CHAPTER 3

Main Results

Throughout this section, we assume that X is a finite set and Y a nonempty subset
of X. We consider the subset of S(X,Y) as follow.
Let |X| = a, |Y] = band |X \ Y| = ¢. For each of cardinals r,s,¢ such that

2<r<da,2<s<b and1<t<, we define
S(r,s,t) ={a e S(X,Y): |Xa| <r |[Ya|<sand |[Xa\Y]| <t}

In [4], the ideals of S(X,Y") are precisely the sets K(Z) for some nonempty subset
Z of S(X,Y) defined by

K(Z)={a e S(X,Y): [Xa| < |XB|, [Ya| < |V]and
| Xa\Y| < |XB\Y]| for some 5 € Z}.
Then we see that Z C K(Z) and Z; C Z, implies that K(Z;) C K(Z3). For convenience,

if Z={ai,...,a,} is a finite set, we write K (a1, ..., ;) in stead of K(Z).

3.1 Some Properties of K(Z7)

In [4] the ideals of S(X,Y’) are of the form K (Z) for some nonempty subset Z of
S(X,Y). The following proposition gives the relation between K (Z) and S(r, s, t).

Proposition 3.1.1. Let § € S(X,Y) with | X5| =r, |YB] = s and | XB\Y| =t. Then
K(B)= S(r+1;s + 1jt+1):

Proof. By the definition, we have
K(B) = {a € S(X,Y) : |Xa| < [XB],[Val < [Y5] and |Xa\ Y| < X5\ Y]},
={aeSX,)Y):|Xa|<r|Yof <sand | Xa\Y| <t}
={aeSX,)Y): | Xa|<r+1,|Yal<s+1and | Xa\Y|<t+1},
=S(r+1,s+1,t+1). O
Proposition 3.1.2. Let 5,7 € S(X,Y). Then K(B,v) = K(8) UK(7v).
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Proof. Let a € K(f8,7). Then a € S(X,Y) with | Xa| <|XJ|, |[Ya| <|Yd| and | Xa\Y| <
| X0\ Y] for some 6 € {B,v}. If § = B, then |Xo| < |Xf|,|Ya| < |YB] and | Xa\ Y] <
IXB\Y|. If § = ~, then |Xa| < [Xv[,|[Ya| < |Yv] and |Xa \ Y| < |Xv\ Y]. So
a € K(B) or a« € K(y). Thus a« € K(8) U K(y) and then K(8,7) C K(5) U K(y).
Conversely, assume that o € K(8) U K(v). Then a € K(5) or « € K(v). If o € K(p),
then | Xa| < | X5, |Yal <|YS| and | Xa\Y]| < |XB\Y]. Thus a € K(5,7). If a € K (),
then |[Xa| < | Xv|,|Ya| < [V and | Xa\ Y| < | X9\ Y]|. Thus o € K(5,v) and then

K(B)UK(y) € K(B,7). Hence K(B,7) = K(8) U K(7). O
By Mathematical Induction and Proposition 3.1.2, we have the following corollary.

Corollary 3.1.3. Let 51, 52, ..., Bn € S(X,Y). Then

K (B, B2, -+ Bn) = K(B1) UK (B2) U... U K(By).

Proposition 3.1.4. Let a, 5 € S(X,Y). Then K(a) = K(B) if and only if | Xo| = | X3,
Vol = [Y8] and | Xa\ Y| = |XB\ Y.

Proof. Assume that K(a) = K(B). Since § € K(5), we have g € K(«). Then | Xj| <
| Xa|, |YB] <|Yea| and | X5\ Y| < |Xa\Y]|. Since o € K(«), we obtain that a € K(f).
Then | Xa| < |XB|, [Ya| < |YB| and | Xa\Y| < |XB\Y]. Thus | Xa| = |X8], |[Yo| = |Y ]
and |[Xa \ Y| = | X8\ Y| Conversely, we may assume that | Xo| = | X8|, |Ya| = |Y ]
and [ Xa\Y|=|Xp\Y]|.

7€ K(a) &€ S(X)Y), [Xq] < |Xal, Y] < [Ya| and [Xy\ Y| < [Xa\ Y];
S v7EeSX)Y), [Xq] < |XB], Y] <|YB] and [Xy\ Y| < [XB\Y];

&y e K(B). O
Proposition 3.1.5. Let « € S(X,Y). Then K(«) is a principal ideal of S(X,Y).

