CHAPTER 3

Main Results

In this chapter, we present the farthest vertex which can be joined with $\frac{u}{n}$ and $\frac{u+\frac{1}{k}}{n}$ in $\widehat{\mathcal{F}}_{u,n}$ and show that this result relates to some continued fractions. Moreover, we give some properties of the suborbital subgraph $\widehat{\mathcal{F}}_{u,n}$.

3.1 Suborbital Graphs of $\widehat{\Gamma}$ on $\widehat{\mathbb{Q}}$

In this section, we give proofs of properties of the suborbital subgraph $\widehat{\mathcal{F}}_{u,n}$. We first prove the existence of an integer k such that $u^2 + ku + 1 \equiv 0 \pmod{n}$.

Lemma 3.1.1. If (u, n) = 1, then there exists an integer k such that $u^2 + ku + 1 \equiv 0 \pmod{n}$.

Proof. From (u, n) = 1, there exists an integer x such that $ux \equiv 1 \pmod{n}$. So $ux(-u^2 - 1) \equiv -u^2 - 1 \pmod{n}$. Taking $k = x(-u^2 - 1)$, then $u^2 + ku + 1 \equiv 0 \pmod{n}$ is satisfied.

Corollary 3.1.2. Let u, n be relatively prime positive integers, and let k be integer such that $u^2 + ku + 1 \equiv 0 \pmod{n}$. Then

$$\varphi = \begin{pmatrix} -u & (u^2 + ku + 1)/n \\ -n & u + k \end{pmatrix}$$

is an element of $\widehat{\Gamma}_0(n)$ and also if k = 0 and k = 1 then φ is an elliptic element of order 2 and 3, respectively.

Proof. By Lemma 3.1.1, we obtain that φ is an element of $\widehat{\Gamma}_0(n)$. If k = 0, then

$$\varphi = \begin{pmatrix} -u & (u^2 + 1)/n \\ -n & u \end{pmatrix}$$

and we have

$$\begin{pmatrix} -u & (u^2+1)/n \\ -n & u \end{pmatrix} \begin{pmatrix} -u & (u^2+1)/n \\ -n & u \end{pmatrix} = \begin{pmatrix} u^2 - u^2 - 1 & (-u^3 - u + u^3 + u)/n \\ un - un & -u^2 - 1 + u^2 \end{pmatrix}$$
$$= \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Hence φ is an elliptic element of order 2. If k = 1, then

$$\varphi = \begin{pmatrix} -u & (u^2 + u + 1)/n \\ -n & u + 1 \end{pmatrix}$$

and we observe that

$$\begin{pmatrix} -u & (u^2 + u + 1)/n \\ -n & u + 1 \end{pmatrix} \begin{pmatrix} -u & (u^2 + u + 1)/n \\ -n & u + 1 \end{pmatrix} \begin{pmatrix} -u & (u^2 + u + 1)/n \\ -n & u + 1 \end{pmatrix}$$

$$= \begin{pmatrix} u^2 - u^2 - u - 1 & (-u^3 - u^2 - u + u^3 + 2u^2 + 2u + 1)/n \\ un - un - n & -u^2 - u - 1 + u^2 + 2u + 1 \end{pmatrix} \begin{pmatrix} -u & (u^2 + u + 1)/n \\ -n & u + 1 \end{pmatrix}$$

$$= \begin{pmatrix} -u - 1 & (u^2 + u + 1)/n \\ -n & u \end{pmatrix} \begin{pmatrix} -u & (u^2 + u + 1)/n \\ -n & u + 1 \end{pmatrix}$$

$$= \begin{pmatrix} u^2 + u - u^2 - u - 1 & (-(u + 1)(u^2 + u + 1) + (u + 1)(u^2 + u + 1))/n \\ un - un & -u^2 - u - 1 + u^2 + u \end{pmatrix}$$

$$= \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Therefore φ is an elliptic element of order 3.

Now we show the proof of the main theorem in this thesis.

