CHAPTER 3

Main Results

1
In this chapter, we present the farthest vertex which can be joined with = and HT’“

in ]/':um and show that this result relates to some continued fractions. Moreover, we give

some properties of the suborbital subgraph ﬁum.

3.1 Suborbital Graphs of T on @

In this section, we give proofs of properties of the suborbital subgraph ]?un We

first prove the existence of an integer k such that u? 4+ ku + 1 = 0 (mod n).

Lemma 3.1.1. If (u,n) = 1, then there exists an integer k such that u? + ku +1 =
0 (mod n).

Proof. From (u,n) = 1, there exists an integer = such that uxz = 1 (mod n). So uz(—u? —
1) = —u? — 1 (mod n). Taking k = z(—u? — 1), then v?> + ku + 1 = 0 (mod n) is
satisfied. n

Corollary 3.1.2. Let u,n be relatively prime positive integers, and let k be integer such

that u* + ku +1=0 (mod n). Then

—u (W +ku+1)/n
(p:
% 2 u+k

is an element of fo(n) and also if k=0 and k =1 then ¢ is an elliptic element of order

2 and 3, respectively.
Proof. By Lemma 3.1.1, we obtain that ¢ is an element of [o(n). If k = 0, then

—u (u*+1)/n
SO g
-n u
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and we have

—u  (u?+1)/n —u (v +1)/n B w?—u? -1 (—ud—u+ud+u)/n
-n U -n U N un — un —u? —1+u?
-1 0
N 0 -1

Hence ¢ is an elliptic element of order 2. If k = 1, then

—u (W +u+1)/n

- —n u—+1

and we observe that

—u (W+u+1l)/n) [—u (@WP+u+1)/n\ [(—u @WW+u+1)/n

-n u+1 —n u+1 —-n u+1
B w—uwt—u—-1 (- - —u+uvP+2u*+2u+1)/n —u (u:+u+1)/n
B un —un —n —u? —u—1+4+u?+2u+1 —n u+1
w1 (w?+u+1)/n —u (W+u+1)/n
B —n U —-n u+1

wWHu—uw—u—1 (—u+D2+u+D)+ (u+1)(w?+u+1))/n

un — un —u?—u—14+u’+u
-1 0
0 -1
Therefore ¢ is an elliptic element of order 3. O

Now we show the proof of the main theorem in this thesis.

Theorem 3.1.3. Let u,n be relatively prime positive integers. In ]?u,n, we have the
following results:

(i) The farthest vertex which can be joined with % is

3

U+ %
n
when k is the unique integer such that 1 < k < n and WHku+1=0 (mod n). The
nearest verter does not exist.

1
(ii) The farthest vertex which can be joined with HT’“ 18

u+

1
1
k—%

n
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when k is the unique integer such that 1 < k < n and u? +ku+1 =0 (mod n). The

nearest vertexr does not exist.

Proof of (i). The existance of an integer k such that u? + ku + 1 = 0 (mod n) is due to
Lemma 3.1.1. Now we can assume that 1 < k& < n. To see this, if & > n, we choose ky

such that & = k; (mod n). We have ku + 1 = kju + 1 (mod n), this gives
w? + ku+1=u*+ku+1=0 (mod n).

Now we show the uniqueness of k. Let m be another integer such that 1 < m < n
and u?> + mu +1 = 0 (mod n). Hence mu = —u? — 1 = ku (mod n), so we have
(k—m)u =0 (mod n). Because u and n are relatively prime, £ —m = 0 (mod n). Thus,
k = m since |k —m| < n.

Now suppose there exists an edge 7 — % in ﬁu,n and =~ < % We can write % in the

form
nr—uy
r uw nr uy Ut T,

y noony ny n
t
With this and the fact that uy < nz, we can replace % with UJFTS where é isin Q*. So we
have
U . u+ é _su+t
n n  sn

Theorem 2.3.2 gives numerical informations when this edge exists. From this point
onward, we aim to analyze each of the cases, (i) — (iv), of this theorem.