Proof. Let S = S(X,Y) and o € S. We prove that K(a) = SaS. Let f € K(a).
Then | X3| < [Xa|, |YB] < [Ya| and | X\ Y| < |Xa\ Y|. By Lemma 2.3.5, we have
B8 = Aap for some A\, u € S. Thus § € SaS. Conversely, let v € SaS. Then v = fan
for some 0,1 € S. Again by Lemma 2.3.5, we obtain that | Xv| <|Xal, |Yv| < |Yea| and
IXv\Y]| <|Xa\Y|. So~v € K(a). Hence K(«) is a principal ideal of S(X,Y). O

Theorem 3.1.6. The ideals of S(X,Y) are precisely the set K(a1)U ... U K (ay,), where
ap,...,an € S(X,Y).
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Proof. By Corollary 3.1.3, we obtain that
K(ap)U...UK(ayp) = K(a1,a2,...,ap).

Then K(a1)U...U K (o) is an ideal of S(X,Y) by Theorem 2.3.7.

Let I be an ideal of S(X,Y). By Theorem 2.3.7, we get that [ = K(Z) for some
0+ 7 CS(X,Y). Since S(X,Y) is a finite set, we can let Z = {aq, ..., @, }. By Corollary
3.1.3, we get that

1= K(2),
= K(Oél, ! ,Oén),
=K(aj)U...UK(ap). O

If X is a finite set with n elements and Y a nonempty subset of X with m elements,

then we define
Jrst ={a € S(X,Y):|Xa|=r, |[Ya|=sand | Xa\Y|=t}
and
Jp={a e S(X,Y): | Xa| =k}

where 1 <r<n, 1<s<m, 0<t<n—mand1<k<n Thus J,,; isa #-class and

Ji is a union of _#-classes.

Example 1. Let X = {1,2,3} and Y = {1,2}. Then S(X,Y) has 12 elements, namely
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So K(1x) = S(X,Y) = K(a), K(X1) = J1 = K(X2), K(p1) = K(Bs) = J1U J210,
K(B2) = K(B3) = K(B4) = K(B5) = J1UJa1,0UJ220 and K (p1) = K(p2) = J1UJ210U
J21,1. Thus there are only five principal ideals of S(X,Y):
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K(lX)v K(Xl)’ K(ﬂl)’ K(BQ)’ and K(Nl)'

But K(B82) U K(u1) = K(B2,p1) = J1 U Ja10U J211 U Ja20 is not a principal ideal of
S(X,Y).

K(1x)

K(Xy)

Figure 1

3.2 The Lattice of Ideals of S(X,Y)

Let # be the set of all ideals of S(X,Y’). Then (_#,C) is a partially ordered set

with the following properties.
Proposition 3.2.1. J; is the minimum ideal of S(X,Y) and is a right zero semigroup.

Proof. We prove that J; = S(2,2,1). It is clear that J; € S(2,2,1). Let o € 5(2,2,1).
Then |Xo| <2, |Ya| <2, | Xa\Y| <1 and thus [ Xa| =1=|Ya|. So « is the constant
map and « € J;. Therefore, J; is an ideal of S(X,Y’). To show that J; is the minimum
ideal, let I be an ideal of S(X,Y) and 8 € J;. Then there exists () # Z C S(X,Y) such
that I = K(Z). Let vy € Z. Then |X~|,|Yv| > 1 and [X7\Y| >0,s0 | X8| =1 < |X~|,
YOl =1<|Yv| and | XB\Y |=0 <| Xy \Y|. Thus 5 € I, that is J; C I as required.
Hence J; is the minimum ideal of S(X,Y"). Next, we show that .J; is a right zero semigroup.
Let A\, € Ji. Then | XA| =1 = |Xp| and let X\ = {a}, Xp = {b} where a,b € Y. Let
x € X. Thus z(Ap) = (z\)p = ap = b = xzpu. Hence Ay = p. O

Proposition 3.2.2. (£, C) is a complete lattice.
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Proof. Let ) # . C .# be such that . = {I; | i € Q} for some nonempty index set (.
We show that the least upper bound of . is U I;. By Theorem 2.2.1, U I, € 7. Since
I; C U I; for all j € ), we obtain that U I; izsegn upper bound of .¥. LftQA be an upper
bounlde%f < and a € U I;. Then a € .;;fﬂfor some k in 2. Since A is an upper bound of
<, we have a € I}, C ﬁﬂ Thus U I, C A So U I; is the least upper bound of .. Now,
we show that the greatest lowef%ound of yzelg ﬂ I;. Since Jy C I; for all i € Q, we
have J1 € () ;. Then (N I; # @. So N I; € ,}Egby Theorem 2.2.2. Since () I; C I;
1€ 1€Q 1€Q 1€Q
for all j in €2, we obtain that ﬂ I; is a lower bound of .. Let B be a lower bound of .7
and b € B. Since B C I; for Z:lsfi in Q, we obtain b € I; for all 7 in Q. Thus b € ﬂ I;.
Hence B C ﬂ I;. So ﬂ I; is the greatest lower bound of .. Hence (£, C) is a corrlli)gllete
lattice. N e O
Lemma 3.2.3. If |Y| =1 and Jo s # 0, then Jy U Ja s, is an ideal of S(X,Y) if and only

ifs=1=t.