Theorem 3.1.3. Let u, n be relatively prime positive integers. In $\widehat{\mathcal{F}}_{u,n}$, we have the following results:

(i) The farthest vertex which can be joined with $\frac{u}{n}$ is

$$\frac{u + \frac{1}{k}}{n}$$

when k is the unique integer such that $1 \leq k \leq n$ and $u^2 + ku + 1 \equiv 0 \pmod{n}$. The nearest vertex does not exist.

(ii) The farthest vertex which can be joined with $\frac{u+\frac{1}{k}}{n}$ is

$$\frac{u + \frac{1}{k - \frac{1}{k}}}{n}$$

when k is the unique integer such that $1 \leq k \leq n$ and $u^2 + ku + 1 \equiv 0 \pmod{n}$. The nearest vertex does not exist.

Proof of (i). The existance of an integer k such that $u^2 + ku + 1 \equiv 0 \pmod{n}$ is due to Lemma 3.1.1. Now we can assume that $1 \leq k \leq n$. To see this, if k > n, we choose k_1 such that $k \equiv k_1 \pmod{n}$. We have $ku + 1 \equiv k_1u + 1 \pmod{n}$, this gives

$$u^{2} + k_{1}u + 1 \equiv u^{2} + ku + 1 \equiv 0 \pmod{n}.$$

Now we show the uniqueness of k. Let m be another integer such that $1 \le m \le n$ and $u^2 + mu + 1 \equiv 0 \pmod{n}$. Hence $mu \equiv -u^2 - 1 \equiv ku \pmod{n}$, so we have $(k-m)u \equiv 0 \pmod{n}$. Because u and n are relatively prime, $k-m \equiv 0 \pmod{n}$. Thus, k = m since |k-m| < n.

Now suppose there exists an edge $\frac{u}{n} \to \frac{x}{y}$ in $\widehat{\mathcal{F}}_{u,n}$ and $\frac{u}{n} < \frac{x}{y}$. We can write $\frac{x}{y}$ in the form

$$\frac{x}{y} = \frac{u}{n} + \frac{nx}{ny} - \frac{uy}{ny} = \frac{u + \frac{nx - uy}{y}}{n}$$

With this and the fact that uy < nx, we can replace $\frac{x}{y}$ with $\frac{u+\frac{t}{s}}{n}$ where $\frac{t}{s}$ is in \mathbb{Q}^+ . So we have

$$\frac{u}{n} \to \frac{u + \frac{t}{s}}{n} = \frac{su + t}{sn}.$$

Theorem 2.3.2 gives numerical informations when this edge exists. From this point onward, we aim to analyze each of the cases, (i) - (iv), of this theorem.

Case(i): In this case, we have $su + t \equiv u^2 \pmod{n}$ and u(sn) - n(su + t) = n, which implies t = -1. Therefore, $su - 1 \equiv u^2 \pmod{n}$. Since $u^2 + ku + 1 \equiv 0 \pmod{n}$, we have $su - 1 \equiv -ku - 1 \pmod{n}$, that is $su \equiv -ku \pmod{n}$. Since (u, n) = 1, we have $s \equiv -k \pmod{n}$. In other words, s = -k - nz for some z in $\mathbb{N} \cup \{0\}$. Thus,

$$\frac{t}{s} = \frac{1}{nz+k}.$$

Next, we find the largest value of $\frac{t}{s}$ by defining a function $f : \mathbb{R}^+ \cup \{0\} \to \mathbb{R}$,

$$f(z) = \frac{u + \frac{1}{nz+k}}{n}.$$

The derivative of f is $f'(z) = \frac{-1}{(nz+k)^2}$ which is negative for every non-negative z. This implies that the maximum occurs at z = 0, that is

$$\frac{u+\frac{1}{k}}{n} = \frac{uk+1}{kn}$$

It remains to show that $\frac{u+\frac{1}{k}}{n} = \frac{uk+1}{kn}$ is a vertex in $\widehat{\mathcal{F}}_{u,n}$. To see this, we show that it is an irreducible fraction. It is true that (ku+1,k) = (ku+1-ku,k) = (1,k) = 1 and since $u^2+ku+1 = ny$ for some y in \mathbb{Z} , we have $(ku+1,n) = (ku+1-ny,n) = (-u^2,n) = 1$. Thus, (ku+1,kn) = 1. We conclude that $\frac{u+\frac{1}{k}}{n}$ is a vertex in $\widehat{\mathcal{F}}_{u,n}$ and is the farthest one being joined with $\frac{u}{n}$. We also see that

$$\lim_{z \to \infty} \frac{u + \frac{1}{nz+k}}{n} = \frac{u}{n}$$

This implies that there is no such nearest point being joined with the vertex $\frac{u}{n}$.

