CHAPTER 3

Main Results

In this chapter, we present the characterizations of left regular elements, right regu-
lar elements, intra-regular elements, completely regular elements and unit regular elements
on Fiz(X,Y). Moreover, we count the numbers of left regular, right regular and intra-
regular elements and determine the maximal congruence on Fiz(X,Y) when X is a finite

set.

3.1 The action of H(y/m) on \/mQ

H(y/m) acts on /mQ naturally by T.z = T(z) VT € H(v/m)Vz € v/mQ. Then we

have the following lemma:
Lemma 3.1.1. H(y/m) acts on \/m@ transitively if and only if m is prime or m = 1.

Proof. Let m be prime or m = 1 and (z/y)v/m € v/mQ \ {oo} with (z,y) = 1. We will
show that we can find T' € H(y/m) such that T'(c0) = (z/y)\/m. Since (z,y) = 1, there

are a,b € Z such that ax — by = 1. If m | y, we may take

D
&) = G myymz +a

as the element desired.
If m ty, since m is prime or 1, we have (mx,y) = 1. Thus, there exist a,b € Z such that

mxa —yb = 1. Now we take
b
Ty LY,
yz + /ma

and we have T'(c0) = (z/y)\/m. Since the orbit of co on H(y/m) is v/mQ, the action is
transitive.

Conversely, let m be a composite number. Then there are different primes p, ¢ such that
p | m and ¢ | m. We will show that there is no such T' € H(y/m) that T'(c0) = (p/q)v/m,
and so the action is not transitive. Suppose that such 7' € H(y/m) exists. Then either

T(z) = az + by/m

= b,c,d € Z,ad —bcm =1
c\/ﬁz—i—d’a’ e € y a cm
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or

ay/mz +b
cz +dym

In the former case, a = (cpm)/q. Since q | m, we have p | a and so p | (ad — bem) = 1

T(z) =

,a,b,c,d € 7Z,adm — bc = 1.

which is impossible. As for the latter case, ¢ = (aq)/p. Since (p,q) =1, p|a and ¢ | c.
Thus, ¢ | (adm — bc) = 1 which is also impossible. Hence, such T' doesn’t exist. The

action is not transitive. O
From here on we only consider the case where m is a prime.

Definition 3.1.1. Let (G, X) be a transitive permutation group and R an equivalence
relation on X. If, for each (z,y) € R, we have (g(z),9(y)) € R Vg € G, then R is

G-invariant. Equivalence classes of a G-invariant relation are called blocks.

In [2], a G-invariant relation R was defined on X. Let H be a subgroup of G

containing G, the stabilizer of z in G, for some x € X. Then
R={(y(x),gh(z)) : g € G,h € H}

is a G-invariant relation. In our case when G = H+y/m and X = \/m@, we have that

((r/s)v/m, (z/y)y/m) € R if and only if n | (ry — sx)/m.

Lemma 3.1.2. In (H(y/m),vmQ), if (m,n) = 1, then ((r/s)/m, (z/y)/m) € R if and
only if n | (ry — sx). There are a total of |H(y/m) : H{'(n)| blocks induced by R where
Hiy'(n) ={T € H(y/m) : ¢ = 0(mod n)}.

3.2 Suborbital graph for H(y/m) on \/mQ
H(y/m) acts on /mQ x /mQ. by
T(a,8) = (T(a), T(8)),T € H(Vm),a, f € VmQ

Recall that the orbits of this action are called suborbitals of H(y/m). We denote
the orbit containing («, 5) by O(«, 8). A suborbital graph G(«, ) is a graph with the
elements of \/ﬁ@ as its vertices and there is a directed edge from v to ¢ if (v,0) € O(a, B).
We denote the directed edge from v to § by v — ¢ or § <— ~. That is, the vertices are the
points on OH? and we represent the edges as hyperbolic geodesics in H2.

From now on, we will work on the non-trivial suborbital graphs G(«, 5) with o # .
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Since H(y/m) acts on /mQ transitively, each suborbital graph contains a pair
(00, (u/n)\/m) for some (u/n)y/m € /mQ \ {o0}. We can sec that

O(o0, (u/n)y/m) = O(co, (v/n)y/m) if and only if n | (u —v).