Proof. Assume that |Y| =1 and Jo s, # 0. Suppose that J; U Jy s is an ideal of S(X,Y).
Let v € Ja54. Since Yoo C Y, we have 1 < |Ya| <|Y| =1, so |Y«| = 1 which implies that
s=|Ya| =1. Since |[Xa| =2 and Y = Ya, we have | Xa \Y|=|Xa\Ya|=2-1=1,
that is ¢t = 1.
Conversely, assume that s = 1 = ¢. First, we show that J; U Ja11 = 5(3,2,2).

Let « € J1UJg11. Then a € Jy or a € Joy1. If @ € Jy, then |[Xa| =1 < 3,|Ya| =
| Xa| =1 < 2and [Xa\Y|=1-1=0< 2 Thus o € 5(3,2,2). If @ € Jy1 1, then
| Xa| =2 < 3,|[Ya| =1<2and [Xa\Y|=1< 2 Thus a € 5(3,2,2). For the other
containment, let o € 5(3,2,2). Then |[Xa| <2,|Ya| <1and |[Xa\Y| <1 If |Xa| =1,
then a € Ji. If [ Xa| =2, then |[Xa\Y| = |Xa\Ya| =2—1=1. Then o € Jy; ;. Hence
JiUJa11 =5(3,2,2) is an ideal of S(X,Y). O

Since J; is the minimum ideal of S(X,Y'), we define a minimal ideal in S(X,Y) as
follows. An ideal I of S(X,Y’) is a minimal ideal if J is an ideal such that J; C J C I,
then either J = J; or J = I.

Theorem 3.2.4. If |Y| =1, then Jy U Jy 11 is the unique minimal ideal of S(X,Y).

Proof. Suppose that Y = {a}. By Lemma 3.2.3, we have J; U Jy 1 1 is an ideal of S(X,Y).
Next, we show that J; UJa 11 is a minimal ideal of S(X,Y’). Let J be an ideal of S(X,Y’)
such that J; € J C Jy U Ja1,1. Suppose that J C Jy U Ja 1. It is clear that J; C J. By
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our supposition, there exists a € Jy 11 but a ¢ J. We show that J C J; by supposing this
is false, so J ¢ Ji. Then there exists 8 € J such that 8 ¢ Ji. Since «, 8 € J21,1, we can

write
A X\A
o =
a b
where Y C A;be X\ Y and
B X\B
B =
a c

where Y C B,ce X \Y. Let 4,60 € S(X,Y) be defined by

A X\A Y X\Y
’y: 70:
a v a b

where v € X \ B. Consider

A X\A\ (B X\B\ [y X\Y

Y80 =
a ) a c a b
A X\A
= = q.
a b

Then a = y860 € J which is a contradiction. So J = J;. Hence J; U Jo 11 is a minimal
ideal of S(X,Y). Finally, we show that J; U Jy 1 is the unique minimal ideal of S(X,Y).
Let M = J;yUJy11 and N be a minimal ideal of S(X,Y’). We show that M = N. Since
N is an ideal of S(X,Y), we get that N = K(Z) for some () # Z C S(X,Y). Since
J1 € N, there exists a € N with |Xa| > 2. Since a« € N = K(Z), we obtain that
| Xa| <|XB|, [Ya| < |YP| and | Xa\Y| < |XB\Y| for some 8 € Z. Let v € Jo11. Then
| X7 =2 and so | Xv| < |Xa| < |Xpj|. Since |Y| =1, we have |[Yv| =1 =1|Ya| < |V
and [ Xv\Y| =1 < |[Xa\Y| < [ XB\Y|. Then v € K(Z) = N. Thus Ja1,1 € N and so
J1 U Ja1,1 € N which implies by the minimality of NV that M = N. O

However, minimal ideals of a semigroup S does not always exist.

Example 2. Let N be the set of all natural numbers. Then N is a semigroup under the
addition. Thus [ is an ideal of N if and only if I = {n € N: n > a} for some a € N. We

show that N does not contain minimal ideals. Assume that M is a minimal ideal of N.
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Then M = {m € N:m > a} for some a € N. But there exists M = {m' e N: m’ > a+1}
such that M’ C M and M’ # M since a € M and a ¢ M’ which is a contradiction. Then

N does not contain minimal ideals.

If X =Y, then S(X,Y) =T(X), and [5] has been characterized the ideals of T'(X)
for any set X. So we will consider only the case where Y is a nonempty proper subset of

X.

