
CHAPTER 3

Main Results

In this chapter, we present the farthest vertex which can be joined with u
n and

u+ 1
k

n

in F̂u,n and show that this result relates to some continued fractions. Moreover, we give

some properties of the suborbital subgraph F̂u,n.

3.1 Suborbital Graphs of Γ̂ on Q̂

In this section, we give proofs of properties of the suborbital subgraph F̂u,n. We

first prove the existence of an integer k such that u2 + ku+ 1 ≡ 0 (mod n).

Lemma 3.1.1. If (u, n) = 1, then there exists an integer k such that u2 + ku + 1 ≡

0 (mod n).

Proof. From (u, n) = 1, there exists an integer x such that ux ≡ 1 (mod n). So ux(−u2−

1) ≡ −u2 − 1 (mod n). Taking k = x(−u2 − 1), then u2 + ku + 1 ≡ 0 (mod n) is

satisfied.

Corollary 3.1.2. Let u, n be relatively prime positive integers, and let k be integer such

that u2 + ku+ 1 ≡ 0 (mod n). Then

φ =

−u (u2 + ku+ 1)/n

−n u+ k


is an element of Γ̂0(n) and also if k = 0 and k = 1 then φ is an elliptic element of order

2 and 3, respectively.

Proof. By Lemma 3.1.1, we obtain that φ is an element of Γ̂0(n). If k = 0, then

φ =

−u (u2 + 1)/n

−n u
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and we have−u (u2 + 1)/n

−n u

−u (u2 + 1)/n

−n u

 =

u2 − u2 − 1 (−u3 − u+ u3 + u)/n

un− un −u2 − 1 + u2


=

−1 0

0 −1

 .

Hence φ is an elliptic element of order 2. If k = 1, then

φ =

−u (u2 + u+ 1)/n

−n u+ 1


and we observe that−u (u2 + u+ 1)/n

−n u+ 1

−u (u2 + u+ 1)/n

−n u+ 1

−u (u2 + u+ 1)/n

−n u+ 1



=

u2 − u2 − u− 1 (−u3 − u2 − u+ u3 + 2u2 + 2u+ 1)/n

un− un− n −u2 − u− 1 + u2 + 2u+ 1

−u (u2 + u+ 1)/n

−n u+ 1


=

−u− 1 (u2 + u+ 1)/n

−n u

−u (u2 + u+ 1)/n

−n u+ 1


=

u2 + u− u2 − u− 1 (−(u+ 1)(u2 + u+ 1) + (u+ 1)(u2 + u+ 1))/n

un− un −u2 − u− 1 + u2 + u


=

−1 0

0 −1

 .

Therefore φ is an elliptic element of order 3.

Now we show the proof of the main theorem in this thesis.

Theorem 3.1.3. Let u, n be relatively prime positive integers. In F̂u,n, we have the

following results:

(i) The farthest vertex which can be joined with u
n is

u+ 1
k

n

when k is the unique integer such that 1 6 k 6 n and u2 + ku + 1 ≡ 0 (mod n). The

nearest vertex does not exist.

(ii) The farthest vertex which can be joined with
u+ 1

k
n is

u+ 1
k− 1

k

n
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when k is the unique integer such that 1 6 k 6 n and u2 + ku + 1 ≡ 0 (mod n). The

nearest vertex does not exist.

Proof of (i). The existance of an integer k such that u2 + ku + 1 ≡ 0 (mod n) is due to

Lemma 3.1.1. Now we can assume that 1 6 k 6 n. To see this, if k > n, we choose k1

such that k ≡ k1 (mod n). We have ku+ 1 ≡ k1u+ 1 (mod n), this gives

u2 + k1u+ 1 ≡ u2 + ku+ 1 ≡ 0 (mod n).

Now we show the uniqueness of k. Let m be another integer such that 1 6 m 6 n

and u2 + mu + 1 ≡ 0 (mod n). Hence mu ≡ −u2 − 1 ≡ ku (mod n), so we have

(k −m)u ≡ 0 (mod n). Because u and n are relatively prime, k −m ≡ 0 (mod n). Thus,

k = m since |k −m| < n.

Now suppose there exists an edge u
n → x

y in F̂u,n and u
n < x

y . We can write x
y in the

form
x

y
=

u

n
+

nx

ny
− uy

ny
=

u+ nx−uy
y

n
.

With this and the fact that uy < nx, we can replace x
y with

u+ t
s

n where t
s is in Q+. So we

have
u

n
→

u+ t
s

n
=

su+ t

sn
.

Theorem 2.3.2 gives numerical informations when this edge exists. From this point

onward, we aim to analyze each of the cases, (i)− (iv), of this theorem.