Case(*ii*): In this case, we obtain that $su+t \equiv -u^2 \pmod{n}$ and u(sn) - n(us+t) = -n, which implies t = 1. Thus, $su + 1 \equiv -u^2 \pmod{n}$ and we know $u^2 + ku + 1 \equiv 0 \pmod{n}$. This implies that $su + 1 \equiv ku + 1 \pmod{n}$, that is $su \equiv ku \pmod{n}$. The fact that (u, n) = 1 implies that $s \equiv k \pmod{n}$. Therefore, s = nz + k for some z in $\mathbb{N} \cup \{0\}$. Hence

$$\frac{t}{s} = \frac{1}{nz+k}$$

This case is done by using a similar argument to that of the first case.

Case(*iii*): We have $su + t \equiv u^2 \pmod{n}$ and u(sn) - n(su + t) = -n, which implies t = 1. Then, $su + 1 \equiv u^2 \pmod{n}$. Since $u^2 + ku + 1 \equiv 0 \pmod{n}$, $su + 1 \equiv -ku - 1 \pmod{n}$. Hence, su + 1 + ku + 1 = nz for some z in $\mathbb{N} \cup \{0\}$, that is $s = \frac{nz - ku - 2}{u}$. Thus,

$$\frac{t}{s} = \frac{u}{nz - ku - 2}.$$

We again find the greatest value of $\frac{t}{s}$ by defining the function $f : \mathbb{R}^+ \cup \{0\} \to \mathbb{R}$,

$$f(z) = \frac{u + \frac{u}{nz - ku - 2}}{n}$$

And the derivative of f is $f'(z) = \frac{-u}{(nz-ku-2)^2} < 0$, so the greatest value of the function f is at z = 0, that is $\frac{u - \frac{1}{k + \frac{2}{u}}}{n}.$

But $\frac{u-\frac{1}{k+\frac{2}{u}}}{n}$ is nearer to $\frac{u}{n}$ than $\frac{u+\frac{1}{k}}{n}$. Therefore, the farthest vertex which can be joined with $\frac{u}{n}$ is $\frac{u+\frac{1}{k}}{n}$. Now we know that

$$\lim_{z \to \infty} \frac{u + \frac{u}{nz - ku - 2}}{n} = \frac{u}{n}.$$

Hence, the nearest vertex does not exist.

Case(*iv*): We obtain that $su + t \equiv -u^2 \pmod{n}$ and u(sn) - n(su + t) = n,

which implies t = -1. Thus, $su - 1 \equiv -u^2 \pmod{n}$. Because $u^2 + ku + 1 \equiv 0 \pmod{n}$, $su - 1 \equiv ku + 1 \pmod{n}$, that is $-su + 1 \equiv -ku - 1 \pmod{n}$. So -su + 1 + ku + 1 = nz for some z in $\mathbb{N} \cup \{0\}$, then $s = \frac{-(nz-ku-2)}{u}$. Therefore,

$$\frac{t}{s} = \frac{u}{nz - ku - 2}$$

The remaining proof is similar to the condition (iii).

Proof of (ii) By the above proof of existence, let k be such that $1 \leq k \leq n$ and $u^2 + ku + 1 \equiv 0 \pmod{n}$. We have shown that k is unique. From the proof in (i), we can suppose that

$$\frac{u+\frac{1}{k}}{n} < \frac{u+\frac{1}{k}}{n}$$

and

$$\frac{ku+1}{kn} = \frac{u+\frac{1}{k}}{n} \to \frac{u+\frac{t}{s}}{n} = \frac{us+t}{sn}$$

where $\frac{t}{s}$ is in \mathbb{Q}^+ . We start working on each case as in the proof of (i).