Lemma 3.2.5. If |Y| > 1 and Jos; # 0, then Jy U Jos¢ is an ideal of S(X,Y) if and
only if s=1,t =0.

Proof. Assume that |Y| > 1 and Jo s # 0.

Suppose that J; U Ja s+ is an ideal. Let a € Jag;. Then |Xa| = 2,|Ya| = s and
| Xa\ Y| = t. Since |[Xa| = 2 and 1 < |[Ya| < |Xa|] = 2, we have 1 < 5 < 2, so
0 <|Xa\Y|<1. Thus 0 <t <1.So there are four possible cases: s =2 and t =0; s = 2
andt=1;s=1=t;ors=1and ¢t =0.

If s =2and t = 1, then |[Xa|] = 2 = |Ya|. Since Ya C Xa, we obtain that
Xa=Yaand thus t = |[Xa \ Y| = |Ya\ Y| = 0 which is a contradiction.

If s=2andt=0,then JiUJys; = J1UJaog. Let § € Jya0 be such that

a X\{a}
a b

where a,b € Y and a # b. Let v € S(X,Y) defined by

Y X\Y
’y:
a b
So
4L
vB'= ¢ J1U Ja20.
a b

Then J; U Ja2 is not an ideal which is a contradiction.

Ifs=1=t,then 1UJysy =J1UJa11. Let A€ Jo11. 50 | XA|=2and YACY,

thus we can write

A X\A

u v

16



where u € Y € A and v € X \'Y. Since |Y| > 1, there exists u # w € Y and define
1€ S(X,Y) by

Y X \ Y
M:
u w
So
A X\A
Al = §é J1 U J2’1,1.
u w

Thus J; U Ja1,1 is not an ideal which is a contradiction. Therefore, s =1 and ¢ = 0.
Conversely, assume that s =1 and ¢ = 0. We show that J; U Ja10 = 5(3,2,1).

Let « € J1U Jo10. Then v € Jy or a € Joq19. If v € Jy, then |[Xa| =1 < 3, |[Ya| <

| Xa| =1 < 2and [Xa\Y|=1-1=0< 1. Thus o € 5(3,2,1). If @ € Jy1, then

| Xa|=2< 3, |Ya|=1<2and |[Xa\Y|=0< 1. Thus a € 5(3,2,1). For the other

containment, let a € S(3,2,1). Then [Xa| <2,|Ya| =1and |[Xa\Y|=0.1If | Xa| =1,

then a € J;. If | Xa| =2,|Ya| =1 and | Xa \ Y| =0, then a € Ja 1. O

Theorem 3.2.6. If |Y| > 1, then J1 U Ja1 9 is the unique minimal ideal of S(X,Y).

Proof. Suppose that |Y'| > 1. By Lemma 3.2.5, we have J; U Jy 1 is an ideal of S(X,Y).
To show that J; U Ja 10 is a minimal ideal of S(X,Y), let J be an ideal of S(X,Y’) such
that J; € J € Jy U Ja1. It is clear that J; C J. By assumption, we have there exists
a € Jyi but a ¢ J. We prove that J C J; by supposing this is false. Then there exists

B e J, but g ¢ Ji. Since a, 5 € Ja1,0, we can write

A X\A
o=
a b
where a,b € Y C A and
B X\B
ﬁ:
a c

where a/,¢c € Y C B. Let 7,60 € S(X,Y) be defined by

/

A X\A a X\m}
b

y =

where u € Y and v € X \ B. So

!

46— A X\A\ (B X\B)\ [d X\{d}
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A X\A
= =a.

a b
Then a = v460 € J which is a contradiction. Hence J1UJ3 1 o is a minimal ideal of S(X,Y").
Now, we show that J; U Ja 1 o is the unique minimal ideal of S(X,Y). Let M = J1UJ2a1
and N be a minimal ideal of S(X,Y). Since N is an ideal of S(X,Y), we get that
N = K(Z) for some ) # Z C S(X,Y). Since J; C N, there exists o € N with | Xa| > 2.
Since a € N = K(Z), we obtain that |Xa| < | XS], [Ya| < |V ] and | Xa\Y| < | XB\Y]|
for some f € Z. Let v € Jy19. Then | Xv| =2 and so | X7v| =2 < |Xa| < |X3|. Since
v € Ja1,0, we have Y| =1 < |Ya| <|YV3] and | X7\Y| =0 < |Xa\Y]| < |XB\Y]|. Then
v € K(Z) = N. Thus Jy10 € N and so J; U Jz 10 € N which implies by the minimality
of N that M = N. O

Example 3. Let X = {1,2,3,4}, Y = {1,2}. Consider the ideals of S(X,Y) in the

following diagram.

