CHAPTER 2

Preliminaries

In this chapter, we collect the necessary concepts involving hyperbolic geometry and

group theory. See [1] and [3] for more details.

2.1 The hyperbolic plane

Before we proceed to the hyperbolic plane, let’s start with the more familiar eu-
clidean plane. The euclidean plane is the plane R? equipped with the metric deye defined

as follows: Let v be a curve in R? parametrized by
t— (z(t),y(t), a<t<b.
The euclidean length ey of 7 is given by
b
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The euclidean distance deye between the points P and @, denoted by deye(P, @), is the

Figure 2.1: The euclidean plane and a curve



infimum of the lengths of all curves joining P and (). That is

denc (P, Q) = inf{lenc(7); v goes from P to Q}.

We will now define a term for shortest curve in general metric spaces. A geodesic is a
curve 7y such that for each P, Q € ~ with @ sufficiently closed to P, the part of v between

P and @ is the shortest curve joining them.

Proposition 2.1.1. deu..(P, Q) is equal to leyc([P,Q]) where [P,Q] is the line segment

joining P and Q. That is, euclidean geodesics are line segments and lines.
So, we also obtain the following corollary.

Corollary 2.1.2. The euclidean distance from Py = (zg,y0) to P = (x1,y1) is

deuc(P7 Q) W \/(xl j 130)2 + (yl 3 ?/0)2'

Alternatively, we can consider the euclidean plane as C and rewrite dey. between
two points P = zg and Q = z1 as dewc(P, Q) = |21 — 20/
We now define the hyperbolic plane in a similar manner as the euclidean plane. The

hyperbolic plane is the metric space consisting of the open upper half-plane
H? = {(z,y) € R*:y > 0} = {z € C: Im(z) > 0}

together with the metric djy, defined below.
Similarly to the euclidean case, we start by defining the hyperbolic length of a curve
parametrized by

t— (z(t),y(t), a<t<b

as

lhyp
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The hyperbolic distance dyy,, between the points P and @, denoted by diy, (P, Q), is the

infimum of the lengths of all curves joining P and ). That is
dnyp (P, Q) = inf{lyyp(7); 7 goes from P to Q}.
From the definition, we continue to the shortest curves in hyperbolic plane.

Theorem 2.1.3. The unique shortest curve joining P and @Q in H? is the circle arc

centered on the x-axis or the vertical line segment passing through P and Q).



Figure 2.2: The hyperbolic plane and a curve

2.2 Isometries

An isometry on a metric space (X,d) is a bijection 7' : X — X such that

d(z,y) = d(T(z),T(y))

for every =,y € X. In other words, an isometry is a bijection that also preserves distance
between each pair of points.
Some examples of isometries in the euclidean plane (C, dey) are :

a translation along zo, T(z) = z + 2o.

a rotation of angle 6 around the origin, T'(z) = 2.

a reflection across a line passing through the origin and making an angle of 6 with

the z-axis, T(z) = €??z. See Figure 2.3 for images of each isometry acting on a line

segment in C. In fact, every euclidean isometry can be written as a composition of these

(a.) (b.) (c.)

g f\?

Figure 2.3: (a.) Translation (b.) Rotation (c.) Reflection



three isometries. Let T be an isometry in the euclidean plane, then either
T(z) =2+ z

or

T(z) = e¥0% + 2

where 6 € R is an angle and zg is a point in C.

Now, let’s move on to the isometries of the hyperbolic plane (H?, dnyp). Some of them

are:
a homothety with ratio A > 0, T'(2) = Az.
a horizontal translation along a € R which is just a kind of translation, namely
T(z) =z+a.

a reflection across the y-axis, T'(z) = —Z.

N =

a standard inversion or inversion across the unit circle, T'(z) = <. See Figure 2.4 for
images of each isometry acting on a line segment in C.
Moreover, every isometries on hyperbolic plane can be written as a composition of these

maps which is either in the form

az+b
T(z) =
(2) cz+d
or
cz+d
T(2) =
(2) azZ+b

with a,b,c,d € R and ad — bc = 1.



(a.) (b.)

.............

Figure 2.4: (a.) Homothety (b.) Horizontal translation (c.) Reflection across y-axis
(d.) Standard inversion

2.3 Groups and group actions

Let G be a set and let * be an operator that combines any two elements a,b of
G to form a new element, denoted by a * b or simply ab and also satisfies the following

requirements :
1. axbe G Va,beG.
2. (axb)xc=ax(bxc) Va,b,ce€QG.
3. There is an identity element e € GG such that exa =a*xe =a Va € G.