Case(i): In this case, we have $us+t \equiv u^2k+u \pmod{n}$ and ns(ku+1)-kn(su+t) = n, which implies s = kt+1. Thus, $u+kut+t \equiv u^2k+u \pmod{n}$ and we get $t(ku+1) \equiv u^2k \pmod{n}$. We observe that $-u^2t \equiv u^2k \pmod{n}$. Moreover, $-t \equiv k \pmod{n}$ since (u,n) = 1. So, t = -nz - k for some z in $\mathbb{N} \cup \{0\}$, that is s = 1 - k(nz+k). Therefore,

$$\frac{t}{s} = \frac{nz+k}{k(nz+k)-1}.$$

Next, we find the largest value of $\frac{t}{s}$ by defining a function $f: \mathbb{R}^+ \cup \{0\} \to \mathbb{R}$ by

$$f(z) = \frac{u + \frac{nz+k}{k(nz+k)-1}}{n}$$

Since the derivative of f is $f'(z) = \frac{-1}{(k(nz+k)-1)^2} < 0$, then f has a maximum at z = 0, that is

$$\frac{u + \frac{k}{k^2 - 1}}{n} = \frac{(k^2 - 1)u + k}{(k^2 - 1)n}.$$

Now we will show $((k^2 - 1)u + k, (k^2 - 1)n) = 1$. Let us suppose that

$$((k^2 - 1)u + k, k^2 - 1) = a,$$

then a divides $k^2 - 1$, which implies a divides $(k^2 - 1)u$. Since a divides $(k^2 - 1)u + k$, we have a divides k. Because a divides $k^2 - 1$, a divides -1 and so $a = \pm 1$.

Next, we assume that $((k^2 - 1)u + k, n) = b$, then b divides $(k^2 - 1)u + k$. So we

have $k(ku+1) - u = (k^2 - 1)u + k \equiv 0 \pmod{b}$. Since $u^2 + ku + 1 \equiv 0 \pmod{n}$ and b divides $n, u^2 + ku + 1 \equiv 0 \pmod{b}$. As we have shown $k(ku+1) - u \equiv 0 \pmod{b}$ and $-u^2 \equiv ku + 1 \pmod{b}$, then $k(-u^2) - u \equiv 0 \pmod{b}$.

Suppose b does not divide u. As (u, n) = 1 and b divides n, so (u, b) = 1. Moreover, $-ku - 1 \equiv 0 \pmod{b}$. Since we have $u^2 \equiv -ku - 1 \pmod{b}$, then b divides u^2 , which gives a contradiction. Hence, b divides u. Thus, b = 1 since (u, n) = 1 and b divides n. Therefore, $((k^2 - 1)u + k, (k^2 - 1)n) = 1$, that is

$$\frac{u + \frac{k}{k^2 - 1}}{n} = \frac{u + \frac{1}{k - \frac{1}{k}}}{n}$$

is a vertex in $\widehat{\mathcal{F}}_{u,n}$ and is also the farthest vertex which can be joined with $\frac{u+\frac{1}{k}}{n}$. Since

$$\lim_{z \to \infty} \frac{u + \frac{nz+k}{k(nz+k)-1}}{n} = \frac{u + \frac{1}{k}}{n},$$

there is no such a nearest vertex.

Case(*ii*): We obtain that $su + t \equiv -u^2k - u \pmod{n}$ and ns(ku+1) - kn(su+t) = -n, which implies s = kt - 1. Thus, $kut - u + t \equiv -u^2k - u \pmod{n}$. We observe that $t(ku+1) \equiv -u^2k \pmod{n}$. Since $u^2 + ku + 1 \equiv 0 \pmod{n}$, $u^2t \equiv u^2k \pmod{n}$. As $(u, n) = 1, t \equiv k \pmod{n}$, that is t = nz + k for some $z \pmod{n} \le 0$. So, s = k(nz+k) - 1. Hence,

$$\frac{t}{s} = \frac{nz+k}{k(nz+k)-1}$$

and the remaining proof is the same as above proof.