Therefore, we may assume that each suborbital graph is in the form O(oo, (u/n)\/m) with
u < n where (u,n) = 1.
Now we give a necessary and sufficient condition for the connection of two vertices
in G(oo, (u/n)y/m).
Theorem 3.2.1. If (m,n) = 1, then there exists an edge (r/s)y/m — (x/y)y/m in
G(o0, (u/n)\/m) if and only if ry — sx = +n and either
(i) m|s and x = ur(mod n), y = fus(mod n) or

(i) m |y and x = mur(mod n), y = £mus(mod n).

Proof. Suppose that there exists an edge (r/s)/m — (z/y)/m in G(oo, (u/n)y/m). Then
there exists T € H(y/m) such that T'(c0) = (r/s)y/m and T((u/n)y/m) = (x/y)y/m. If

b
T(z) = ZE VI bedeZoad - bem = 1.

 eym+d
Then we have a/mc = r/s and (au+bn)/(mcu+dn) = z/y. Since ad—bem = 1, (a, mc) =

1. Thus, a = ir,mc = is where i = £1. So we have m | s. On the other hand, since
a(muc + dn) —mc(au+bn) =n

and
d(au + bn) — b(muc + dn) = u,

we have (au + bn, muc + dn) = (n,u) = 1. Thus, jr = au+ bn and jy = muc + dn where

7 = £1. Hence,
x = j(au+bn) (mod n)

= jau (mod n)
= ijur (mod n)
So z = +ur(mod n). Similarly,
y = j(muc+dn) (mod n)
= jmuc (mod n)

= ijus (mod n)
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That is y = +us(mod n). Also, ry — sz = (ij)[a(muc + dn) — mc(au + bn)] = (ij)(ad —
bem)n = £n.

In the case that
ay/mz +b
c+dym

Then we have a/c = r/s and (mau + bn)/m(cu + dn) = x/y. Since (a,c) = (r,s) = 1,

T(z) = ,a,b,c,d € Z,mad — bc = 1.

a = ir,c = is where i = £1. On the other hand, since (m,n) = 1 and mad — bc = 1, we

have (m, mau + bn) = 1. We also have
ma(cu + dn) — c(mau + bn) =n

and

d(mau + bn) — b(cu + dn) = u,

we have (mau + bn,cu + dn) = (n,u) = 1. Thus, (m(cu + dn), mau + bn) = 1. Then,

jx = mau+ bn and jy = m(cu + dn) where j = +1. Hence,

x = j(mau+bn) (mod n)
= jmau (mod n)
= ijmur (mod n).

So x = +mur(mod n). Similarly,

y=jm(cu+dn) (mod n)
= jmcu (mod n)
= ijmus (mod n).

That is y = £mus(mod n). Also, ry— sz = (ij)[am(cu+dn) — c(mau-+bn)] = (ij)(mad—
bc)n = £n.

Now, suppose that m | y,ry — st = kn and x = kmur(mod n),y = kmus(mod
n) where k = £1. Since m | y and (m,n) = 1, there are integers b,d such that kz =
mur + bn,ky = mus + mdn. Taking a = r,c = s we have that mad — be = (kry —

mrus)/n — s(kx — mur)/n = k(ry — sx)/n = k?> = 1. We may take

ay/mz +b
cz +dym

so that T(c0) = (r/s)y/m and T((u/n)y/m) = (mau + bn)/(cu + dn)y/m = (x/y)y/m.
So, ((r/s)v/m,(z/y)y/m) € O(co, (u/n)y/m). That is, there exists an edge (r/s)y/m —
(z/y)v/m in G(oo, (u/n)/m).

T(z) =



If m|s,ry —sr = kn and z = kur(mod n),y = kus(mod n) where k = £1. Then there
are integers b, d such that kx = ur + bn,ky = us + dn. Taking a = r and ¢ = s/m, we

have ad — bem = 1. So, with
T(z) = az + bym
ey/mz+d

we can reach the same conclusion as the earlier case. O
We can also prove the following theorem in the same way.

Theorem 3.2.2. Suppose (m,n) = m, then there exists an edge (r/s)y/m — (z/y)/m
in G(oo, (u/n)y/m) if and only if either

(i) m|s,ry — sx = £n and x = tur(mod n), y = +us(mod n) or
(ii) ry — st = £n/m and x = tur(mod n), y = tus(mod n).

From now on we only consider the case where (m,n) = 1.
Consider the suborbital graph G (oo, /m). With hyperbolic geodesics as its edges,

we have
Lemma 3.2.3. No edges of G(co,/m) cross in H?.