5(5,3,3)

S(4,3,3)

)

5(3,3,1) U S(4,2,3) S(4,3,2)

/

S(4,2,3)  S(3,3,1)US(4,2,2)

\

S(4 22)/5(3 3,2)
5(3.2,2) 5(3,3,1)

S

5(3,2,1)

S5(2,2,1)
Figure 2

From example 3, it is clear that S(3,2,1) = J; U J,10 is the unique minimal ideal
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of S(X,Y).

Now, we will define the maximal ideal of S(X,Y). Let I be a proper ideal of
S(X,Y). I is said to be a maximal ideal if J is an ideal such that I C J C S(X,Y), then
either J =T or J = S(X,Y).

Theorem 3.2.7. Let S be a semigroup with identity 1. If S contains a proper ideal, then

S has a mazimal ideal.

Proof. Suppose that S contains a proper ideal, say A.

Let A= {B C S| B is a proper ideal of S containing A}. Since A € A, we have A # ().
Let C be a partial ordering of the set A. In order to apply Zorn’s Lemma, we must show
that every nonempty chain ¢ = {I;|j € J} of A has an upper bound in A. Let I = ng I;.
By Theorem 2.2.1, I is an ideal of S. Now, we show that I is a proper ideal. We assume
that I is not a proper ideal. Then1 € S =1. Thus1 € I = jgj I;. We obtain that 1 € I},
for some jo € J. So I, = 5, i.e., I}, is not a proper ideal. This leads to a contradiction.
Hence I is a proper ideal of S. Since A C I; for all j € J, we have A C jLEJJIj =1. And
since [; C jgj I; =1 for all j € J, we obtain that I is an upper bound of €. Then every
nonempty chain has an upper bound in A. By Zorn’s Lemma, we obtain that A contains
a maximal element, say M. That is, if NV is an element of A and M C N, then M = N.
Next, we prove that M is a maximal ideal of S. Since M € A, we have M # S. If P is an
ideal of S such that M C P C S. Suppose that P #S. So P € Aand M C P. We get

M = P by the maximality of M. O

The following example shows that the condition “S is a semigroup with identity” is

necessary.

Example 4. Let S be a left zero semigroup and |S| > 1. Suppose that S contains an
identity, say e. Let ¢ #% a € S. Then ea = a and so e = a which is a contradiction. Thus
S does not contain an identity. Let I be an ideal of S and 7 € I. Then a = ai € I for all

a€S. Sol=S. Hence S has no a maximal ideal.

Example 5. Let S = {z € R:x > 1}. Then S is a semigroup under the multiplication.
We first prove that I is an ideal of S if and only if I = [a,00) or I = (a,00) for some

a€s.
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Proof. Let I be an ideal of S. Since I has a lower bound, we obtain that the greatest
lower bound of I exists, say a. We consider the following two cases.

Case 1: a € I. We show that I = [a,00). Let 2 € I. Since a is the greatest lower
bound of I, we have a < z and so = € [a,00). For the other containment, let y € [a, c0). If
y=a, theny € I. Ify>a,thenchoose1<z=%€5. Thus y = az € I. So I = [a,00).

Case 2: a ¢ I. We show that I = (a,00). Let € I. Since a is the greatest lower
bound of I ,we have a < x and so = € (a,00). For the other containment, let y € (a,c0).
Since a is a greatest lower bound of I, we have that there exists k € I such that a < k < y,
then choose 1 < m = % €S. Thusy=mk € 1. So I = (a,).

Conversely, we assume that I = [a, 00) or I = (a,00) for some a € S.

Case 1: [ = [a,00). Let z € [ and y € S. Then z > a and y > 1. Thus zy > a
and so xy € I. Since S is commutative, we get that yz € I. So [ is an ideal of S.

Case 2: [ = (a,00). Let z € I and y € S. Then z > a and y > 1. Thus 2y > a

and so zy € I. Since S is commutative, yx € I. So I is an ideal of S. O

We see that the semigroup S in Example 5, has no an identity element. Since [2, c0)
is an ideal of S such that [2,00) # S. Then S contains a proper ideal. Let I be a maximal
ideal of S and a is the greatest lower bound of I. Then I = [a,00) or I = (a,00). If
I = [a,00), then we can choose 1 < b < a. Thus [a,00) C [b,00) which contradicts the
maximality of I = [a,00). If I = (a,00), we can choose 1 < b < a. Thus (a,00) C (b, 00)

which is a contradiction.

Example 6. Let G be a group and [ an ideal of G. It is clear that G contains an identity,
say e. If a € I, then there exists a~! € G such that e = aa~! € I and then I = G. Thus

G has no a proper ideal. So G has no a maximal ideal.
Lemma 3.2.8. J; U Jo U...U Jg is an ideal of S(X,Y) where 1 < k < n.