Case(*iii*): We have $su + t \equiv u^2k + u \pmod{n}$ and ns(ku+1) - kn(su+t) = -n, which implies s = kt - 1. So we have $kut - u + t \equiv u^2k + u \pmod{n}$, that is $t(ku+1) - ku^2 \equiv 2u \pmod{n}$. Since $u^2 + ku + 1 \equiv 0 \pmod{n}$, $-tu^2 - ku^2 \equiv 2u \pmod{n}$. Moreover, $-tu - ku \equiv 2 \pmod{n}$ by (u, n) = 1. Then, $tu + ku \equiv -2 \pmod{n}$, that is $t = \frac{nz - ku - 2}{u}$ for some z in $\mathbb{N} \cup \{0\}$. Thus, $s = \frac{k(nz - ku - 2) - u}{u}$, so $\frac{t}{s} = \frac{nz - ku - 2}{k(nz - ku - 2) - u}$.

Now we find the greatest value of $\frac{t}{s}$ by defining a function $f : \mathbb{R}^+ \cup \{0\} \to \mathbb{R}$,

$$f(z) = \frac{u + \frac{nz - ku - 2}{k(nz - ku - 2) - u}}{n}$$

Since $f'(z) = \frac{-u}{(k(nz-ku-2)-u)^2} < 0$, the greatest value of f is at z = 0, that is

$$\frac{u + \frac{1}{k + \frac{1}{k + \frac{2}{u}}}}{n}$$

But $\frac{u + \frac{1}{k + \frac{1}{k + \frac{1}{u}}}}{n}$ is nearer to $\frac{u + \frac{1}{k}}{n}$ than $\frac{u + \frac{1}{k - \frac{1}{k}}}{n}$, so the farthest one being joined with $\frac{u + \frac{1}{k}}{n}$ is $\frac{u + \frac{1}{k - \frac{1}{k}}}{n}$. As we have

$$\lim_{z \to \infty} \frac{u + \frac{nz - ku - 2}{k(nz - ku - 2) - u}}{n} = \frac{u + \frac{1}{k}}{n},$$

the nearest vertex does not exist.

Case(*iv*): We obtain that $su+t \equiv -u^2k-u \pmod{n}$ and ns(ku+1)-kn(su+t) = n, which implies s = kt + 1. Therefore, $u + kut + t \equiv -u^2k - u \pmod{n}$ and we have $t(ku+1) \equiv -ku^2 - 2u \pmod{n}$. As $u^2 + ku + 1 \equiv 0 \pmod{n}$, $-tu^2 \equiv -ku^2 - 2u \pmod{n}$. Since (u, n) = 1, $-tu \equiv -uk - 2 \pmod{n}$, that is $t = \frac{-(nz-ku-2)}{u}$ for some z in $\mathbb{N} \cup \{0\}$. Moreover, $s = \frac{-(k(nz-ku-2)-u)}{u}$. Thus,

$$\frac{t}{s} = \frac{nz - ku - 2}{k(nz - ku - 2) - u}$$

The proof is similar to the proof for the condition (iii).

Example :

Let u = 1 and n = 5, then we have $1^2 + 3 + 1 \equiv 0 \pmod{5}$, that is k = 3. By Theorem 3.1.3 and calculation, we get the following graph showing the farthest vetex in the right hand side that join with a previous vertex.

Figure 3.1: $\widehat{\mathcal{F}}_{1,5}$

Since we have φ in Corollary 3.1.2, the following corollary shows that φ is the element in $\widehat{\Gamma}$ that maps $(\infty, \frac{u}{n})$ to $(\frac{u}{n}, \frac{u+\frac{1}{k}}{n})$. It also maps $(\frac{u}{n}, \frac{u+\frac{1}{k}}{n})$ to $(\frac{u+\frac{1}{k}}{n}, \frac{u+\frac{1}{k-\frac{1}{k}}}{n})$.

