
CHAPTER 3

Main Results

In this chapter, we present the characterizations of left regular elements, right regu-

lar elements, intra-regular elements, completely regular elements and unit regular elements

on Fix(X,Y ). Moreover, we count the numbers of left regular, right regular and intra-

regular elements and determine the maximal congruence on Fix(X,Y ) when X is a finite

set.

3.1 The action of H(
√
m) on

√
mQ̂

H(
√
m) acts on

√
mQ̂ naturally by T.x = T (x) ∀T ∈ H(

√
m)∀x ∈

√
mQ̂. Then we

have the following lemma:

Lemma 3.1.1. H(
√
m) acts on

√
mQ̂ transitively if and only if m is prime or m = 1.

Proof. Let m be prime or m = 1 and (x/y)
√
m ∈

√
mQ̂ \ {∞} with (x, y) = 1. We will

show that we can find T ∈ H(
√
m) such that T (∞) = (x/y)

√
m. Since (x, y) = 1, there

are a, b ∈ Z such that ax− by = 1. If m | y, we may take

T (z) =
xz + b

√
m

(y/m)
√
mz + a

as the element desired.

If m - y, since m is prime or 1, we have (mx, y) = 1. Thus, there exist a, b ∈ Z such that

mxa− yb = 1. Now we take

T (z) =
x
√
mz + b

yz +
√
ma

,

and we have T (∞) = (x/y)
√
m. Since the orbit of ∞ on H(

√
m) is

√
mQ̂, the action is

transitive.

Conversely, let m be a composite number. Then there are different primes p, q such that

p | m and q | m. We will show that there is no such T ∈ H(
√
m) that T (∞) = (p/q)

√
m,

and so the action is not transitive. Suppose that such T ∈ H(
√
m) exists. Then either

T (z) =
az + b

√
m

c
√
mz + d

, a, b, c, d ∈ Z, ad− bcm = 1

12



or

T (z) =
a
√
mz + b

cz + d
√
m
, a, b, c, d ∈ Z, adm− bc = 1.

In the former case, a = (cpm)/q. Since q | m, we have p | a and so p | (ad − bcm) = 1

which is impossible. As for the latter case, c = (aq)/p. Since (p, q) = 1, p | a and q | c.

Thus, q | (adm − bc) = 1 which is also impossible. Hence, such T doesn’t exist. The

action is not transitive.

From here on we only consider the case where m is a prime.

Definition 3.1.1. Let (G,X) be a transitive permutation group and R an equivalence

relation on X. If, for each (x, y) ∈ R, we have (g(x), g(y)) ∈ R ∀g ∈ G, then R is

G-invariant. Equivalence classes of a G-invariant relation are called blocks.

In [2], a G-invariant relation R was defined on X. Let H be a subgroup of G

containing Gx, the stabilizer of x in G, for some x ∈ X. Then

R = {(g(x), gh(x)) : g ∈ G,h ∈ H}

is a G-invariant relation. In our case when G = H
√
m and X =

√
mQ̂, we have that

((r/s)
√
m, (x/y)

√
m) ∈ R if and only if n | (ry − sx)/m.

Lemma 3.1.2. In (H(
√
m),
√
mQ̂), if (m,n) = 1, then ((r/s)

√
m, (x/y)

√
m) ∈ R if and

only if n | (ry − sx). There are a total of |H(
√
m) : Hm

0 (n)| blocks induced by R where

Hm
0 (n) = {T ∈ H(

√
m) : c ≡ 0(mod n)}.

3.2 Suborbital graph for H(
√
m) on

√
mQ̂

H(
√
m) acts on

√
mQ̂×

√
mQ̂. by

T (α, β) = (T (α), T (β)), T ∈ H(
√
m), α, β ∈

√
mQ̂

Recall that the orbits of this action are called suborbitals of H(
√
m). We denote

the orbit containing (α, β) by O(α, β). A suborbital graph G(α, β) is a graph with the

elements of
√
mQ̂ as its vertices and there is a directed edge from γ to δ if (γ, δ) ∈ O(α, β).