Proof. Let a € J1UJoU...UJg and 8,7 € S(X,Y). Then o € J;, for some 1 < iy < k and
thus | Xa| = dp. Since Xpay = (XB)ay C Xavy, we get that | X fay| < [Xay| < [ Xa| =
ip. Then | X Say| = p for some 1 < p < iy < k. Hence fay € J, C J1UJoU...U Jj. O

Lemma 3.2.9. Let S be a semigroup with identity 1. If S has a mazimal ideal, then it is

unique.

Proof. Suppose that S has a maximal ideal, say M. Let M’ be a maximal ideal of S. It is
clear that M U M’ is an ideal and 1 ¢ M U M’'. Since M C M U M’ and M is a maximal
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ideal, we have M U M’ = M. Similarly, we have M UM’ = M'. So M = M UM’ = M’'.

Therefore, S has the unique maximal ideal. O

If | X| =|Y| =1, then S(X,Y) = G(X,Y). Thus S(X,Y)\ G(X,Y) = 0. So we

consider the case | X| > 1.

Theorem 3.2.10. If |X| > 1, then S(X,Y) \ G(X,Y) is the unique mazimal ideal of
S(X,Y).

Proof. Let a € Y and a be the constant map with Xa = {a}. Thena € S(X,Y)\G(X,Y),
so S(X,Y)\ G(X,Y) # (. By Lemma 3.2.8, we have

S(X,Y)\G(X,Y) = S(X,Y)\ Jpy = 1 UJyU .. UJny

is an ideal of S(X,Y). We show that S(X,Y)\ G(X,Y) is a maximal ideal of S(X,Y).
Let I be an ideal of S(X,Y) such that S(X,Y)\ G(X,Y) C I C S(X,Y). We prove
that I = S(X,Y) \ G(X,Y) by supposing this is not true. Then there exists o € I but
a g S(X,Y)\G(X,Y),ie,ac G(X,Y). Since G(X,Y) is a group, we obtain that a1 €
G(X,Y) and idx = aa~! € I. Thus I = S(X,Y) which is a contradiction. Therefore,
I'=S5(X,Y)\G(X,Y). So S(X,Y)\ G(X,Y) is a maximal ideal of S(X,Y’). By Lemma
3.2.9, we obtain that S(X,Y)\ G(X,Y) is the unique maximal ideal of S(X,Y). O

Example 7. By Example 3. Consider the ideals of S(X,Y) in the following diagram.
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5(5,3,3)

S(4,3,3)

S(3,3,1) U S(4,2,3) S(4,3,2)

5(3,2,1)

S5(2,2,1)
Figure 3

It is clear that S(4,3,3) = J1U Jy U Js3U Jys = S(X,Y) \ G(X,Y) is the unique
maximal ideal of S(X,Y).

By Theorem 3.2.10, we have that S(X,Y)\ G(X,Y) is a maximal ideal of S(X,Y)
when X is a finite nonempty set and Y a subset of X with |X| > 1. However, if X is an
infinite set and Y a subset of X, then S(X,Y)\ G(X,Y) may not be a maximal ideal as

shown in the following example.

Example 8. Let X =N and Y = {1,2}. Then we define o, 5 € S(X,Y) by

x B i
T = 1 T =3,
zr—1 : zeX\{1,23},
and
x . x €Y,
xfb =

r+1 : zeX\Y.
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Since la = 3a, we have « is not injective. Since X3 = X \ {3}, we have  is not surjective.

Then o, f € S(X,Y)\ G(X,Y). Since

T . x €Y,
za=(zfla=q(z+Da : zecX)\{1,2,3},

4o o ox =3,

r : x€EY,

T2\l £ o \ {2, 3},

S IHIES,

we obtain that 28« = x for all z € X. Then fa € G(X,Y). Thus fa ¢ S(X,Y)\G(X,Y).
So S(X,Y)\ G(X,Y) is not an ideal of S(X,Y).

Lemma 3.2.11. Let X be a finite nonempty set and'Y be a subset of X such that |Y| = 1.
Then,

(1) Jy ={a e S(X,Y) : | Xa| =k} is a J-class,

(2) If I is an ideal of S(X,Y) and k = max{|Xa |: a € I}, then [ = J;UJoU...UJ.

Proof. (1) Let o, 8 € Jg. Then | Xa| =k =|X3|, [Ya|=1=|Yf|. Since Y =Ya C Xa
and Y =Y C X, we get that [ Xa \Y| = |Xa| - |[XanY|=|Xao|-|Y|=k—-1=
I X8| —Y|=|XB|—|XBNY|=|Xp\Y| Hence aJ . Now, let v € S(X,Y) \ Ji. Thus
|X~| # k = |Xa|. Then 7 is not J-related to a.