Corollary 3.1.4. If (u, n) = 1 and $u^2 + ku + 1 \equiv 0 \pmod{n}$, then

$$\varphi(\frac{u}{n}) = \frac{u + \frac{1}{k}}{n}, \quad \varphi(\frac{u + \frac{1}{k}}{n}) = \frac{u + \frac{1}{k - \frac{1}{k}}}{n}.$$

Proof.

$$\varphi(\frac{u}{n}) = \frac{-u(\frac{u}{n}) + \frac{u^2 + ku + 1}{n}}{-n(\frac{u}{n}) + u + k}$$
$$= \frac{\frac{-u^2 + u^2 + ku + 1}{n}}{-u + u + k}$$
$$= \frac{ku + 1}{nk}$$
$$= \frac{\frac{ku + 1}{k}}{n}$$
$$= \frac{u + \frac{1}{k}}{n}$$

and

$$\begin{aligned}
&= \frac{-nk}{nk} \\
&= \frac{ku+1}{k} \\
&= \frac{u+\frac{1}{k}}{n} \\
&= \frac{u+\frac{1}{k}}{n} \\
&= \frac{u+\frac{1}{k}}{n} \\
&= \frac{-u(\frac{u+\frac{1}{k}}{n}) + \frac{u^2+ku+1}{n}}{-n(\frac{u+\frac{1}{k}}{n}) + u+k} \\
&= \frac{-\frac{u^2}{n} - \frac{u}{kn} + \frac{u^2+ku+1}{n}}{-u-\frac{1}{k} + u+k} \\
&= \frac{\frac{k^2u-u+k}{k}}{\frac{k^2-1}{k}} \\
&= \frac{u(k^2-1)+k}{n(k^2-1)} \\
&= \frac{u+\frac{k}{k^2+1}}{n} \\
&= \frac{u+\frac{1}{k-\frac{1}{k}}}{n}.
\end{aligned}$$
(3.1)

Next, we will use Theorem 3.1.3 to prove that $\widehat{\mathcal{F}}_{u,n}$ contains directed circuits if and only if it contains directed triangles. To prove this, we first prove the following theorem. **Theorem 3.1.5.** No edge of $\widehat{\mathcal{G}}_{1,1}$ cross in \mathbb{H}^2 .

Proof. Let $\frac{r}{s} \to \frac{x}{y}$ be an edge in $\widehat{\mathcal{G}}_{1,1}$. Then, there exists $\sigma \in \widehat{\Gamma}$ such that $\sigma(\infty) = \frac{r}{s}$ and $\sigma(1) = \frac{x}{y}$. Let $\gamma(z) = z + 1$. So, we have $\sigma\gamma(\infty) = \frac{r}{s}$ and $\sigma\gamma(0) = \frac{x}{y}$. Since any element of $\widehat{\Gamma}$ preserves the geodesics, we can suppose that the edges $0 \to \infty$ and $\frac{r}{s} \to \frac{x}{y}$ cross in \mathbb{H}^2 . Thus, $\frac{r}{s} < 0 < \frac{x}{y}$, which contradicts to $ry - sx = \pm 1$.

Corollary 3.1.6. No edge of $\widehat{\mathcal{F}}_{u,n}$ cross in \mathbb{H}^2 .

Proof. Suppose that the edges $\frac{r_1}{s_1n} \to \frac{x_1}{y_1n}$ and $\frac{r_2}{s_2n} \to \frac{x_2}{y_2n}$ cross in \mathbb{H}^2 . Then, $r_1y_1n - x_1s_1n = \pm n$ and $r_2y_2n - x_2s_2n = \pm n$, so $r_1y_1 - x_1s_1 = \pm 1$ and $r_2y_2 - x_2s_2 = \pm 1$. Thus, $\frac{r_1}{s_1} \to \frac{x_1}{y_1}$ and $\frac{r_2}{s_2} \to \frac{x_2}{y_2}$ are the edges in $\widehat{\mathcal{G}}_{1,1}$ that cross in \mathbb{H}^2 , a contradiction by Theorem 3.1.5.