Case(i): In this case, we have su+t ≡ u2 (mod n) and u(sn)−n(su+t) = n, which

implies t = −1. Therefore, su − 1 ≡ u2 (mod n). Since u2 + ku + 1 ≡ 0 (mod n), we

have su − 1 ≡ −ku − 1 (mod n), that is su ≡ −ku (mod n). Since (u, n) = 1, we have

s ≡ −k (mod n). In other words, s = −k − nz for some z in N ∪ {0}. Thus,

t

s
=

1

nz + k
.

Next, we find the largest value of t
s by defining a function f : R+ ∪ {0} → R,

f(z) =
u+ 1

nz+k

n
.

The derivative of f is f ′(z) = −1
(nz+k)2

which is negative for every non-negative z. This

implies that the maximum occurs at z = 0, that is

u+ 1
k

n
=

uk + 1

kn
.
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It remains to show that
u+ 1

k
n = uk+1

kn is a vertex in F̂u,n. To see this, we show that

it is an irreducible fraction. It is true that (ku+1, k) = (ku+1−ku, k) = (1, k) = 1 and

since u2+ku+1 = ny for some y in Z, we have (ku+1, n) = (ku+1−ny, n) = (−u2, n) = 1.

Thus, (ku+1, kn) = 1. We conclude that
u+ 1

k
n is a vertex in F̂u,n and is the farthest one

being joined with u
n . We also see that

lim
z→∞

u+ 1
nz+k

n
=

u

n
.

This implies that there is no such nearest point being joined with the vertex u
n .

Case(ii): In this case, we obtain that su+t ≡ −u2 (mod n) and u(sn)−n(us+t) =

−n, which implies t = 1. Thus, su + 1 ≡ −u2 (mod n) and we know u2 + ku + 1 ≡

0 (mod n). This implies that su + 1 ≡ ku + 1 (mod n), that is su ≡ ku (mod n). The

fact that (u, n) = 1 implies that s ≡ k (mod n). Therefore, s = nz + k for some z in

N ∪ {0}. Hence
t

s
=

1

nz + k
.

This case is done by using a similar argument to that of the first case.

Case(iii): We have su + t ≡ u2 (mod n) and u(sn) − n(su + t) = −n, which

implies t = 1. Then, su + 1 ≡ u2 (mod n). Since u2 + ku + 1 ≡ 0 (mod n), su + 1 ≡

−ku−1 (mod n). Hence, su+1+ku+1 = nz for some z in N∪{0}, that is s = nz−ku−2
u .

Thus,
t

s
=

u

nz − ku− 2
.

We again find the greatest value of t
s by defining the function f : R+ ∪ {0} → R,

f(z) =
u+ u

nz−ku−2

n
.

And the derivative of f is f ′(z) = −u
(nz−ku−2)2

< 0, so the greatest value of the function f

is at z = 0, that is
u− 1

k+ 2
u

n
.

But
u− 1

k+ 2
u

n is nearer to u
n than

u+ 1
k

n . Therefore, the farthest vertex which can be joined

with u
n is

u+ 1
k

n . Now we know that

lim
z→∞

u+ u
nz−ku−2

n
=

u

n
.

Hence, the nearest vertex does not exist.

Case(iv): We obtain that su + t ≡ −u2 (mod n) and u(sn) − n(su + t) = n,
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which implies t = −1. Thus, su − 1 ≡ −u2 (mod n). Because u2 + ku + 1 ≡ 0 (mod n),

su− 1 ≡ ku+1 (mod n), that is −su+1 ≡ −ku− 1 (mod n). So −su+1+ ku+1 = nz

for some z in N ∪ {0}, then s = −(nz−ku−2)
u . Therefore,

t

s
=

u

nz − ku− 2
.

The remaining proof is similar to the condition (iii).

Proof of (ii) By the above proof of existence, let k be such that 1 6 k 6 n and

u2 + ku + 1 ≡ 0 (mod n). We have shown that k is unique. From the proof in (i),

we can suppose that
u+ 1

k

n
<

u+ t
s

n

and
ku+ 1

kn
=

u+ 1
k

n
→

u+ t
s

n
=

us+ t

sn

where t
s is in Q+. We start working on each case as in the proof of (i).

Case(i): In this case, we have us+t ≡ u2k+u ( mod n) and ns(ku+1)−kn(su+t) =

n, which implies s = kt+1. Thus, u+kut+ t ≡ u2k+u (mod n) and we get t(ku+1) ≡

u2k (mod n). We observe that −u2t ≡ u2k (mod n). Moreover, −t ≡ k (mod n) since

(u, n) = 1. So, t = −nz − k for some z in N ∪ {0}, that is s = 1− k(nz + k). Therefore,

t

s
=

nz + k

k(nz + k)− 1
.

