
CHAPTER 2

Preliminaries

In this chapter, we collect the necessary concepts involving hyperbolic geometry and

group theory. See [1] and [3] for more details.

2.1 The hyperbolic plane

Before we proceed to the hyperbolic plane, let’s start with the more familiar eu-

clidean plane. The euclidean plane is the plane R2 equipped with the metric deuc defined

as follows: Let γ be a curve in R2 parametrized by

t 7→ (x(t), y(t)), a ≤ t ≤ b.

The euclidean length leuc of γ is given by

leuc(γ) =

∫ b

a

√
x′(t)2 + y′(t)2dt.

The euclidean distance deuc between the points P and Q, denoted by deuc(P,Q), is the

Figure 2.1: The euclidean plane and a curve γ
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infimum of the lengths of all curves joining P and Q. That is

deuc(P,Q) = inf{leuc(γ); γ goes from P to Q}.

We will now define a term for shortest curve in general metric spaces. A geodesic is a

curve γ such that for each P,Q ∈ γ with Q sufficiently closed to P , the part of γ between

P and Q is the shortest curve joining them.

Proposition 2.1.1. deuc(P,Q) is equal to leuc([P,Q]) where [P,Q] is the line segment

joining P and Q. That is, euclidean geodesics are line segments and lines.

So, we also obtain the following corollary.

Corollary 2.1.2. The euclidean distance from P0 = (x0, y0) to P1 = (x1, y1) is

deuc(P,Q) =
√

(x1 − x0)2 + (y1 − y0)2.

Alternatively, we can consider the euclidean plane as C and rewrite deuc between

two points P = z0 and Q = z1 as deuc(P,Q) = |z1 − z0|.

We now define the hyperbolic plane in a similar manner as the euclidean plane. The

hyperbolic plane is the metric space consisting of the open upper half-plane

H2 = {(x, y) ∈ R2 : y > 0} = {z ∈ C : Im(x) > 0}

together with the metric dhyp defined below.

Similarly to the euclidean case, we start by defining the hyperbolic length of a curve γ

parametrized by

t 7→ (x(t), y(t)), a ≤ t ≤ b

as

lhyp(γ) =

∫ b

a

√
x′(t)2 + y′(t)2

y(t)
dt.

The hyperbolic distance dhyp between the points P and Q, denoted by dhyp(P,Q), is the

infimum of the lengths of all curves joining P and Q. That is

dhyp(P,Q) = inf{lhyp(γ); γ goes from P to Q}.

From the definition, we continue to the shortest curves in hyperbolic plane.

Theorem 2.1.3. The unique shortest curve joining P and Q in H2 is the circle arc

centered on the x-axis or the vertical line segment passing through P and Q.
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Figure 2.2: The hyperbolic plane and a curve γ

2.2 Isometries

An isometry on a metric space (X, d) is a bijection T : X → X such that

d(x, y) = d(T (x), T (y))

for every x, y ∈ X. In other words, an isometry is a bijection that also preserves distance

between each pair of points.

Some examples of isometries in the euclidean plane (C, deuc) are :

a translation along z0, T (z) = z + z0.

a rotation of angle θ around the origin, T (z) = eiθz.

a reflection across a line passing through the origin and making an angle of θ with

the x-axis, T (z) = e2iθz̄. See Figure 2.3 for images of each isometry acting on a line

segment in C. In fact, every euclidean isometry can be written as a composition of these

Figure 2.3: (a.) Translation (b.) Rotation (c.) Reflection
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three isometries. Let T be an isometry in the euclidean plane, then either

T (z) = eiθz + z0

or

T (z) = e2iθz̄ + z0

where θ ∈ R is an angle and z0 is a point in C.

Now, let’s move on to the isometries of the hyperbolic plane (H2, dhyp). Some of them

are:

a homothety with ratio λ > 0, T (z) = λz.

a horizontal translation along a ∈ R which is just a kind of translation, namely

T (z) = z + a.

a reflection across the y-axis, T (z) = −z̄.

a standard inversion or inversion across the unit circle, T (z) = 1
z̄ . See Figure 2.4 for

images of each isometry acting on a line segment in C.

Moreover, every isometries on hyperbolic plane can be written as a composition of these

maps which is either in the form

T (z) =
az + b

cz + d

or

T (z) =
cz̄ + d

az̄ + b

with a, b, c, d ∈ R and ad− bc = 1.
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Figure 2.4: (a.) Homothety (b.) Horizontal translation (c.) Reflection across y-axis
(d.) Standard inversion

2.3 Groups and group actions

Let G be a set and let ∗ be an operator that combines any two elements a, b of

G to form a new element, denoted by a ∗ b or simply ab and also satisfies the following

requirements :

1. a ∗ b ∈ G ∀a, b ∈ G.

2. (a ∗ b) ∗ c = a ∗ (b ∗ c) ∀a, b, c ∈ G.

3. There is an identity element e ∈ G such that e ∗ a = a ∗ e = a ∀a ∈ G.

4. For each a ∈ G, there is an element b ∈ G such that a ∗ b = b ∗ a = e where e is the

identity element.