We denote the directed edge from γ to δ by γ → δ or δ ← γ. That is, the vertices are the

points on ∂H2 and we represent the edges as hyperbolic geodesics in H2.

From now on, we will work on the non-trivial suborbital graphs G(α, β) with α ̸= β.
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Since H(
√
m) acts on

√
mQ̂ transitively, each suborbital graph contains a pair

(∞, (u/n)
√
m) for some (u/n)

√
m ∈

√
mQ̂ \ {∞}. We can see that

O(∞, (u/n)
√
m) = O(∞, (v/n)

√
m) if and only if n | (u− v).

Therefore, we may assume that each suborbital graph is in the form O(∞, (u/n)
√
m) with

u ≤ n where (u, n) = 1.

Now we give a necessary and sufficient condition for the connection of two vertices

in G(∞, (u/n)
√
m).

Theorem 3.2.1. If (m,n) = 1, then there exists an edge (r/s)
√
m → (x/y)

√
m in

G(∞, (u/n)
√
m) if and only if ry − sx = ±n and either

(i) m | s and x ≡ ±ur(mod n), y ≡ ±us(mod n) or

(ii) m | y and x ≡ ±mur(mod n), y ≡ ±mus(mod n).

Proof. Suppose that there exists an edge (r/s)
√
m→ (x/y)

√
m in G(∞, (u/n)

√
m). Then

there exists T ∈ H(
√
m) such that T (∞) = (r/s)

√
m and T ((u/n)

√
m) = (x/y)

√
m. If

T (z) =
az + b

√
m

c
√
m+ d

, a, b, c, d ∈ Z, ad− bcm = 1.

Then we have a/mc = r/s and (au+bn)/(mcu+dn) = x/y. Since ad−bcm = 1, (a,mc) =

1. Thus, a = ir,mc = is where i = ±1. So we have m | s. On the other hand, since

a(muc+ dn)−mc(au+ bn) = n

and

d(au+ bn)− b(muc+ dn) = u,

we have (au+ bn,muc+ dn) = (n, u) = 1. Thus, jx = au+ bn and jy = muc+ dn where

j = ±1. Hence,
x ≡ j(au+ bn) (mod n)

≡ jau (mod n)

≡ ijur (mod n)

So x ≡ ±ur(mod n). Similarly,

y ≡ j(muc+ dn) (mod n)

≡ jmuc (mod n)

≡ ijus (mod n)

14



That is y ≡ ±us(mod n). Also, ry − sx = (ij)[a(muc + dn) −mc(au + bn)] = (ij)(ad −

bcm)n = ±n.

In the case that

T (z) =
a
√
mz + b

c+ d
√
m

, a, b, c, d ∈ Z,mad− bc = 1.

Then we have a/c = r/s and (mau + bn)/m(cu + dn) = x/y. Since (a, c) = (r, s) = 1,

a = ir, c = is where i = ±1. On the other hand, since (m,n) = 1 and mad − bc = 1, we

have (m,mau+ bn) = 1. We also have

ma(cu+ dn)− c(mau+ bn) = n

and

d(mau+ bn)− b(cu+ dn) = u,

we have (mau + bn, cu + dn) = (n, u) = 1. Thus, (m(cu + dn),mau + bn) = 1. Then,

jx = mau+ bn and jy = m(cu+ dn) where j = ±1. Hence,

x ≡ j(mau+ bn) (mod n)

≡ jmau (mod n)

≡ ijmur (mod n).

So x ≡ ±mur(mod n). Similarly,

y ≡ jm(cu+ dn) (mod n)

≡ jmcu (mod n)

≡ ijmus (mod n).

That is y ≡ ±mus(mod n). Also, ry−sx = (ij)[am(cu+dn)−c(mau+bn)] = (ij)(mad−

bc)n = ±n.