Case(i): In this case, we have su+t = u? (mod n) and u(sn)—n(su+t) = n, which
implies t = —1. Therefore, su —1 = u? (mod n). Since u? + ku + 1 = 0 (mod n), we
have su—1= —ku — 1 (mod n), that is su = —ku (mod n). Since (u,n) = 1, we have

s = —k (mod n). In other words, s = —k — nz for some z in NU {0}. Thus,

t 1

s nz+k
Next, we find the largest value of % by defining a function f: RT U{0} - R,

U+ nzl—i—k
f(Z) - T

The derivative of f is f'(z) = m which is negative for every non-negative z. This

implies that the maximum occurs at z = 0, that is

u-l—%_uk—i—l
n  kn
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. +1 . - .
It remains to show that UT’“ = % is a vertex in F,,. To see this, we show that

it is an irreducible fraction. It is true that (ku+1,k) = (ku+1—ku,k) = (1,k) = 1 and
since u?+ku+1 = ny for some y in Z, we have (ku-+1,n) = (ku+1—ny,n) = (—u?,n) = 1.

1
Thus, (ku+1,kn) = 1. We conclude that a

& is a vertex in F ;, and is the farthest one

being joined with ». We also see that

1
lim Ut gk _ U
Z—00 n n’

This implies that there is no such nearest point being joined with the vertex .

Case(i7): In this case, we obtain that su+t = —u? (mod n) and u(sn) —n(us+t) =
—n, which implies t = 1. Thus, su+1 = —u? (mod n) and we know u? + ku + 1 =
0 (mod n). This implies that su+ 1 = ku+ 1 (mod n), that is su = ku (mod n). The
fact that (u,n) = 1 implies that s = k (mod n). Therefore, s = nz + k for some z in

NuU{0}. Hence
b 1

s nz+k

This case is done by using a similar argument to that of the first case.

Case(iii): We have su +t = u? (mod n) and u(sn) — n(su +t) = —n, which
implies ¢+ = 1. Then, su + 1 = u? (mod n). Since v? + ku+1 = 0 (mod n), su+1 =
—ku—1 (mod n). Hence, su+1+ku+1 = nz for some z in NU{0}, that is s = ”Z%M

Thus,
t_ U
s nz—ku—2"

We again find the greatest value of é by defining the function f: RT U {0} — R,

u+nzfql;u72
flz) = k2,

And the derivative of f is f'(2) 7 < 0, so the greatest value of the function f

_ —U

T (nz—ku—2
is at z = 0, that is

ALY
k+2

u

u —

n
u— 1

[
But “ is nearer to i than

n
1
ut4

1
uzk . Therefore, the farthest vertex which can be joined

with = is —*. Now we know that
lim u+ nzfqléu72 _ E
Z—00 n n’
Hence, the nearest vertex does not exist.
Case(iv): We obtain that su +t = —u? (mod n) and u(sn) — n(su + t) = n,
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which implies t = —1. Thus, su — 1 = —u? (mod n). Because u? + ku + 1 = 0 (mod n),
su—1=ku+1 (mod n), that is —su+1=—ku—1 (mod n). So —su+1+ku+1=nz

for some z in NU {0}, then s = M Therefore,

t U

s nz—ku—2"

The remaining proof is similar to the condition (7i7).

Proof of (ii) By the above proof of existence, let k be such that 1 < k < n and
u? + ku+1 = 0 (mod n). We have shown that k is unique. From the proof in (i),

we can suppose that

and
ku-+1 u+ u+ < us +t
. —
kn n n sn

where £ is in Q. We start working on each case as in the proof of (i).

