
CHAPTER 2

Preliminaries

The discussion in this chapter is presented in four sections, including the hyperbolic

plan H2, the action of Γ̂ on Q̂, suborbital graphs of Γ̂ on Q̂ and continued fraction.

2.1 The Hyperbolic Plane H2

This section contains basic properties of the hyperbolic plane and some isometries

of the hyperbolic plane. See [2] for more details.

Definition 2.1.1. The hyperbolic plane is the metric space consisting of the upper half-

plane

H2 = {(x, y) ∈ R2 | y > 0} = {z ∈ C | Im(z) > 0}

with the metric dhyp defined below. We first define the hyperbolic length of a curve γ

Figure 2.1: The Hyperbolic Plane

parametrized by the differentiable vector valued function

t 7→ (x(t), y(t)), a 6 t 6 b,
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as

lhyp(γ) =

∫ b

a

√
x′(t)2 + y′(t)2

y(t)
dt.

The hyperbolic distance between two points P and Q is the infimum of the hyperbolic

lengths of all piecewise differentiable curves γ going from P to Q, namely

dhyp(P,Q) = inf {lhyp(γ) | γ goes from P to Q}.

We call the curve of shortest length geodesic. It can be shown that the geodesic connecting

any two points is either the semi-circle arcs centered on the X-axis or the straight line

perpendicular to the X-axis containing both points.

An isometry of the hyperbolic plane is a bijective mapping φ : H2∪∂H2 → H2∪∂H2

which preserves distance. Namely, for any P,Q in H2,

dhyp(φ(P ), φ(Q)) = dhyp(P,Q).

Some isometries of the hyperbolic plane

The homothety is a mapping defined by

φ(x, y) = (λx, λy) for some λ > 0.

The horizontal translation is a mapping defined by

φ(x, y) = (x+ x0, y) for some x0 ∈ R.

The reflection across the Y -axis is a mapping defined by

φ(x, y) = (−x, y).

The inversion across the unit circle is a mapping defined by

φ(x, y) = (
x

x2 + y2
,

y

x2 + y2
),

see Figure 2.2.
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Figure 2.2: The Inversion across the unit circle

The following theorem gives a characterization of all isometries of the hyperbolic

plane.

Theorem 2.1.1. [2] The isometries of the hyperbolic plane are exactly the maps of the

form

φ(z) =
az + b

cz + d
with a, b, c, d ∈ R and ad− bc = 1

or

φ(z) =
cz̄ + d

az̄ + b
with a, b, c, d ∈ R and ad− bc = 1.

We denote the set of all isometries by Isom(H2). The set of all orientation preserving

isometries is denoted by Isom+(H2). Isom−(H2) is used for the set of all orientation

reversing isometries. By Theorem 2.1.1,

Isom+(H2) = PSL2(R) = {z 7→ φ(z) =
az + b

cz + d
| a, b, c, d ∈ R, ad− bc = 1}.

An element of PSL2(R) can be classified by its trace. If

φ =

a b

c d

 ,

then the trace of φ is tr(φ) = |a + d|. φ is elliptic, parabolic, or hyperbolic if tr(φ) <

2, tr(φ) = 2 or tr(φ) > 2, respectively.

Proposition 2.1.2. (i) An elliptic element has one fixed points in H2.

(ii) A parabolic element has one fixed points in ∂H2.

(iii) A hyperbolic element has two fixed points in ∂H2.
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2.2 The Action of Γ̂ on Q̂

In this section, we recall a definition of group action on a space, we include some

results on the extended modular group Γ̂ on the set of extended rational numbers Q̂ =

Q ∪ {∞}. See [5] for more details.

Definition 2.2.1. Let G be a group and Ω be a nonempty set. A mapping G× Ω → Ω,

denoted (g, α) 7→ g ·α, is called an action of G on Ω, if it satisfies the following conditions:

i) 1 · α = α for all α ∈ Ω.

ii) g · (h · α) = (gh) · α for all α ∈ Ω and for all g, h ∈ G.

For any α ∈ Ω, the orbit of α, denoted by [α], under the group G acting on Ω is

[α] = {g · α | g ∈ G}.

The subgroup Gα = {g ∈ G | g · α = α} is called the stabilizer of α.

Definition 2.2.2. A group G is said to act transitively on Ω if, for all α, β ∈ Ω, there

exists g ∈ G such that g(α) = β.

For instance, if G = Γ̂ and Ω = H2, Γ̂ acts on H2 naturally defined as follows:

for T =

a b

c d

 ∈ Γ̂, z ∈ H2, T · z = T (z) = az+b
cz+d .

Every element of the set Q̂ = Q ∪ {∞} can be represented as a reduced fraction x
y with

x, y ∈ Z and (x, y) = 1. Since x
y = −x

−y , this representation is not unique. We represent ∞

as 1
0 = −1

0 .