By Theorem 2.3.5, we add the condition n > 1 into the following theorem. And now we have enough implements to prove the following theorem.

Theorem 3.1.7. Let u, n be relatively prime postive integers and n > 1. $\mathcal{F}_{u,n}$ contains directed circuits if and only if it contains directed triangles.

Proof. (\Leftarrow) It is obvious.

 (\Rightarrow) Assume that $\widehat{\mathcal{F}}_{u,n}$ contains a directed circuit of minimal length in the form

$$w_1 \to w_2 \to w_3 \to \dots \to w_p \to w_1.$$

We will prove by contradiction, then we suppose that $\widehat{\mathcal{F}}_{u,n}$ contains no directed triangles. Then, by Theorem 2.3.4, we have $u^2 \pm u + 1 \not\equiv 0 \pmod{n}$. Since (w_1, w_2) is in $\widehat{O}(\infty, \frac{u}{n})$, there exists T in $\widehat{\Gamma}$ such that $T(\infty) = w_1$, $T(\frac{u}{n}) = w_2$, that is $T^{-1}(w_1) = \infty$, $T^{-1}(w_2) = \frac{u}{n}$. Now we take $v_{i-1} = T^{-1}(w_i)$. Then, we obtain the circuit A

$$\infty \to v_1 = \frac{u}{n} \to v_2 \to \dots \to v_m \to \infty$$

such that m = p - 1. Since $u^2 \pm u + 1 \not\equiv 0 \pmod{n}$ and $v_m \to \infty$, then

$$v_m > \frac{u+1}{n}.\tag{3.2}$$

Let v be the farthest vertex which can be joined with v_1 and $v_1 < v$. We will show that $v_2 = v$, so we assume that $v_2 < v$. If v is a vertex in A, we have

$$\infty \to v_1 \to v \to \ldots \to v_m \to \infty$$

is shorter than A which contradicts to A being of the minimal length. If v is not a vertex in A, there are vertices v_s, v_{s+1} in A such that $v_s < v < v_{s+1}$. We observe that $v_1 \to v$ and $v_s \to v_{s+1}$ cross in $\hat{\mathcal{F}}_{u,n}$ which gives a contradiction to Corollary 3.1.6. Therefore, $v_2 = v$.

By Theorem 3.1.3, $v_2 = \frac{u+\frac{1}{k}}{n}$ when k is the unique integer such that $1 \leq k \leq n$ and $u^2 + ku + 1 \equiv 0 \pmod{n}$. From Corollary 3.1.4, we have $\varphi(\infty) = v_1$, $\varphi(v_1) = v_2$ and in general,

$$\varphi(\frac{u+\frac{x}{y}}{n}) = \frac{u+\frac{y}{ky-x}}{n}.$$

For k = 1, we have $\varphi(v_1) = \frac{u+1}{n}$ and $\varphi(v_2) = \infty$. For $1 < k \leq n$, if x and y are positive integers and $\frac{x}{y} < 1$, then $\frac{y}{ky-x} < 1$ since $k \ge 2$ and x < y. Therefore, we can see that $\varphi^i(v_1) \le \frac{u+1}{n}$ for positive integers *i*.

Next, we will show that $v_i = \varphi^{i-1}(v_1)$ for $1 \leq i \leq m$. First, we know that $v_1 = \varphi^0(v_1)$ and $v_2 = \varphi(v_1)$. Now suppose that $v_i = \varphi^{i-1}(v_1)$ for all $1 \leq i \leq t$ and we will show that $v_{t+1} = \varphi^t(v_1)$. Assume that $v_{t+1} < \varphi^t(v_1)$. By Theorem 2.3.3, we have

$$v_t = \varphi^{t-1}(v_1) \to \varphi^{t-1}(v_2) = \varphi^t(v_1)$$

is an edge in $\widehat{\mathcal{F}}_{u,n}$. If $\varphi^t(v_1)$ is not a vertex in A, then there are vertices v_r , v_{r+1} such that $v_r < \varphi^t(v_1) < v_{r+1}$ since $\varphi^t(v_1) < v_m$. Thus, the edges $v_r \to v_{r+1}$ and $v_t \to \varphi^t(v_1)$ cross, a contradiction. If $\varphi^t(v_1)$ is a vertex in A, then a circuit