Next, we find the largest value of t
s by defining a function f : R+ ∪ {0} → R by

f(z) =
u+ nz+k

k(nz+k)−1

n
.

Since the derivative of f is f ′(z) = −1
(k(nz+k)−1)2

< 0, then f has a maximum at z = 0,

that is
u+ k

k2−1

n
=

(k2 − 1)u+ k

(k2 − 1)n
.

Now we will show ((k2 − 1)u+ k, (k2 − 1)n) = 1. Let us suppose that

((k2 − 1)u+ k, k2 − 1) = a,

then a divides k2 − 1, which implies a divides (k2 − 1)u. Since a divides (k2 − 1)u+ k, we

have a divides k. Because a divides k2 − 1, a divides −1 and so a = ±1.

Next, we assume that ((k2 − 1)u + k, n) = b, then b divides (k2 − 1)u + k. So we
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have k(ku + 1) − u = (k2 − 1)u + k ≡ 0 (mod b). Since u2 + ku + 1 ≡ 0 (mod n) and b

divides n, u2 + ku + 1 ≡ 0 (mod b). As we have shown k(ku + 1) − u ≡ 0 (mod b) and

−u2 ≡ ku+ 1 (mod b), then k(−u2)− u ≡ 0 (mod b).

Suppose b does not divide u. As (u, n) = 1 and b divides n, so (u, b) = 1. Moreover,

−ku − 1 ≡ 0 (mod b). Since we have u2 ≡ −ku − 1 (mod b), then b divides u2, which

gives a contradiction. Hence, b divides u. Thus, b = 1 since (u, n) = 1 and b divides n.

Therefore, ((k2 − 1)u+ k, (k2 − 1)n) = 1, that is

u+ k
k2−1

n
=

u+ 1
k− 1

k

n

is a vertex in F̂u,n and is also the farthest vertex which can be joined with
u+ 1

k
n . Since

lim
z→∞

u+ nz+k
k(nz+k)−1

n
=

u+ 1
k

n
,

there is no such a nearest vertex.

Case(ii): We obtain that su+ t ≡ −u2k−u (mod n) and ns(ku+1)−kn(su+ t) =

−n, which implies s = kt − 1. Thus, kut − u + t ≡ −u2k − u (mod n). We observe

that t(ku+ 1) ≡ −u2k (mod n). Since u2 + ku+ 1 ≡ 0 (mod n), u2t ≡ u2k (mod n). As

(u, n) = 1, t ≡ k (mod n), that is t = nz+k for some z in N∪{0}. So, s = k(nz+k)−1.

Hence,
t

s
=

nz + k

k(nz + k)− 1

and the remaining proof is the same as above proof.

Case(iii): We have su+ t ≡ u2k + u (mod n) and ns(ku+ 1)− kn(su+ t) = −n,

which implies s = kt − 1. So we have kut − u + t ≡ u2k + u (mod n), that is t(ku + 1)

−ku2 ≡ 2u (mod n). Since u2 + ku + 1 ≡ 0 (mod n), −tu2 − ku2 ≡ 2u (mod n).

Moreover, −tu − ku ≡ 2 (mod n) by (u, n) = 1. Then, tu + ku ≡ −2 (mod n), that is

t = nz−ku−2
u for some z in N ∪ {0}. Thus, s = k(nz−ku−2)−u

u , so

t

s
=

nz − ku− 2

k(nz − ku− 2)− u
.

Now we find the greatest value of t
s by defining a function f : R+ ∪ {0} → R,

f(z) =
u+ nz−ku−2

k(nz−ku−2)−u

n
.

Since f ′(z) = −u
(k(nz−ku−2)−u)2

< 0, the greatest value of f is at z = 0, that is

u+ 1
k+ 1

k+ 2
u

n
.
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But

u+ 1

k+ 1

k+ 2
u

n is nearer to
u+ 1

k
n than

u+ 1

k− 1
k

n , so the farthest one being joined with

u+ 1
k

n is
u+ 1

k− 1
k

n . As we have

lim
z→∞

u+ nz−ku−2
k(nz−ku−2)−u

n
=

u+ 1
k

n
,

the nearest vertex does not exist.

Case(iv): We obtain that su+t ≡ −u2k−u ( mod n) and ns(ku+1)−kn(su+t) = n,

which implies s = kt + 1. Therefore, u + kut + t ≡ −u2k − u (mod n) and we have

t(ku+1) ≡ −ku2−2u ( mod n). As u2+ku+1 ≡ 0 ( mod n), −tu2 ≡ −ku2−2u ( mod n).