Case(i): In this case, we have us+t = u*k-+u ( mod n) and ns(ku+1)—kn(su+t) =
n, which implies s = kt + 1. Thus, u+kut+t = u*k+u (mod n) and we get t(ku+1) =
u?k (mod n). We observe that —u?t = u?k (mod n). Moreover, —t = k (mod n) since

(u,n) =1. So, t = —nz — k for some z in NU {0}, that is s = 1 — k(nz + k). Therefore,

t nz+k

s k(nz+k)—1
Next, we find the largest value of £ by defining a function f: R* U{0} — R by

U+ k n'r;z—;:k—l
flz) = —ERL

n
Since the derivative of f is f/(z) = 7(]6(”2;]}:)_1)2 < 0, then f has a maximum at z = 0,
that is .

utps (M -Du+tk

n (k2 —=1)n
Now we will show ((k? — 1)u + k, (k? — 1)n) = 1. Let us suppose that

(K = Du+ k&> = 1) = a,

then a divides k% — 1, which implies a divides (k% — 1)u. Since a divides (k% — 1)u + k, we
have a divides k. Because a divides k* — 1, a divides —1 and so a = +1.

Next, we assume that ((k? — 1)u + k,n) = b, then b divides (k* — 1)u + k. So we
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have k(ku+1) —u = (k* — 1)u+k = 0 (mod b). Since u? + ku +1 = 0 (mod n) and b
divides n, u? 4+ ku +1 = 0 (mod b). As we have shown k(ku + 1) — u = 0 (mod b) and
—u? = ku + 1 (mod b), then k(—u?) —u =0 (mod b).

Suppose b does not divide u. As (u,n) =1 and b divides n, so (u,b) = 1. Moreover,
—ku —1 = 0 (mod b). Since we have u?> = —ku — 1 (mod b), then b divides u?, which
gives a contradiction. Hence, b divides w. Thus, b = 1 since (u,n) = 1 and b divides n.

Therefore, ((k? — 1)u + k, (k> — 1)n) = 1, that is

il
k
U+m u+k,

1
k

n n
. . = . . Ny . ut+ .
is a vertex in Fy , and is also the farthest vertex which can be joined with —-%. Since
nz+k 1
B ey S T
lim = )
2Z—00 n n

there is no such a nearest vertex.

Case(ii): We obtain that su+t = —u?k —u (mod n) and ns(ku+1) — kn(su+t) =
—n, which implies s = kt — 1. Thus, kut —u +t = —u’k — u (mod n). We observe
that t(ku + 1) = —u?k (mod n). Since u? + ku + 1 = 0 (mod n), u?*t = u?k (mod n). As
(u,n) =1,t =k (mod n), that is ¢t = nz+k for some z in NU{0}. So, s = k(nz+k)—1.

Hence,
t nz +k

Pl ey s e |
and the remaining proof is the same as above proof.

Case(iii): We have su +t = u?k + u (mod n) and ns(ku + 1) — kn(su +t) = —n,
which implies s = kt — 1. So we have kut —u +t = u?k + u (mod n), that is t(ku + 1)
—ku? = 2u (mod n). Since u? + ku +1 = 0 (mod n), —tu® — ku? = 2u (mod n).
Moreover, —tu — ku = 2 (mod n) by (u,n) = 1. Then, tu + ku = —2 (mod n), that is
t= % for some z in NU{0}. Thus, s = w, SO

t nz — ku — 2

s  kinz—ku—2)—u’

Now we find the greatest value of % by defining a function f: R* U {0} — R,

nz—ku—2

u+ k(nz—ku—2)—u
f(e) = — TR
Since f'(z) = m < 0, the greatest value of f is at z = 0, that is
w4 —L
k+ kj%
n



1
" kiz utd wt T
But ———* s nearer to —* than — %, so the farthest one being joined with
ut—L
uti . k—L
—k g k. As we have

nz—ku—2 1
Lu + k(nz—ku—2)—u U+ &
lim = ,
Z—00 n n

the nearest vertex does not exist.

Case(iv): We obtain that su+t = —u?k—u (mod n) and ns(ku-+1)—kn(su+t) = n,
which implies s = kt + 1. Therefore, u + kut +t = —u?k — u (mod n) and we have
t(ku+1) = —ku?—2u (mod n). Asu’+ku+1 =0 (mod n), —tu? = —ku?—2u ( mod n).
Since (u,n) =1, —tu = —uk — 2 (mod n), that is t = i@% for some z in NU {0}.