Now, suppose that m | y, ry − sx = kn and x ≡ kmur(mod n), y ≡ kmus(mod

n) where k = ±1. Since m | y and (m,n) = 1, there are integers b, d such that kx =

mur + bn, ky = mus + mdn. Taking a = r, c = s we have that mad − bc = (kry −

mrus)/n− s(kx−mur)/n = k(ry − sx)/n = k2 = 1. We may take

T (z) =
a
√
mz + b

cz + d
√
m

so that T (∞) = (r/s)
√
m and T ((u/n)

√
m) = (mau + bn)/(cu + dn)

√
m = (x/y)

√
m.

So, ((r/s)
√
m, (x/y)

√
m) ∈ O(∞, (u/n)

√
m). That is, there exists an edge (r/s)

√
m →

(x/y)
√
m in G(∞, (u/n)

√
m).

15



If m | s, ry − sx = kn and x ≡ kur(mod n), y ≡ kus(mod n) where k = ±1. Then there

are integers b, d such that kx = ur + bn, ky = us + dn. Taking a = r and c = s/m, we

have ad− bcm = 1. So, with

T (z) =
az + b

√
m

c
√
mz + d

we can reach the same conclusion as the earlier case.

We can also prove the following theorem in the same way.

Theorem 3.2.2. Suppose (m,n) = m, then there exists an edge (r/s)
√
m → (x/y)

√
m

in G(∞, (u/n)
√
m) if and only if either

(i) m | s, ry − sx = ±n and x ≡ ±ur(mod n), y ≡ ±us(mod n) or

(ii) ry − sx = ±n/m and x ≡ ±ur(mod n), y ≡ ±us(mod n).

From now on we only consider the case where (m,n) = 1.

Consider the suborbital graph G(∞,
√
m). With hyperbolic geodesics as its edges,

we have

Lemma 3.2.3. No edges of G(∞,
√
m) cross in H2.

Proof. Let (r1/s1)
√
m → (r2/s2)

√
m be an edge in G(∞,

√
m).Let T (z) = z +

√
m, then

T ∈ H(
√
m) and T (∞) =∞, T (0) =

√
m. So O(∞, 0) = O(∞,

√
m)

= O((r1/s1)
√
m, (r2/s2)

√
m). Therefore, there is an element of H(

√
m) sending the edge

(r1/s1)
√
m → (r2/s2)

√
m to 0 → ∞. Since the element preserves the geodesics, we may

assume that an edge (r/s)
√
m → (x/y)

√
m cross with 0 → ∞ instead of assuming that

two random edges cross in H2. But it is impossible since ry − sx = ±1 which contradicts

to the fact that either r/s < 0 or x/y < 0.

For each integer n we have an H(
√
m)-invariant relation R defined earlier. Re-

call that((r/s)
√
m, (x/y)

√
m) ∈ R if and only if ry − sx ≡ 0(mod n). If there is an edge

(r/s)
√
m→ (x/y)

√
m in G(∞, (u/n)

√
m), then ry−sx = ±n. That is ((r/s)

√
m, (x/y)

√
m) ∈

R. Thus, each connected component of G(∞, (u/n)
√
m) is in the same block for R.

Let F(∞, (u/n)
√
m) be a subgraph of G(∞, (u/n)

√
m) with the set of vertices [∞] =

{(x/y)
√
m : y ≡ 0(mod n)}. Each block is permuted transitively by H(

√
m) on

√
mQ̂

and the subgraph corresponding to each block is all isomorphic. We can apply the same

techniques used on G(∞, (u/n)
√
m) to F(∞, (u/n)

√
m) and give this theorem:
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Theorem 3.2.4. There is an edge (r/s)
√
m→ (x/y)

√
m in F(∞, (u/n)

√
m) if and only

if ry − sx = ±n and either

(i) m | s and x ≡ ±ur(mod n) or

(ii) m | y and x ≡ ±mur(mod n).