We call (G, ∗) a group. If, moreover, H ⊆ G and H is also a group, we say that H is a

subgroup of G, denoted by H ≼ G.
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Now, let (G, ∗) be a group and let X be a set. The group action of G on X (we may also

say that G acts on X) is a function from G×X to X sending (g, x) to g.x ∀g ∈ G, x ∈ X

satisfying these two requirements :

1. (g ∗ h).x = g.(h.x) ∀g, h ∈ G, x ∈ X.

2. e.x = x ∀x ∈ X where e is the identity element of G.

An equivalence relation on X is naturally defined from a group action G on X by

x ≈ y ↔ ∃g ∈ G, g.x = y

∀x, y ∈ X. We call the equivalence classes of this relation containing an element x ∈ X

orbits of x under G. An action is called transitive if the relation defined above is trivial,

that is, ∀x, y ∈ X∃g ∈ G such that g.x = y.

2.4 Suborbital graphs

Let G be a group of transformation that acts on X naturally by g.x = g(x) ∀g ∈

G, x ∈ X. Then G acts on X ×X by

g(a, b) = (g(a), g(b)) ∀g ∈ G, (a, b) ∈ X.

The orbits of this action are called suborbitals of G. We denote the orbit containing

(a, b) by O(a, b). A suborbital graph G(a, b) is a graph with the elements of X as its vertices

and there is a directed edge from x to y if (x, y) ∈ O(a, b). We denote the directed edge

from x to y by x→ y or y ← x.

We can see that O(b, a) is also a suborbital such that O(b, a) = O(a, b) or O(b, a) is

O(a, b) with reversed arrows. In case of equality, the graph consists of pairs of oppositely

directed edges. We may replace each pair with an undirected edge for convinience and

we called the graph self-paired. Otherwise, we call G(a, b) and G(b, a) paired suborbital

graphs.

We see that O(a, a) is the identity relation on X. G(a, a), is a self-paired suborbital

graph called the trivial suborbital graph.

2.5 The modular group

A Möbius transformation is a rational funtion of the form

T (z) =
az + b

cz + d
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where a, b, c, d ∈ C and ad−bc ̸= 0. There are many groups of Möbius transformations. A

modular group is also a group that can be identified as a group of Möbius transformations.

But to give its definition, let’s start from introducing another group known as the group

SL(2,Z). The group SL(2,Z) is a group of all matrices in the forma b

c d

 a, b, c, d ∈ Z, ad− bc = 1.

Its quotient group by the centre {±1} is called the modular group Γ = PSL(2,Z). Thus,

Γ consists of the pairs of matrices

±

a b

c d

 a, b, c, d ∈ Z, ad− bc = 1.

We will omit the symbol ± and identify the matrices with their negative. So, we can

represent each element ±

a b

c d

 ∈ Γ as a Möbius tranformation T : H2 → H2 with

T (z) =
az + b

cz + d
∀z ∈ H2.

In [3], G.A. Jones, D. Singerman and K. Wicks investigated the modular group’s natural

action on Q̂ = Q ∪ {∞} and here are some of their results: Let Γ acts on Q̂ naturally,

that is for each T ∈ Γ such that T (z) = az+b
cz+d ,

T.
x

y
= T (

x

y
) =

ax+ by

cx+ dy
∀x
y
∈ Q̂.

Lemma 2.5.1. The action of Γ on Q̂ is transitive.

As for suborbital graphs for the action of Γ on Q̂, from the fact that the action is

transitive, each suborbital contains a pair (∞, un) with n > 0 and (u, n) = 1. We can

denote the suborbital by Ou,n and the corresponding suborbital by Gu,n.

Theorem 2.5.2. r
s →

x
y in Gu,n if and only if either

1. x ≡ ur (mod n), y ≡ us (mod n) and ry − sx = n or

2. x ≡ −ur (mod n), y ≡ −us (mod n) and ry − sx = −n.

Corollary 2.5.3. Gu,n is self-paired if and only if u2 ≡ −1 (mod n).
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2.6 The Farey graph

G.A. Jones, D. Singerman and K. Wicks worked on the Farey graph G1,1 with Q̂

as its vertex set. From the above corollary, it is self-paired. We call G1,1 the Farey graph

and denote it by F .

Lemma 2.6.1. Let r
s ,

x
y ∈ Q be reduced rationals. Then r

s and x
y are adjacent in F if and

only if ry − sx = ±1.

Corollary 2.6.2. No edges of F cross in H2 if we represent each edge by a hyperbolic

geodesic.

Figure 2.5: F = G1,1

Next, let Fu,n be the subgraph of Gu,n whose vertices form the block

[∞] = {x
y
∈ Q̂ : y ≡ 0(mod n)}.

Then

Theorem 2.6.3. r
s →

x
y in Fu,n if and only if either

1. x ≡ ur (mod n) and ry − sx = n or

2. x ≡ −ur (mod n) and ry − sx = −n.
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Figure 2.6: F1,2
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