Since (u, n) = 1, −tu ≡ −uk − 2 (mod n), that is t = −(nz−ku−2)
u for some z in N ∪ {0}.

Moreover, s = −(k(nz−ku−2)−u)
u . Thus,

t

s
=

nz − ku− 2

k(nz − ku− 2)− u
.

The proof is similar to the proof for the condition (iii).

Example :

Let u = 1 and n = 5, then we have 12 + 3 + 1 ≡ 0 (mod 5), that is k = 3. By Theorem

3.1.3 and calculation, we get the following graph showing the farthest vetex in the right

hand side that join with a previous vertex.

Figure 3.1: F̂1,5

Since we have φ in Corollary 3.1.2, the following corollary shows that φ is the

element in Γ̂ that maps (∞, un) to (un ,
u+ 1

k
n ). It also maps (un ,

u+ 1
k

n ) to (
u+ 1

k
n ,

u+ 1

k− 1
k

n ).
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Corollary 3.1.4. If (u, n) = 1 and u2 + ku+ 1 ≡ 0 (mod n), then

φ(
u

n
) =

u+ 1
k

n
, φ(

u+ 1
k

n
) =

u+ 1
k− 1

k

n
.

Proof.

φ(
u

n
) =

−u(un) +
u2+ku+1

n

−n(un) + u+ k

=
−u2+u2+ku+1

n

−u+ u+ k

=
ku+ 1

nk

=
ku+1
k

n

=
u+ 1

k

n

and

φ(
u+ 1

k

n
) =

−u(
u+ 1

k
n ) + u2+ku+1

n

−n(
u+ 1

k
n ) + u+ k

=
−u2

n − u
kn + u2+ku+1

n

−u− 1
k + u+ k

=
k2u−u+k

kn
k2−1
k

=
u(k2 − 1) + k

n(k2 − 1)

=
u+ k

k2+1

n

=
u+ 1

k− 1
k

n
.

(3.1)

Next, we will use Theorem 3.1.3 to prove that F̂u,n contains directed circuits if and

only if it contains directed triangles. To prove this, we first prove the following theorem.

Theorem 3.1.5. No edge of Ĝ1,1 cross in H2.

Proof. Let r
s → x

y be an edge in Ĝ1,1. Then, there exists σ ∈ Γ̂ such that σ(∞) = r
s and

σ(1) = x
y . Let γ(z) = z + 1. So, we have σγ(∞) = r

s and σγ(0) = x
y . Since any element of

Γ̂ preserves the geodesics, we can suppose that the edges 0 → ∞ and r
s → x

y cross in H2.

Thus, r
s < 0 < x

y , which contradicts to ry − sx = ±1.
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Corollary 3.1.6. No edge of F̂u,n cross in H2.

Proof. Suppose that the edges r1
s1n

→ x1
y1n

and r2
s2n

→ x2
y2n

cross in H2. Then, r1y1n −

x1s1n = ±n and r2y2n− x2s2n = ±n, so r1y1 − x1s1 = ±1 and r2y2 − x2s2 = ±1. Thus,

r1
s1

→ x1
y1

and r2
s2

→ x2
y2

are the edges in Ĝ1,1 that cross in H2, a contradiction by Theorem

3.1.5.

By Theorem 2.3.5, we add the condition n > 1 into the following theorem. And

now we have enough implements to prove the following theorem.

Theorem 3.1.7. Let u, n be relatively prime postive integers and n > 1. F̂u,n contains

directed circuits if and only if it contains directed triangles.

Proof. (⇐) It is obvious.

(⇒) Assume that F̂u,n contains a directed circuit of minimal length in the form

w1 → w2 → w3 → ... → wp → w1.

We will prove by contradiction, then we suppose that F̂u,n contains no directed triangles.

Then, by Theorem 2.3.4, we have u2 ± u + 1 ̸≡ 0 (mod n). Since (w1, w2) is in Ô(∞, un),

there exists T in Γ̂ such that T (∞) = w1, T (
u
n) = w2, that is T

−1(w1) = ∞, T−1(w2) =
u
n .

Now we take vi−1 = T−1(wi). Then, we obtain the circuit A

∞ → v1 =
u

n
→ v2 → ... → vm → ∞

such that m = p− 1. Since u2 ± u+ 1 ̸≡ 0 (mod n) and vm → ∞, then

vm >
u+ 1

n
. (3.2)

Let v be the farthest vertex which can be joined with v1 and v1 < v. We will show that

v2 = v, so we assume that v2 < v. If v is a vertex in A, we have

∞ → v1 → v → ... → vm → ∞

is shorter than A which contradicts to A being of the minimal length. If v is not a vertex

in A, there are vertices vs, vs+1 in A such that vs < v < vs+1. We observe that v1 → v and

vs → vs+1 cross in F̂u,n which gives a contradiction to Corollary 3.1.6. Therefore, v2 = v.

