 3) = J1 ∪ J2 ∪ J3 ∪ J4 = S(X,Y ) \ G(X,Y ) is the unique

maximal ideal of S(X,Y ).

By Theorem 3.2.10, we have that S(X,Y ) \G(X,Y ) is a maximal ideal of S(X,Y )

when X is a finite nonempty set and Y a subset of X with |X| > 1. However, if X is an

infinite set and Y a subset of X, then S(X,Y ) \G(X,Y ) may not be a maximal ideal as

shown in the following example.

Example 8. Let X = N and Y = {1, 2}. Then we define α, β ∈ S(X,Y ) by

xα =


x : x ∈ Y,

1 : x = 3,

x− 1 : x ∈ X \ {1, 2, 3},

and

xβ =


x : x ∈ Y,

x+ 1 : x ∈ X \ Y.
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Since 1α = 3α, we have α is not injective. Since Xβ = X \{3}, we have β is not surjective.

Then α, β ∈ S(X,Y ) \G(X,Y ). Since

xβα = (xβ)α =


xα : x ∈ Y,

(x+ 1)α : x ∈ X \ {1, 2, 3},

4α : x = 3,

=


x : x ∈ Y,

x : x ∈ X \ {1, 2, 3},

3 : x = 3,

we obtain that xβα = x for all x ∈ X. Then βα ∈ G(X,Y ). Thus βα /∈ S(X,Y )\G(X,Y ).

So S(X,Y ) \G(X,Y ) is not an ideal of S(X,Y ).

Lemma 3.2.11. Let X be a finite nonempty set and Y be a subset of X such that |Y | = 1.

Then

(1) Jk = {α ∈ S(X,Y ) : |Xα| = k} is a J-class,

(2) If I is an ideal of S(X,Y ) and k = max{|Xα |: α ∈ I}, then I = J1∪J2∪...∪Jk.

Proof. (1) Let α, β ∈ Jk. Then |Xα| = k = |Xβ|, |Y α| = 1 = |Y β|. Since Y = Y α ⊆ Xα

and Y = Y β ⊆ Xβ, we get that |Xα \ Y | = |Xα| − |Xα ∩ Y | = |Xα| − |Y | = k − 1 =

|Xβ| − |Y | = |Xβ| − |Xβ ∩ Y | = |Xβ \ Y |. Hence αJ β. Now, let γ ∈ S(X,Y ) \ Jk. Thus

|Xγ| ̸= k = |Xα|. Then γ is not J -related to α.

(2) Suppose that I is an ideal of S(X,Y ) and k = max{|Xα| : α ∈ I} and Y = {a1}.

If X = Y = {a1}, then

S(X,Y ) = I =


a1

a1

 = J1

and k = 1 = max{|Xα| : α ∈ I}. In the case Y ( X, let α ∈ I be such that |Xα| = k.

Then we can write

α =

A1 A2 ... Ak

a1 a2 ... ak


where Y ⊆ A1, Ai ⊆ X \ Y and ai ∈ X \ Y for all 2 ≤ i ≤ k. Let 2 ≤ t ≤ k and define

β =

a2 ... at X \ {a2, ..., at}

b2 ... bt a1
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where bi ∈ X \ Y for all 2 ≤ i ≤ t. Consider

γ = αβ =

A2 ... At A1 ∪
(

∪
t<i≤k

Ai

)
b2 ... bt a1

 .

Then γ ∈ I and γ ∈ Jt. Hence I ∩ Jt ̸= ∅ for all 2 ≤ t ≤ k. Since J1 ⊆ I by Proposition

3.2.1, we obtain that I ∩ J1 ̸= ∅.

We show that I = J1 ∪ J2 ∪ ... ∪ Jk. Let α ∈ I. Then |Xα| = l ≤ k which implies

that α ∈ Jl ⊆ J1 ∪ J2 ∪ ... ∪ Jk. Hence I ⊆ J1 ∪ J2 ∪ ... ∪ Jk. Let β ∈ J1 ∪ J2 ∪ ... ∪ Jk.

Then β ∈ Jp for some 1 ≤ p ≤ k. We can write

β =

B1 B2 ... Bp

a1 b2 ... bp


where Y ⊆ B1, Bi ⊆ X \ Y and bi ∈ X\Y for all 2 ≤ i ≤ p. Since I ∩ Jt ̸= ∅ for all

1 ≤ t ≤ k, we have I ∩ Jp ̸= ∅ which implies that there exists µ ∈ I ∩ Jp such that

µ =

C1 C2 ... Cp

a1 c2 ... cp


where Y ⊆ C1, Ci ⊆ X \ Y and ci ∈ X\Y for all 2 ≤ i ≤ p. Let θ, λ ∈ S(X,Y ) be defined

by

θ =

B1 B2 ... Bp

a1 d2 ... dp

 , λ =

c2 c3 ... cp X \ {c2, c3, ..., cp}

b2 b3 ... bp a1


where Y ⊆ D1, di ∈ Ci for all 2 ≤ i ≤ p. Consider

θµλ =

B1 B2 ... Bp

a1 d2 ... dp

C1 C2 ... Cp

a1 c2 ... cp

c2 c3 ... cp X \ {c2, c3, ..., cp}

b2 b3 ... bp a1


=β

Thus β = θµλ ∈ I. Hence J1 ∪ J2 ∪ ... ∪ Jk ⊆ I.