Proof. Let (r1/s1)y/m — (r2/s2)y/m be an edge in G(oo,/m).Let T(z) = z + /m, then
T € H(y/m) and T(c0) = 00, T(0) = /m. So O(c0,0) = O(c0, /m)

= O((r1/s1)v/m, (r2/s2)y/m). Therefore, there is an element of H(1/m) sending the edge
(ri/s1)v/m — (ra2/s2)y/m to 0 — oo. Since the element preserves the geodesics, we may
assume that an edge (r/s)y/m — (x/y)y/m cross with 0 — oo instead of assuming that
two random edges cross in H2. But it is impossible since 7y — sz = 41 which contradicts

to the fact that either /s < 0 or z/y < 0. O

For each integer n we have an H(y/m)-invariant relation R defined earlier. Re-
call that((r/s)y/m, (z/y)y/m) € R if and only if ry — sx = 0(mod n). If there is an edge
(r/s)y/m = (z/y)y/min G(oo, (u/n)y/m), then ry—sz = +n. That is ((r/s)/m, (z/y)/m) €
R. Thus, each connected component of G(oo, (u/n)y/m) is in the same block for R.

Let F(oo, (u/n)y/m) be a subgraph of G(oo, (u/n)y/m) with the set of vertices [oo] =
{(z/y)\/m : y = 0(mod n)}. Each block is permuted transitively by H(y/m) on /mQ
and the subgraph corresponding to each block is all isomorphic. We can apply the same

techniques used on G(oo, (u/n)y/m) to F(oo, (u/n)y/m) and give this theorem:
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Theorem 3.2.4. There is an edge (r/s)\/m — (z/y)/m in F (oo, (u/n)y/m) if and only

if ry — sx = +n and either
(i) m|s and x = tur(mod n) or
(i1)) m |y and x = +mur(mod n).

Lemma 3.2.5. T : F(oco, (u/n)y/m) — F(oo, ((n — u)/n)y/m) given by T'(v) = /m —v

s an isomorphism.

Proof. We see that T' is bijective. Suppose that there is an edge (r/s)yv/m — (z/y)v/m
in F(oo, (u/n)y/m). We will show that the edge T'((r/s)y/m) — T((x/y)v/m) = ((s —
r)/s)vm — ((y — x)/y)y/m is in F(oo, ((n — u)/ny/m). Since m | s,ry — sz = +n, and

x = +ur(mod n) or m | y,ry — sz = £n, and x = £mur(mod n), we have y(s—r) — s(y —

x) = —ry+sx = £n. Since (r/s)v/m, (/y)v/m € F(oo, (u/n)y/m) , thenifm | s, y—x =
+(n—u)(s—r)(mod n), and if m | y, then y—z = +m(n—u)(s—r)(mod n). By Theorem

3.2.4, there is an edge ((s —r)/s)vm — ((y — x)/y)v/m in F(oo, ((n — u)/n)y/m). O

Again, we represent the edges of F(o0o, (u/n)/m) as hyperbolic geodesics in H2. We

have

Lemma 3.2.6. No edges of F(oco, (u/n)\/m) cross in H2.

Proof. Suppose that the edges (r/sn)y/m — (x/yn)y/m and (r'/s'n)y/m — (2'/y'n)/m
cross in H2. Then ry — sz = £1 and m | yn or m | y/. Also, r'y/ — s'a’ = £1, and m | y'n
or m | §n. Since (m,n) = 1 and m is a prime, m | s or m | y and m | ' or m | ¢/'.

Therefore, the edges (r/s)y/m — (z/y)/m and (r'/s')\/m — (2'/y’)y/m in G(oo,/m)

cross in H2. A contradiction. O

Lemma 3.2.7. There is no element of ymZ = {ky/m : k € Z} between two adjacent

vertices in F (0o, (u/n)y/m) except when one of the two vertices is co.

Proof. Suppose that there exists an edge (r/sn)y/m — (x/yn)y/m in F(oo, (u/n)\/m)

and assume that (r/sn)y/m < ky/m < (z/yn)y/m. Then (r/s)y/m < kny/m < (x/y)y/m.
Since there are edges kny/m — oo and (r/s)y/m — (x/y)y/m in G(oo, /m), they cross in

G (00, v/m) which is impossible by Lemma 3.2.3. O
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3.3 Circuits in G(oo, (u/n)y/m)

In G(o0, (u/n)\/m), every edge is a directed edge. For v,w € \/m@, we say that
v S w if there is the edge v — w or w — v in G(oo, (u/n)y/m). We call a sequence of
n different vertices vy, vo, ...,v, with v1 — v9 S -+ S v, = v1 where n > 3 a circuit of

length n. A forest is a graph containing no circuit.