— (k(nzfﬁufZ)fu) . Thus,

Moreover, s =

t nz — ku — 2

s k(nz—ku—2)—u

The proof is similar to the proof for the condition (ii7). O

Example :
Let u = 1 and n = 5, then we have 12 + 3 + 1 = 0 (mod 5), that is kK = 3. By Theorem
3.1.3 and calculation, we get the following graph showing the farthest vetex in the right

hand side that join with a previous vertex.

Figure 3.1: ]?1,5

Since we have ¢ in Corollary 3.1.2, the following corollary shows that ¢ is the

1
u Uty
n’ n

1 1 out ST
u+k) to (u+k k k)

). It also maps (%, — no T m

element in T' that maps (oo, “) to (
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Corollary 3.1.4. If (u,n) =1 and u®> + ku + 1 =0 (mod n), then

1
ut it wt ko U

U
n n n n

Proof.

2
w _u(g) 4 u +Eku+1
o(=)=—"% n
n —n(%) +u+k
—u?+u?+kutl
n

—u+u+k
ku+1

nk

ku+1
k

n
u +

n

|
o

and
1 “+% u?+kutl
u—i—%
—n(—*)+u+k
—u? U u?+kut1
~ kn + n

n

7u7%+u+k¢

E2u—u+k
kn

Lt (3.1)
wk?—1)+k
n(k? —1)
k
U B
n

e

k—

Bl

n

O]

Next, we will use Theorem 3.1.3 to prove that fun contains directed circuits if and

only if it contains directed triangles. To prove this, we first prove the following theorem.
Theorem 3.1.5. No edge of 31,1 cross in H2.

Proof. Let { — ¥ be an edge in Q\LL Then, there exists o € I' such that o(co) = £ and
o(l) = +- Let v(2) = 2z + 1. So, we have o7y(c0) = £ and 07(0) = 4~ Since any element of
r preserves the geodesics, we can suppose that the edges 0 — oo and T — % cross in HZ.

Thus, £ <0< %, which contradicts to ry — sz = +1. O
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Corollary 3.1.6. No edge of fu,n cross in H2.

1 1 T2 T2 : 2 o
Proof. Suppose that the edges s T ym and 7% — o CTOSS in H<. Then, riyin
r151n = *n and royon — woson = +n, so riy; — x151 = =1 and roys — x9sy = +1. Thus,
% — % and % — % are the edges in Gy that cross in H?, a contradiction by Theorem

3.1.5. O

By Theorem 2.3.5, we add the condition n > 1 into the following theorem. And

now we have enough implements to prove the following theorem.

Theorem 3.1.7. Let u,n be relatively prime postive integers and n > 1. ﬁun contains

directed circuits if and only if it contains directed triangles.

Proof. (<) It is obvious.

(=) Assume that ﬁun contains a directed circuit of minimal length in the form
W] — W — W3 —7 ... —> Wp —> W1.

We will prove by contradiction, then we suppose that ]?un contains no directed triangles.

Then, by Theorem 2.3.4, we have u? & u + 1 # 0 (mod n). Since (wy,ws) is in O(oco, )
there exists 7 in T such that T'(co) = wy, T(%) = ws, that is T~ (wy) = 0o, T~} (ws) = “

n

Now we take v; 1 = T~ (w;). Then, we obtain the circuit A
u
0=V =— —>UV2 > ... 2> Uy —> O
n
such that m = p — 1. Since u?> £ u+ 1 # 0 (mod n) and v, — oo, then

\
L kg (3.2)
n

Let v be the farthest vertex which can be joined with vy and v; < v. We will show that

v = v, SO we assume that vy < v. If v is a vertex in A, we have
00 =V =V = ... = Uy — OO

is shorter than A which contradicts to A being of the minimal length. If v is not a vertex
in A, there are vertices vg, vs11 in A such that vy < v < vgsy1. We observe that v1 — v and