Theorem 3.2.12. If |Y | = 1, then the lattice of ideals of S(X,Y ) forms a chain.

Proof. Let I, J be an ideals of S(X,Y ). Choose k = max{|Xα| : α ∈ I} and l =

max{|Xβ |: β ∈ J}. By Lemma 3.2.11, I = J1 ∪ J2 ∪ ... ∪ Jk and J = J1 ∪ J2 ∪ ... ∪ Jl. If
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k ≤ l, then I = J1∪J2∪ ...∪Jk ⊆ J1∪J2∪ ...∪Jl = J. If k > l, then J = J1∪J2∪ ...∪Jl ⊆

J1 ∪ J2 ∪ ... ∪ Jk = I. Thus I ⊆ J or J ⊆ I.

Example 9. Let X = {1, 2, 3, ..., n}, Y = {1}. Consider the ideals of S(X,Y ) in the

following chain.

J1 ∪ J2 ∪ ... ∪ Jn

J1 ∪ J2 ∪ ... ∪ Jn−1

.

.

.

J1 ∪ J2

J1

Figure 4

3.3 Minimal and Maximal congruences on S(X, Y )

Let ρ be a congruence on a semigroup S. We call ρ a maximal congruence if δ is a

congruence on S with ρ ( δ ⊆ S × S implies δ = S × S.

Suppose that X is a finite set where |X| > 2 and let Q = T (X) \G(X), the authors

in [7] proved that σ = (Q×Q)∪ [G(X)×G(X)] is the only maximal congruence on T (X).

In this section, we determine maximal and minimal congruences on S(X,Y ).

Theorem 3.3.1. Let S = S(X,Y ) and G = G(X,Y ). Then

ρ = (S \G× S \G) ∪ (G×G)

is a maximal congruence on S.

Proof. It is clear that ρ is an equivalence relation on S. Let α, β, γ ∈ S and (α, β) ∈ ρ.

Then (α, β) ∈ (S \ G) × (S \ G) or (α, β) ∈ G × G. If (α, β) ∈ (S \ G) × (S \ G), then

γα, αγ, γβ, βγ ∈ S \ G since S \ G is an ideal of S(X,Y ). Thus (γα, γβ), (αγ, βγ) ∈

(S \G)× (S \G) ⊆ ρ. If (α, β) ∈ G×G, we consider the following two cases.

Case 1: γ ∈ S \G. Since S \G is an ideal, we have (αγ, βγ), (γα, γβ) ∈ (S \G)×

(S \G) ⊆ ρ.

Case 2: γ ∈ G. Then α, β, γ ∈ G. Since G is a group, we obtain that γα, αγ ∈ G

and γβ, βγ ∈ G. Thus (γα, γβ), (αγ, βγ) ∈ G×G ⊆ ρ.
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Next, we show that ρ is a maximal congruence on S. Let δ be a congruence on S

such that ρ ( δ ⊆ S×S. Since ρ ( δ, there exists (α, β) ∈ δ \ρ with α ∈ S \G and β ∈ G.

Let k be the order of β. Then idX = βk δ αk where αk ∈ S \ G since S \ G is an ideal.

Now, let (λ, µ) ∈ S × S. So λ δ αkλ and µ δ αkµ where αkλ, αkµ ∈ S \G. So αkλ ρ αkµ.

Since ρ ⊆ δ, we obtain αkλ δ αkµ. Thus λ δ µ and δ = S × S as required.

Let ρ be a congruence on a semigroup S. We call ρ a minimal congruence if δ is a

congruence on S with 1S ( δ ⊆ ρ implies δ = ρ.

Let I be a proper ideal of a semigroup S. Then a Rees congruence on S induced by

I is

ρI = (I × I) ∪ 1S(X,Y ).

On S(X,Y ), if Y = {a}, then J1 =


X

a

 and hence ρJ1 = 1S(X,Y ). We recall

that if |Y | = 1, then S(X,Y ) has a zero element. In this case, we will use 0 to denote the

zero element of S(X,Y ).

Lemma 3.3.2. Let |Y | = 1 and δ be a congruence on S(X,Y ). If 0 δ α for some α ∈ J2,

then 0 δ β for all β ∈ J2.

Proof. Let Y = {a} and 0 δ α for some α ∈ J2. Let β ∈ J2. Then we can write

β =

A1 A2

a b


where Y ⊆ A1, b ∈ X \ Y and A2 ⊆ X\Y . Since α ∈ J2, we can write

α =

B1 B2

a c


where Y ⊆ B1, c ∈ X \ Y and B2 ⊆ X\Y . Thus

0 =

A1 A2

a d

 0

a X \ {a}

a b

 δ

A1 A2

a d

B1 B2

a c

a X \ {a}

a b

 = β

where d ∈ B2. Therefore, 0 δ β.