4. For each a € G, there is an element b € G such that a * b = b* a = e where e is the

identity element.

We call (G, %) a group. If, moreover, H C G and H is also a group, we say that H is a
subgroup of GG, denoted by H < G.



Now, let (G, *) be a group and let X be a set. The group action of G on X (we may also
say that G acts on X) is a function from G x X to X sending (g, ) to g.x Vg € G,z € X

satisfying these two requirements :
1. (9% h).x=g.(hx) Vg,heGxeX.
2. eex =x Vo € X where e is the identity element of G.
An equivalence relation on X is naturally defined from a group action G on X by
rrRy+dgeG,gxr=y

Va,y € X. We call the equivalence classes of this relation containing an element = € X
orbits of x under G. An action is called transitive if the relation defined above is trivial,

that is, Va,y € Xdg € G such that g.z = y.

2.4 Suborbital graphs

Let G be a group of transformation that acts on X naturally by g.x = g(z) Vg €
G,x € X. Then G acts on X x X by

g(a;b) = (9(a),g(b)) Vg€ G, (a,b) € X.

The orbits of this action are called suborbitals of G. We denote the orbit containing
(a,b) by O(a,b). A suborbital graph G(a,b) is a graph with the elements of X as its vertices
and there is a directed edge from x to y if (z,y) € O(a,b). We denote the directed edge
from z to y by x — y or y < x.

We can see that O(b, a) is also a suborbital such that O(b,a) = O(a,b) or O(b,a) is
O(a,b) with reversed arrows. In case of equality, the graph consists of pairs of oppositely
directed edges. We may replace each pair with an undirected edge for convinience and
we called the graph self-paired. Otherwise, we call G(a,b) and G(b,a) paired suborbital
graphs.

We see that O(a,a) is the identity relation on X. G(a,a), is a self-paired suborbital
graph called the trivial suborbital graph.

2.5 The modular group

A Mébius transformation is a rational funtion of the form

az+b
cz+d

T(z) =



where a, b, c,d € C and ad — bc # 0. There are many groups of Mobius transformations. A
modular group is also a group that can be identified as a group of Mobius transformations.
But to give its definition, let’s start from introducing another group known as the group

SL(2,Z). The group SL(2,Z) is a group of all matrices in the form

a

c d

a,b,c,d € Z,ad — bc = 1.

Its quotient group by the centre {£1} is called the modular group I' = PSL(2,7Z). Thus,

I" consists of the pairs of matrices

a b
+ a,b,c,d € Z,ad —bc=1.
c d

We will omit the symbol + and identify the matrices with their negative. So, we can

a
represent each element + € I' as a Mobius tranformation 7' : H? — H? with
c d
az +b 9
e = Vz € H”.
(2) iy z €

In [3], G.A. Jones, D. Singerman and K. Wicks investigated the modular group’s natural
action on @ = QU {oo} and here are some of their results: Let I' acts on @ naturally,

that is for each T' € T such that T'(z) = az+b

cz+d?
T T ar+by T =~
T-=T(-)= V- e Q.
Y (y cx + dy Y Q

Lemma 2.5.1. The action of I' on @ 18 transitive.

As for suborbital graphs for the action of I' on @, from the fact that the action is

transitive, each suborbital contains a pair (oo, %) with n > 0 and (u,n) = 1. We can

denote the suborbital by O, , and the corresponding suborbital by G .
Theorem 2.5.2. © — % in Gyun if and only if either

1. x =wur (mod n), y =wus (mod n) and ry — sz =n or

2. = —ur (mod n), y = —us (mod n) and ry — sx = —n.

Corollary 2.5.3. G, is self-paired if and only if u? = —1 (mod n).



2.6 The Farey graph

G.A. Jones, D. Singerman and K. Wicks worked on the Farey graph Gi; with @
as its vertex set. From the above corollary, it is self-paired. We call G1,1 the Farey graph

and denote it by F'.

Lemma 2.6.1. Let g,% € Q be reduced rationals. Then % and % are adjacent in F if and

only if ry — sx = +1.

Corollary 2.6.2. No edges of F cross in H? if we represent each edge by a hyperbolic

geodesic.
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Figure 2.5: F' = G111
Next, let F,, ,, be the subgraph of G, ,, whose vertices form the block
K ~
[o0] = {; €Q:y=0(mod n)}.
Then
Theorem 2.6.3. © — % in Fyn if and only if either
1. z =ur (mod n) and ry — st =n or

2. x = —ur (mod n) and ry — sx = —n.
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Figure 2.6: F12

11