Lemma 2.2.1. [5] Γ̂ acts transitively on Q̂.

Now we consider the imprimitivity of the action of Γ̂ on Q̂, beginning with a general

discussion of primitivity of permutation groups.

Definition 2.2.3. Let (G,Ω) be a transitive permutation group, consisting of a group G

acting on a set Ω transitively. An equivalence relation ≈ on Ω is called G− invariant if,

whenever α, β ∈ Ω satisfy α ≈ β, then g(α) ≈ g(β) for all g ∈ G. An equivalence class is

called block.

Definition 2.2.4. We call (G,Ω) imprimitive if Ω admits some G−invariant equivalence

relation different from
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(i) the identity relation, α ≈ β if and only if α = β.

(ii) the universal relation, α ≈ β for all α, β ∈ Ω.

Otherwise, (G,Ω) is called primitive.

The following lemma gives a characterization of primitivity for (G,Ω), see [7] for

more details.

Lemma 2.2.2. [7] Let (G,Ω) be a transitive permutation group. (G,Ω) is primitive if

and only if Gα, the stabilizer of α ∈ Ω, is a maximal subgroup of G for each α ∈ Ω.

When (G,Ω) is (Γ̂, Q̂), the stabilizer of ∞ is

Γ̂∞ = ⟨

1 0

0 −1

 ,

1 1

0 −1

⟩.

For any positive integer n, we define

Γ0(n) = {

a b

c d

 ∈ Γ | c ≡ 0 (mod n)}

and

Γ̂0(n) = ⟨Γ0(n),

1 0

0 −1

⟩.

We see that Γ̂∞ � Γ̂0(n) � Γ̂. In particular, Γ̂∞ is not a maximal subgroup of Γ̂, see [5].

Hence by Lemma 2.2.2, (Γ̂, Q̂) is imprimitive.

Let v and w be elements in Q̂ and write v = r
s , w = x

y , where (r, s) = 1 and

(x, y) = 1. By transitivity of Γ̂ on Q̂, one can find matrices

g =

r ∗

s ∗

 and g′ =

x ∗

y ∗


in Γ̂ such that v = g(∞) and w = g′(∞), when ∗ can be any number. Define the relation

≈ as follows:

v ≈ w if and only if g−1g′ ∈ Γ̂0(n).

For any h ∈ Γ̂, (hg)−1(hg′) = g−1h−1hg′ = g−1g′ ∈ Γ̂0(n), that is h(v) ≈ h(w). Thus ≈

is the Γ̂−invariant relation. We consider this relation in the following four cases :

Case 1 : If det (g) = 1 and det (g′) = 1, then we get

g−1 =

 ∗ ∗

−s r
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which implies that

g−1g′ =

 ∗ ∗

ry − sx ∗

 .

Case 2 : If det (g) = −1 and det (g′) = −1, then

g−1 =

∗ ∗

s −r


and we obtain that

g−1g′ =

 ∗ ∗

sx− ry ∗

 .

Case 3 : If det (g) = 1 and det (g′) = −1, then we get the same result as case 1.

Case 4 : If det (g) = −1 and det (g′) = 1, then the result is similar to case 2.

From the above four cases, we can view this relation as

r
s ≈ x

y if and only if ry − sx ≡ 0 (mod n).

Thus the block of ∞, the equivalence class of ∞, is given as

[∞] = {x
y
∈ Q̂ | y ≡ 0 (mod n)}.

2.3 Suborbital Graphs of Γ̂ on Q̂

In this section, we restate some basic definitions and properties of suborbital graph

and prove our main theorem. In general set up, let G be a group acting on a set Ω

transitively. Then G acts on Ω× Ω given by

g(α, β) = (g(α), g(β)) , g ∈ G,α, β ∈ Ω.

The orbits of this action are call suborbitals of G, that containing (α, β) being denoted

by O(α, β). From O(α, β) we can form a suborbital graph G(α, β) : its vertices are the

elements of Ω and there is a directed edge from γ to δ if (γ, δ) ∈ O(α, β), denoted by

γ → δ.

We can view a suborbital graph in the hyperbolic plane H2. The set of vertices is

a subset of Q̂ ⊆ R̂ = ∂H2 the boundary of infinity of H2 and the edge connecting two

vertices is the complete hyperbolic geodesic joining between them. Namely, the semicircle

centered on ∂H2 with X−intercept at those two vertices.

The orbit O(β, α) is also a suborbital and it is either equal to or disjoint from
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O(α, β). In the latter case G(β, α) is just G(α, β) with the arrows reversed and we call, in

this case, G(β, α) and G(α, β) paired suborbital graphs. In the former case G(α, β) = G(β, α)

and the graph consists of pairs of oppositely directed edges; it is convenient to replace

each such pair by a single undirected edge, so that we have an undirected graph which we

call self paired.