Lemma 3.2.5. T : F(∞, (u/n)
√
m) → F(∞, ((n − u)/n)

√
m) given by T (v) =

√
m − v

is an isomorphism.

Proof. We see that T is bijective. Suppose that there is an edge (r/s)
√
m → (x/y)

√
m

in F(∞, (u/n)
√
m). We will show that the edge T ((r/s)

√
m) → T ((x/y)

√
m) = ((s −

r)/s)
√
m → ((y − x)/y)

√
m is in F(∞, ((n − u)/n

√
m). Since m | s, ry − sx = ±n, and

x ≡ ±ur(mod n) or m | y, ry−sx = ±n, and x ≡ ±mur(mod n), we have y(s−r)−s(y−

x) = −ry+sx = ±n. Since (r/s)
√
m, (x/y)

√
m ∈ F(∞, (u/n)

√
m) , then if m | s, y−x ≡

±(n−u)(s−r)(mod n), and if m | y, then y−x ≡ ±m(n−u)(s−r)(mod n). By Theorem

3.2.4, there is an edge ((s− r)/s)
√
m→ ((y − x)/y)

√
m in F(∞, ((n− u)/n)

√
m).

Again, we represent the edges of F(∞, (u/n)
√
m) as hyperbolic geodesics in H2. We

have

Lemma 3.2.6. No edges of F(∞, (u/n)
√
m) cross in H2.

Proof. Suppose that the edges (r/sn)
√
m → (x/yn)

√
m and (r′/s′n)

√
m → (x′/y′n)

√
m

cross in H2. Then ry − sx = ±1 and m | yn or m | y′. Also, r′y′ − s′x′ = ±1, and m | y′n

or m | s′n. Since (m,n) = 1 and m is a prime, m | s or m | y and m | s′ or m | y′.

Therefore, the edges (r/s)
√
m → (x/y)

√
m and (r′/s′)

√
m → (x′/y′)

√
m in G(∞,

√
m)

cross in H2. A contradiction.

Lemma 3.2.7. There is no element of
√
mZ = {k

√
m : k ∈ Z} between two adjacent

vertices in F(∞, (u/n)
√
m) except when one of the two vertices is ∞.

Proof. Suppose that there exists an edge (r/sn)
√
m → (x/yn)

√
m in F(∞, (u/n)

√
m)

and assume that (r/sn)
√
m < k

√
m < (x/yn)

√
m. Then (r/s)

√
m < kn

√
m < (x/y)

√
m.

Since there are edges kn
√
m→∞ and (r/s)

√
m→ (x/y)

√
m in G(∞,

√
m), they cross in

G(∞,
√
m) which is impossible by Lemma 3.2.3.
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3.3 Circuits in G(∞, (u/n)
√
m)

In G(∞, (u/n)
√
m), every edge is a directed edge. For v, w ∈

√
mQ̂, we say that

v � w if there is the edge v → w or w → v in G(∞, (u/n)
√
m). We call a sequence of

n different vertices v1, v2, ..., vn with v1 → v2 � · · · � vn � v1 where n ≥ 3 a circuit of

length n. A forest is a graph containing no circuit.

Lemma 3.3.1. If n > 1, then G(∞, (u/n)
√
m) contains a circuit if and only if n |

mu2 ±mu+ 1.

Proof. It’s sufficient to assume that F(∞, (u/n)
√
m) contains a circuit v1 → v2 � · · ·�

vn � v1 where every vj is different from one another. Since (v1, v2) ∈ O(∞, (u/n)
√
m),

there exist some T ∈ H(
√
m) such that T (∞, (u/n)

√
m) = (v1, v2). We have T ∈

Hm
0 (n), T−1 ∈ Hm

0 (n). Also, if v ∈ [∞], then T−1(v) ∈ [∞]. So, we may assume that

∞ → u
n

√
m � w3 � · · · � wk−1 � wk � ∞ = T−1(v1) → T−1(v2) � · · · � T−1(vn) �

T−1(v1) is a circuit in F(∞, (u/n)
√
m).