Proposition 3.3.3. Let S = S(X,Y ) and |X| = 2, |Y | = 1. Then the Rees congruence

ρJ1∪J2 is a minimal congruence on S.

Proof. Let X = {a, b}, Y = {a} and δ be a congruence on S such that 1S ( δ ⊆ ρJ1∪J2 .

We note that in this case
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J1 ∪ J2 =

0 =

X

a

 , idX =

a b

a b

.

So

ρJ1∪J2 = {(α, α) : α ∈ S(X,Y )} ∪ {(0, idX), (idX , 0)}.

Since 1S ( δ, there is (α, β) ∈ δ such that α ̸= β. Since δ ⊆ ρJ1∪J2 , it follows that

(α, β) = (0, idX) or (α, β) = (idX , 0), hence δ = ρJ1∪J2 .

Theorem 3.3.4. Let S = S(X,Y ) and |X| > 2, |Y | = 1. Then the Rees congruence

ρJ1∪J2 is a minimal congruence on S.

Proof. Let Y = {a} and δ be a congruence on S such that 1S ( δ ⊆ ρJ1∪J2 . Since 1S ( δ,

we obtain that there exists (α, β) ∈ δ but α ̸= β. Since δ ⊆ ρJ1∪J2 , we have α ∈ J1 and

β ∈ J2; α ∈ J2 and β ∈ J1 or α, β ∈ J2. If α ∈ J1 and β ∈ J2, then α δ γ for all γ ∈ J2

by Lemma 3.3.2. Thus δ = ρJ1∪J2 . If α, β ∈ J2, then we can write

α =

A1 A2

a b

 and β =

B1 B2

a c


where Y ⊆ A1, Y ⊆ B1, A2, B2 ⊆ X \ Y and b, c ∈ X \ Y . Since α ̸= β, there are two

cases to consider.

Case 1: b ̸= c. We choose

λ =

{a, b} X \ {a, b}

a c

 .

Then λ ∈ S(X,Y ) and

0 =

X

a

 = αλ δ βλ =

B1 B2

a c

 = β.

By Lemma 3.3.2, we get that 0 δ γ for all γ ∈ J2. Thus δ = ρJ1∪J2 .

Case 2: b = c. Then A1 ̸= B1 or A2 ̸= B2. If A1 ̸= B1 and there exists u ∈ A1 \B1,

then define µ ∈ S(X,Y ) by

µ =

a X \ {a}

a u

.

So

0 =

X

a

 = µα δ µβ =

a X \ {a}

a c

 .
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By Lemma 3.3.2, we get that 0 δ γ for all γ ∈ J2. Thus δ = ρJ1∪J2 . Now, if A1 ̸= B1 and

there exists v ∈ B1 \A1, then define θ ∈ S(X,Y ) by

θ =

a X \ {a}

a v

.

So a X \ {a}

a b

 = θα δ θβ =

X

a

 = 0,

thus by Lemma 3.3.2, we get that 0 δ γ for all γ ∈ J2. Thus δ = ρJ1∪J2 . The case A2 ̸= B2

can be prove in the same way. Therefore, we conclude that ρJ1∪J2 is a minimal congruence

on S.

Theorem 3.3.5. Let S = S(X,Y ) and |Y | > 2. Then the Rees congruence ρJ1 is a

minimal congruence on S.

Proof. Let δ be a congruence on S such that 1S ( δ ⊆ ρJ1 (This is possible since |Y | ≥ 2).

Since 1S ( δ, there exists (α, β) ∈ δ but α ̸= β. Then (α, β) ∈ ρJ1 and we can write α

and β by

α =

X

a

 , β =

X

b


for some a, b ∈ Y such that a ̸= b. Let (λ, µ) ∈ ρJ1 . So λ = µ or λ, µ ∈ J1. If λ = µ, then

(λ, µ) ∈ δ. If λ, µ ∈ J1, then

λ =

X

u

 and µ =

X

v


for some u, v ∈ Y such that u ̸= v. Since αδβ, we obtain that

λ =

X

u

 =

X

a

a X\{a}

u v

 δ

X

b

a X\{a}

u v

 =

X

v

 = µ.

Hence δ = ρJ1 .

Example 10. Let X = {1, 2, 3} and Y = {1}. Then

J1 ∪ J2 =


1 2 3

1 1 1

 ,

1 2 3

1 2 2

 ,

1 2 3

1 3 3

 ,

1 2 3

1 1 2

 ,

1 2 3

1 1 3


1 2 3

1 2 1

 ,

1 2 3

1 3 1

 .
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So

ρJ1∪J2 = [(J1∪J2)×(J1∪J2)]∪


1 2 3

1 2 3

,
1 2 3

1 2 3

 ,

1 2 3

1 3 2

,
1 2 3

1 3 2

 .

Example 11. Let X = N and Y = {1}. Then

I = J1 ∪ J2 =


X

1

 ∪


A1 A2

1 n

 : 1 ∈ A1, and n ∈ N \ {1}


So

ρI = (I × I) ∪ {(α, α) : |Xα| ≥ 3}.
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