We now examine the suborbital graphs for the action Γ̂ on Q̂. Since Γ̂ acts tran-

sitively on Q̂, each suborbital contains a pair (∞, un) for some u
n ∈ Q̂, where n > 1 and

(u, n) = 1. We will denote this suborbital by Ôu,n and corresponding suborbital graph

Ĝ(∞, un) by Ĝu,n.

The following theorem gives a necessary and sufficient condition on when two ver-

tices on suborbital graph Ĝu,n are connected numerically, see [5] for the detail of the

proof.

Theorem 2.3.1. [5] Let r
s ,

x
y ∈ Q̂. There is an edge r

s → x
y in the suborbital graph Ĝu,n if

and only if one of the following conditions is satisfied :

(i) x ≡ ur (mod n), y ≡ us (mod n) and ry − sx = n,

(ii) x ≡ −ur (mod n), y ≡ −us (mod n) and ry − sx = −n,

(iii) x ≡ ur (mod n), y ≡ us (mod n) and ry − sx = −n,

(iv) x ≡ −ur (mod n), y ≡ −us (mod n) and ry − sx = n.

The Γ̂−invariant equivalence relation≈ on the congruence subgroup Γ̂0(n) as defined

in the last section gives subgraphs of suborbital graph Ĝu,n. Since Γ̂ acts transitively on

Q̂, it permutes the blocks transitively, so all of the subgraphs are isomorphic. For this,

we determine the block of

[∞] = {x
y
∈ Q̂ | y ≡ 0 (mod n)},

and denote F̂u,n for the subgraph of Ĝu,n corresponding to [∞]. Then Theorem 2.3.1 gives

the following.

Theorem 2.3.2. [5] Let r
s ,

x
y ∈ [∞]. Then r

s → x
y in F̂u,n if and only if one of the following

conditions is satisfied :

(i) x ≡ ur (mod n) and ry − sx = n,

(ii) x ≡ −ur (mod n) and ry − sx = −n,

(iii) x ≡ ur (mod n) and ry − sx = −n,

(iv) x ≡ −ur (mod n) and ry − sx = n.
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Theorem 2.3.3. [5] Γ̂0(n) permutes the vertices and the edges of F̂u,n transitively.

Definition 2.3.1. Let v1, v2, ..., vm be different vertices in F̂u,n. The path

v1 → v2 → ... → vm → v1

is called a directed circuit in F̂u,n. If the above path has at least an arrow (not all)

reversed, this path is called an anti-directed circuit. Moreover, if m = 3 then we call this

path triangle.

Theorem 2.3.4. [5] F̂u,n contains a directed triangle if and only if

u2 ± u+ 1 ≡ 0 (mod n).

Theorem 2.3.5. [5] If n > 1, then F̂u,n contains no anti-directed triangles.

Theorem 2.3.6. [5] If n is even, then F̂u,n does not contain any directed triangle.

Now we give examples of suborbital graphs of the extended modular group in Figure

2.3 and Figure 2.4. The first suborbital graph consists of isomorphic copies of F̂1,5, with

unbroken and broken edges indicating the blocks [∞] and [1] respectively.

Figure 2.3: Ĝ1,5
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Figure 2.4: F̂1,5

2.4 Continued Fraction

In this section, we give a short introduction of a simple continued fraction as a

composition of a sequence of Möbius maps.

Let {tm} be a sequence of Möbius transformation

tm(z) =
am

bm + z
, am ̸= 0

and let Tm(z) = t1t2...tm(z), m > 1 with T0 the identity map. Note that Tm(∞) =

Tm−1(0). If one computes t1(0), t1t2(0), t1t2t3(0) and so on, form a continued fraction

a1

b1 +
a2

b2 +
a3

b3 +
a4

. . .

(2.1)

and the value of the continued fraction 2.1 (when it exists) is equal to the limit of the

sequence {Tm(0)}. If ai = 1 for all i = 1, 2, ... in continued fraction (2.1), this continued

fraction is called simple continued fraction

1

b1 +
1

b2 +
1

b3 +
1

. . .

(2.2)
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A simple continued fraction can be shown as a composition of a sequence of Möbius maps

of the form

tm(z) =
1

bm + z
,

evaluated at z = 0. The following theorem gives a sufficient condition for convergence

which was discovered by Ivan Śleszyński and Alfred Pringsheim in the late 19th century.

Theorem 2.4.1. [6](Śleszyński-Pringsheim theorem) Let |bm| > 1 + |am| for all m ∈ N.

Then the continued fraction (2.1) converges to some valued v with |v| 6 1.

Example :

1

2 +
2

3 +
3

4 +
4

. . .

(2.3)

We observe that |bm| > 1+ |am| for all m ∈ N in the continued fraction 2.3 and we known

that this continued fraction converges to the value 1
e−2 − 1 ≈ 0.3922 which was calculated

by Leonhard Euler.
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