By Theorem 3.1.3, v2 =
u+ 1

k
n when k is the unique integer such that 1 6 k 6 n and

u2 + ku + 1 ≡ 0 (mod n). From Corollary 3.1.4, we have φ(∞) = v1, φ(v1) = v2 and in

general,

φ(
u+ x

y

n
) =

u+ y
ky−x

n
.
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For k = 1, we have φ(v1) =
u+1
n and φ(v2) = ∞. For 1 < k 6 n, if x and y are positive

integers and x
y < 1, then y

ky−x < 1 since k > 2 and x < y. Therefore, we can see that

φi(v1) 6 u+1
n for positive integers i.

Next, we will show that vi = φi−1(v1) for 1 6 i 6 m. First, we know that v1 = φ0(v1)

and v2 = φ(v1). Now suppose that vi = φi−1(v1) for all 1 6 i 6 t and we will show that

vt+1 = φt(v1). Assume that vt+1 < φt(v1). By Theorem 2.3.3, we have

vt = φt−1(v1) → φt−1(v2) = φt(v1)

is an edge in F̂u,n. If φt(v1) is not a vertex in A, then there are vertices vr, vr+1 such

that vr < φt(v1) < vr+1 since φt(v1) < vm. Thus, the edges vr → vr+1 and vt → φt(v1)

cross, a contradiction. If φt(v1) is a vertex in A, then a circuit

∞ → v1 → ... → vt → φt(v1) → ... → ∞

is shorter than A, which gives a contradiction. Assume that vt+1 > φt(v1). From above,

we have

φ−(t−1)(vt+1) > φ−(t−1)(φt(v1)) = φ(v1) = v2.

By Theorem 2.3.3, v1 = φ−(t−1)(vt) → φ−(t−1)(vt+1), which contradicts to the choice of v2.

Hence, vi = φi−1(v1) for 1 6 i 6 m, so vm = φi−1(v1) 6 u+1
n , which gives a contradiction

to (3.2). Therefore, F̂u,n contains directed triangles.

Corollary 3.1.8. If n is even, then F̂u,n does not contain any directed circuit.

Proof. It follows by Theorem 3.1.7 and Theorem 2.3.6.

3.2 Continued Fraction

In this section, we show that the result from Theorem 3.1.3 is related to some

continued fraction.

In this thesis, we work with special Möbius transformation

tm(z) := t(z) =
1

k − z
=

−1

−k + z
.

To see some relations between continued fraction and hyperbolic path of suborbital graphs,

by using Theorem 3.1.3, if k > 2, we can give the following infinite path

1

0
→ u

n
→

u+ 1
k

n
→

u+ 1
k− 1

k

n
→

u+ 1
k− 1

k− 1
k

n
→ ...
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The above path gives rise to a continued fraction

1

k −
1

k −
1

k −
1

. . .

(3.3)

when k > 2. Now we have a continued fraction, this gives a problem about the convergence

of a continued fraction. Since the above continued fraction is a special case of Theorem

2.4.1, we use this theorem to prove the following corollary.

Corollary 3.2.1. The continued fraction (3.3) converges to k−
√
k2−4
2 .

Proof. Since we have am = −1 and bm = −k where k > 2, then |bm| > 1+ |am|. By Theo-

rem 2.4.1, the continued fraction (3.3) converges to v with |v| 6 1, that is lim
m→∞

Tm(0) = v.

As we know

Tm(0) =
1

k − Tm−1(0)
,

Tm(0)(k − Tm−1(0)) = 1 and since lim
m→∞

Tm(0) = lim
m→∞

Tm−1(0), we have v(k − v) = 1.

Moreover, v2 − kv + 1 = 0 and

v =
k ±

√
k2 − 4

2
.

We observe that if k = 2 then v = 1. Because |v| 6 1, if k > 2 then v = k−
√
k2−4
2 .

Example :

Since 12 + 3(1) + 1 ≡ 0 (mod 5), then we obtain a finite path in Figure 3.2 and if this

path is infinite then it gives a continued fraction

1

3−
1

3−
1

3−
1

. . .

(3.4)

By Corollary 3.2.1, the above continued fraction converges to 3−
√
5

2 ≈ 0.671.
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Figure 3.2: F̂1,5
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