Lemma 3.3.1. If n > 1, then G(oco, (u/n)y/m) contains a circuit if and only if n |

mu? + mu + 1.

Proof. Tt’s sufficient to assume that F (oo, (u/n)y/m) contains a circuit vy — ve S -+ S

vy, S v1 where every v; is different from one another. Since (vi,v2) € O(o0, (u/n)y/m),
there exist some T € H(y/m) such that T(oco,(u/n)y/m) = (vi,v2). We have T €
HP(n), Tt € HF*(n). Also, if v € [o0], then T71(v) € [00]. So, we may assume that
0 E/MSwS - Sw Swy,Soo=T o) 2T v S ST v, S
T~(vy) is a circuit in F (oo, (u/n)/m).

Since no edges of F(oco, (u/n)y/m) cross in H2, we have

u
—vm<wg < - < Wpoq < Wi
n

or

u
—\V/m > w3 > > W1 > W
n

If (u/n)y/m < ws < -+ < wg—1 < wg, then we will show that wy — oo. Suppose
that oo — wy = (r/sn)y/m. Then, we have snl — Or = n, so s = 1. Since m | 0, we
have from Theorem 3.2.4 that r = w(mod n). Since n > 1,w; = (r/n)y/m and r # u,
there is an element of \/mZ between (u/n)y/m and (r/n)/m. Because all the vertices
in the circuit lie in F (oo, (u/n)y/m), they don’t belong to /mZ. That means there is an
element of \/mZ between two adjacent vertices in F (oo, (u/n)y/m) which is impossible
by Lemma 3.2.6. So wy — oco. In a similar way, we can prove that wy = (¢/n)y/m and
1+ muc = 0(mod n).

Let c =u+t,t > 1. Then n | (mu(u+t) 4+ 1). We will show that ¢ = 1. Suppose
not, then ¢/n < 1 since otherwise there would be an integer between u/n and ¢/n. Let

—uy/mz + (mu(u+1t)+1)/n

wlz) = “nz+ (utt)yym

18



Then, ¢ € HJ*(n). Moreover, p(c0) = (u/n)y/m, and ¢((u+t)/n/m) = co. We can show
the vertices adjacent to (u/n)/m are not greater than p((u/n)y/m) = [(u+1/tm)/n]\/m.
From then, we can show using mathematical induction that the vertices adjacent to the
vertex ¢'((u/n)y/m) are less than or equal to ¢! ((u/n)y/m) for all positive integer i.
We can see that w; < ¢/~ ((u/n)y/m) for all 3 < j < k. Again, we can show by using
mathematical induction that ¢((u/n)y/m) < @ﬁ < vt /m for i > 1. Since
w = (¢/m)V/im = [(u+ H)/nlVi > [(u+ 2)/n]y7m, we have [(u+ 2)/n]Vil < wy <
©*1((u/n)y/m) < [(u+1)/n]y/m, a contradiction. Thus ¢ = 1. That is, mu? +mu+1 =
mu(u+ 1) + 1 = muc + 1. Thus, n | mu? + mu + 1.

If (u/n)y/m > ws > -+ > wp_1 > wg, then

n —

00 — u\/ﬁ‘z\/ﬁ—wgz---z\/ﬁ—wk%oo

n

with [(n —u)/n]ym < ym — w3 < -+ < /m —wy, is a circuit in F (oo, [(n — u)/n|y/m).

With the same method we reach the conclution that

mu® — mu+1=m(n —u)? +m(n —u) + 1= 0(mod n).

Hence, if the exists a circuit in G(oo, (u/n)y/m), then mu? + mu + 1 = 0(mod n).

Now let n | mu? £ mu + 1. Taking

—uy/mz + (mu? £ mu+1)/n

T(z) = —nz+ (ut1)y/m ’

then 7' € H"(n) and T'(c0) = (u/n)y/m. Since T is elliptic, T" is of finite order. We can

construct the circuit
00 = T(00) = T?(00) = -+ = TF o) = o0
in G(oo, (u/n)y/m) where k is the order of T O

Theorem 3.3.2. If (m,n) =1 and n > 1, Then G(oco, (u/n)\/m) is a forest if and only
if nd (mu? £ mu +1).
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