Vg —> Vg4 Cross in ﬁu,n which gives a contradiction to Corollary 3.1.6. Therefore, vy = v.

u—i—l

By Theorem 3.1.3, v = —% when k is the unique integer such that 1 < k < n and

n
u? + ku+1 = 0 (mod n). From Corollary 3.1.4, we have p(c0) = v1, ¢(v1) = v and in

general,

Y
u + =

x
w4z
+ 3

pl— ) =—
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and p(v2) = o0o. For 1 < k < n, if x and y are positive
< 1 since k > 2 and = < y. Therefore, we can see that

u+1
n

Y

For k = 1, we have p(v1) =
ky—x

integers and % < 1, then

¢'(v1) < “EL for positive integers 1.
= ¢ Y(v1) for 1 < i < m. First, we know that v; = ¢"(v1)

(01
Next, we will show that v;
and v = p(v1). Now suppose that v; = ¢~ 1(v) for all 1 <i <t and we will show that

Y1) = @ (va) = ¢'(01)

Vi1 = ¢t (v1). Assume that v, < ©!(v1). By Theorem 2.3.3, we have
t_

Ut = @
is an edge in F, . If ¢'(v1) is not a vertex in A, then there are vertices v, v,41 such

that v, < ¢'(v1) < vy41 since p!(v1) < vp,. Thus, the edges v, — v,11 and v; — ©(vq)

cross, a contradiction. If ¢!(vy) is a vertex in A, then a circuit
00 = V] = .o = v — P (V1) = ... = 00

is shorter than A, which gives a contradiction. Assume that v;41 > ¢!(v1). From above,

we have
e D (wir1) > "D (1) = p(v1) = va.
By Theorem 2.3.3, v; = ¢~ (=1 (v) — @~ (t=1) (vt41), which contradicts to the choice of vs.
Hence, v; = ¢! (vy) for 1 <i <m, 50 vy, = "1 (v1) < “H, which gives a contradiction
to (3.2). Therefore, ]?u,n contains directed triangles. O
O

Corollary 3.1.8. If n is even, then j—lu,n does not contain any directed circuit.

Proof. 1t follows by Theorem 3.1.7 and Theorem 2.3.6.

3.2 Continued Fraction
In this section, we show that the result from Theorem 3.1.3 is related to some

1 —
k—z —k+2z

continued fraction.
In this thesis, we work with special Mobius transformation
-1

by using Theorem 3.1.3, if k > 2, we can give the following infinite path
u+ ! T

To see some relations between continued fraction and hyperbolic path of suborbital graphs,

1
I T u+k—% T
— = — = — — —
0 n n n n
22



The above path gives rise to a continued fraction

(3.3)

E— —

when k > 2. Now we have a continued fraction, this gives a problem about the convergence
of a continued fraction. Since the above continued fraction is a special case of Theorem

2.4.1, we use this theorem to prove the following corollary.
Corollary 3.2.1. The continued fraction (3.3) converges to E=Yk"=4 Vég274.

Proof. Since we have a,,, = —1 and b,,, = —k where k > 2, then |b,,| > 1+ |ay,|. By Theo-
rem 2.4.1, the continued fraction (3.3) converges to v with |v| < 1, that is lim 7,,(0) = v.
m—o0

As we know

1
Trn(0) = —

( ) k — Tm—l(o)
T0n(0)(k — T,,—1(0)) = 1 and since li_r)n T (0) = 1i_r>n Tn—1(0), we have v(k —v) = 1.
Moreover, v2 — kv + 1 = 0 and

kv

s B

We observe that if k = 2 then v = 1. Because |v| < 1, if k > 2 then v = E=vk2=4 O

2

Example :
Since 12+ 3(1) + 1 = 0 (mod 5), then we obtain a finite path in Figure 3.2 and if this

path is infinite then it gives a continued fraction

(3.4)

3 —

By Corollary 3.2.1, the above continued fraction converges to % ~ 0.671.
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Figure 3.2: ]?175