$$\infty \to v_1 \to \dots \to v_t \to \varphi^t(v_1) \to \dots \to \infty$$

is shorter than A, which gives a contradiction. Assume that $v_{t+1} > \varphi^t(v_1)$. From above, we have

$$\varphi^{-(t-1)}(v_{t+1}) > \varphi^{-(t-1)}(\varphi^t(v_1)) = \varphi(v_1) = v_2.$$

By Theorem 2.3.3, $v_1 = \varphi^{-(t-1)}(v_t) \to \varphi^{-(t-1)}(v_{t+1})$, which contradicts to the choice of v_2 . Hence, $v_i = \varphi^{i-1}(v_1)$ for $1 \leq i \leq m$, so $v_m = \varphi^{i-1}(v_1) \leq \frac{u+1}{n}$, which gives a contradiction to (3.2). Therefore, $\widehat{\mathcal{F}}_{u,n}$ contains directed triangles.

Corollary 3.1.8. If n is even, then $\widehat{\mathcal{F}}_{u,n}$ does not contain any directed circuit.

Proof. It follows by Theorem 3.1.7 and Theorem 2.3.6.

3.2 Continued Fraction

In this section, we show that the result from Theorem 3.1.3 is related to some continued fraction.

In this thesis, we work with special Möbius transformation

$$t_m(z) := t(z) = \frac{1}{k-z} = \frac{-1}{-k+z}$$

To see some relations between continued fraction and hyperbolic path of suborbital graphs, by using Theorem 3.1.3, if $k \ge 2$, we can give the following infinite path

$$\frac{1}{0} \to \frac{u}{n} \to \frac{u + \frac{1}{k}}{n} \to \frac{u + \frac{1}{k - \frac{1}{k}}}{n} \to \frac{u + \frac{1}{k - \frac{1}{k}}}{n} \to \dots$$

The above path gives rise to a continued fraction

$$\frac{1}{k - \frac{1}{k - \frac{1}{k - \frac{1}{\ddots}}}}$$
(3.3)

when $k \ge 2$. Now we have a continued fraction, this gives a problem about the convergence of a continued fraction. Since the above continued fraction is a special case of Theorem 2.4.1, we use this theorem to prove the following corollary.

Corollary 3.2.1. The continued fraction (3.3) converges to $\frac{k-\sqrt{k^2-4}}{2}$.

Proof. Since we have $a_m = -1$ and $b_m = -k$ where $k \ge 2$, then $|b_m| \ge 1 + |a_m|$. By Theorem 2.4.1, the continued fraction (3.3) converges to v with $|v| \le 1$, that is $\lim_{m \to \infty} T_m(0) = v$. As we know

$$T_m(0) = \frac{1}{k - T_{m-1}(0)}$$

 $T_m(0)(k - T_{m-1}(0)) = 1$ and since $\lim_{m \to \infty} T_m(0) = \lim_{m \to \infty} T_{m-1}(0)$, we have v(k - v) = 1. Moreover, $v^2 - kv + 1 = 0$ and

$$v = \frac{k \pm \sqrt{k^2 - 4}}{2}.$$

We observe that if k = 2 then v = 1. Because $|v| \leq 1$, if k > 2 then $v = \frac{k - \sqrt{k^2 - 4}}{2}$.

Example :

Since $1^2 + 3(1) + 1 \equiv 0 \pmod{5}$, then we obtain a finite path in Figure 3.2 and if this path is infinite then it gives a continued fraction

Copyright
$$G$$
 $\frac{1}{3-\frac{1}{3-\frac{1}{3-\frac{1}{3-\frac{1}{3}}}}}$ (3.4)

By Corollary 3.2.1, the above continued fraction converges to $\frac{3-\sqrt{5}}{2} \approx 0.671$.