Since no edges of F(∞, (u/n)
√
m) cross in H2, we have

u

n

√
m < w3 < · · · < wk−1 < wk

or

u

n

√
m > w3 > · · · > wk−1 > wk.

If (u/n)
√
m < w3 < · · · < wk−1 < wk, then we will show that wk → ∞. Suppose

that ∞ → wk = (r/sn)
√
m. Then, we have sn1 − 0r = n, so s = 1. Since m | 0, we

have from Theorem 3.2.4 that r ≡ u(mod n). Since n > 1, wk = (r/n)
√
m and r ̸= u,

there is an element of
√
mZ between (u/n)

√
m and (r/n)

√
m. Because all the vertices

in the circuit lie in F(∞, (u/n)
√
m), they don’t belong to

√
mZ. That means there is an

element of
√
mZ between two adjacent vertices in F(∞, (u/n)

√
m) which is impossible

by Lemma 3.2.6. So wk → ∞. In a similar way, we can prove that wk = (c/n)
√
m and

1 +muc ≡ 0(mod n).

Let c = u + t, t > 1. Then n | (mu(u + t) + 1). We will show that t = 1. Suppose

not, then c/n < 1 since otherwise there would be an integer between u/n and c/n. Let

φ(z) =
−u
√
mz + (mu(u+ t) + 1)/n

−nz + (u+ t)
√
m

.
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Then, φ ∈ Hm
0 (n). Moreover, φ(∞) = (u/n)

√
m, and φ((u+t)/n

√
m) =∞. We can show

the vertices adjacent to (u/n)
√
m are not greater than φ((u/n)

√
m) = [(u+1/tm)/n]

√
m.

From then, we can show using mathematical induction that the vertices adjacent to the

vertex φi((u/n)
√
m) are less than or equal to φi+1((u/n)

√
m) for all positive integer i.

We can see that wj 6 φj−1((u/n)
√
m) for all 3 6 j 6 k. Again, we can show by using

mathematical induction that φi((u/n)
√
m) <

u+ 1
t−1

n

√
m < u+1

n

√
m for i ≥ 1. Since

wk = (c/n)
√
m = [(u + t)/n]

√
m > [(u + 2)/n]

√
m, we have [(u + 2)/n]

√
m 6 wk 6

φk−1((u/n)
√
m) < [(u+1)/n]

√
m, a contradiction. Thus t = 1. That is, mu2+mu+1 =

mu(u+ 1) + 1 = muc+ 1. Thus, n | mu2 +mu+ 1.

If (u/n)
√
m > w3 > · · · > wk−1 > wk, then

∞→ n− u

n

√
m �

√
m− w3 � · · ·�

√
m− wk →∞

with [(n− u)/n]
√
m <

√
m− w3 < · · · <

√
m − wk is a circuit in F(∞, [(n − u)/n]

√
m).

With the same method we reach the conclution that

mu2 −mu+ 1 ≡ m(n− u)2 +m(n− u) + 1 ≡ 0(mod n).

Hence, if the exists a circuit in G(∞, (u/n)
√
m), then mu2 ±mu+ 1 ≡ 0(mod n).

Now let n | mu2 ±mu+ 1. Taking

T (z) =
−u
√
mz + (mu2 ±mu+ 1)/n

−nz + (u± 1)
√
m

,

then T ∈ Hm
0 (n) and T (∞) = (u/n)

√
m. Since T is elliptic, T is of finite order. We can

construct the circuit

∞→ T (∞)→ T 2(∞)→ · · · → T k−1(∞)→∞

in G(∞, (u/n)
√
m) where k is the order of T .

Theorem 3.3.2. If (m,n) = 1 and n > 1, Then G(∞, (u/n)
√
m) is a forest if and only

if n - (mu2 ±mu+ 1).
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