(2) Suppose that I is an ideal of S(X,Y) and k = maz{|Xa|:a € [} and Y = {a1}.
If X =Y ={a1}, then

and k = 1 = maz{|Xa|: a € I}. In the case Y C X, let a € I be such that | Xa| = k.

Then we can write
A Ay o A

o =
al az ... Qf

where Y C A1, A; C X \Y anda; € X\ Y forall 2<i<k. Let 2 <t <k and define

ag ... ap X \{ag,..,a}

by ... b ai

8=
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where b; € X \ Y for all 2 <i <t. Consider

Ay ... Ay AU ( U Ai>
N=af = t<i<k
by ... b al
Then v € I and v € J;. Hence I N J; # 0 for all 2 < t < k. Since J; C I by Proposition
3.2.1, we obtain that I N Jy # 0.
We show that I = J; U Ja U ..U Jg. Let a € I. Then | Xa| =1 < k which implies
that o € J; C J1UJoU...UJp. Hence I € JyU o U ...UJp. Let 8 € J;UJoU ..U Jg.

Then 8 € J, for some 1 < p < k. We can write

By By . B,

aq bg bp

where Y C By, B; C X \Y and b; € X\Y for all 2 < i < p. Since I NJ; # () for all

1 <t <k, we have I N J, # () which implies that there exists u € I N J, such that

C, Cy ... G
M:
aq (&) Cp

where Y CCp, C; C X\ Y and ¢; € X\Y forall 2 <i <p. Let §,\ € S(X,Y) be defined
by

By By .. B, c2 3 ... ¢ X\{e2,c3,....0p)

al d2 dp bg b3 bp al

where Y C Dy, d; € C; for all 2 <i < p. Consider

B\ = o 8.3 5 Ci Cy ... G '2CdiEavd:LARg
al d2 dp al C2 Cp bg b3 bp al
=p
Thus 8 =0ui € I. Hence J1 U Jo U ..U J, C I. O

Theorem 3.2.12. If |Y| =1, then the lattice of ideals of S(X,Y) forms a chain.

Proof. Let I,J be an ideals of S(X,Y). Choose k = max{|Xa| : o € I} and | =
maz{|XpB |: f € J}. By Lemma 3.2.11, I = /U JJoU...UJyand J = J; U JoU...U J;. If
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k<l thenl=JiUJU..UJ, C JJUJU..US;=J If k> then J = J;UJoU...UJ; C
JUJhU...UJ,=1.ThusI C JorJCI. ]

Example 9. Let X = {1,2,3,...,n}, ¥ = {1}. Consider the ideals of S(X,Y) in the
following chain.

JiUJH U UJ,

JLUJU...UJ,q

J1U Jy

J1

Figure 4

3.3 Minimal and Maximal congruences on S(X,Y)

Let p be a congruence on a semigroup S. We call p a maximal congruence if § is a
congruence on S with p C 6 € S x S implies § = § x §.

Suppose that X is a finite set where | X| > 2 and let @ = T'(X) \ G(X), the authors
in [7] proved that 0 = (Q x Q) U[G(X) x G(X)] is the only maximal congruence on 7'(X).

In this section, we determine maximal and minimal congruences on S(X,Y).
Theorem 3.3.1. Let S = S(X,Y) and G = G(X,Y). Then
p=(S\GxS\G)U(GxG)
is a mazimal congruence on S.

Proof. Tt is clear that p is an equivalence relation on S. Let «, 8,7 € S and (a, 8) € p.
Then (o, ) € (S\G) x (S\G) or (a, ) € G x G. If (o, 8) € (S\ G) x (S\ G), then
ya,ay,v8,8y € S\ G since S\ G is an ideal of S(X,Y). Thus (ya,vB), (o, By) €
(S\G) x (S\G) Cp. If (o, B) € G x G, we consider the following two cases.

Case 1: v € S\ G. Since S\ G is an ideal, we have (o, 87), (ya,v8) € (S\ G) x
(S\G) Cp.

Case 2: v € G. Then «, 3,7 € G. Since G is a group, we obtain that ya,ay € G
and 73, By € G. Thus (ya,v8), (ay, ) € G X G C p.
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Next, we show that p is a maximal congruence on S. Let § be a congruence on S
such that p € 6 € S x S. Since p C 4, there exists («, 5) € 0\ p with € S\ G and g € G.
Let k be the order of 3. Then idy = ¥ § o where of € S\ G since S\ G is an ideal.
Now, let (A, 1) € S x S. So A 6 a*X and p § oFp where o\, ¥ € S\ G. So a¥\ p o p.

Since p C 6, we obtain a*\ § a¥u. Thus A 6 g and § = S x S as required. O

Let p be a congruence on a semigroup S. We call p a minimal congruence if § is a
congruence on S with 1g C § C p implies § = p.
Let I be a proper ideal of a semigroup .S. Then a Rees congruence on S induced by

Iis
pr=IxI)Ulgxy)-

X
On S(X,Y), it Y = {a}, then J; = and hence p;, = lg(x,y). We recall
a

that if |Y| = 1, then S(X,Y’) has a zero element. In this case, we will use 0 to denote the
zero element of S(X,Y).

Lemma 3.3.2. Let |Y| =1 and 0 be a congruence on S(X,Y). If 0 § a for some a € Ja,
then 0 6 B for all B € Js.

Proof. Let Y = {a} and 0 § « for some « € Jo. Let 8 € Jo. Then we can write

Al A
a b

B =

where Y C A1, b€ X \Y and Ay C X\Y. Since a € Jo, we can write

B1 Bs

Q
|

a C

where Y C By, c€ X \Y and By C X\Y. Thus
Al A2 a X\{a} A1 A2 Bl BQ a X\{a}

a d a b a d a c a b

where d € By. Therefore, 0 § 5. d

Proposition 3.3.3. Let S = S(X,Y) and | X| = 2,|Y| = 1. Then the Rees congruence

pJu, 1S @ minimal congruence on S.

Proof. Let X = {a,b},Y = {a} and J be a congruence on S such that 15 C § C p,uJ,-

We note that in this case
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JiUJy = , idx =

So
pru, = {(a,a):ae S(X,Y)}U{(0,idx), (idx,0)}.

Since 1g C 6, there is (e, ) € 0 such that o # 3. Since § C pju,, it follows that

=

(047/3) = (Ovde> or (o, B) = (idx,O), hence 6 = pj,u.,- O

Theorem 3.3.4. Let S = S(X,Y) and |X| > 2,|Y| = 1. Then the Rees congruence

PJ U, 18 @ minimal congruence on S.

Proof. Let Y = {a} and ¢ be a congruence on S such that 1 C d C pj,uz,. Since 1g C 4,
we obtain that there exists (o, 3) € § but o # (. Since 0 C pj,uJ,, we have a € J; and
Bedy,aeJyand peJyora,fed Ifaedpand g€ Jo, then o § v for all v € Jo

by Lemma 3.3.2. Thus 0 = pj,uz. If o, 8 € Ja, then we can write

A A B B
o= - and § = I
a b a c
where Y C Ay, Y C By, A3,By C X \Y and b,c € X \ Y. Since a # 3, there are two
cases to consider.

Case 1: b # c. We choose
{a,0} X\ {a,b}

A=
a c
Then A € S(X,Y) and
X By B
0= — o\ B = >
a a ¢

By Lemma 3.3.2, we get that 0 6 « for all v € Jy. Thus 6 = pj,u4,-
Case 2: b =c. Then A; # By or Ay # By. If A} # Bj and there exists u € A, \ By,
then define p € S(X,Y) by

(o X\{a}
N u
So
0— X a6 = a X\ {a}
a a c
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By Lemma 3.3.2, we get that 0 § v for all v € Jo. Thus 6 = pj,us,. Now, if A} # B; and
there exists v € By \ A1, then define § € S(X,Y) by

a X\{a}

a v

So
a X\{a X
\ad =0ad 68 = =0,
a b a
thus by Lemma 3.3.2, we get that 0 0 y for all v € Jo. Thus d = pj,us,. The case Az # Bs
can be prove in the same way. Therefore, we conclude that p s, is a minimal congruence

on S.

O]

Theorem 3.3.5. Let S = S(X,Y) and |Y| > 2. Then the Rees congruence pj, is a

minimal congruence on S.

Proof. Let § be a congruence on S such that 1¢ C 6 C pj, (This is possible since |Y| > 2).
Since 1g C 6, there exists (a, ) € § but a # . Then (o, 5) € pj, and we can write «
and 8 by

for some a,b € Y such that a #b. Let (A, ) € pj,. So A =p or A\, € Jy. If A = p, then
(A, p) €0. If \, u € Jy, then

X X
A= and p =
U v

for some u,v € Y such that u # v. Since adf, we obtain that

X X a X\{a} X a X\{a} X
U a u v b U v v

Hence 6 = py, - O

Example 10. Let X = {1,2,3} and Y = {1}. Then

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
JIUJ2 = s ) s )
1 1 1 1 2 2 1 3 3 1 1 2 1 1 3
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So

e (A {H (R )
123/ \1 23 132/ \1 3 2

Example 11. Let X =N and Y = {1}. Then

(WIR{ES }
I=J,UJy= U IlEAl,and’REN\{l}
1 il

pr = I xI)U{(a,): | Xa| > 3}.

So
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