CHAPTER 2

Preliminaries

In this chapter, the underlying concepts of stability, important definitions, lemmas, propositions and results, are provided which will be used in later chapters.

2.1 Types of Matrix

Let $M \in \mathbb{R}^{n \times n}$, then we have the following definitions.

Definition 2.1.1 Matrix M is semi-positive definite if $x^T M x \geq 0$ for all $x \in \mathbb{R}^n$.

Definition 2.1.2 Matrix M is positive definite (M > 0) if for all $x \in \mathbb{R}^n$, $x \neq 0$.

Definition 2.1.3 Matrix M is semi-negative definite $(M \leq 0)$ if for all $x \in \mathbb{R}^n$.

Definition 2.1.4 Matrix M is negative definite (M < 0) if for all $x \in \mathbb{R}^n$, $x \neq 0$.

2.2 Notations

We give some important notations will be used throughout this thesis:

 \mathcal{R}^+ denotes the set of all non-negative real numbers;

 \mathbb{R}^n denotes the *n*-dimensional Euclidean space;

 $M>0\ (M\geq 0)$ denotes the square symmetric, M is positive (semi-) definite matrix;

 $M<0~(M\leq0)$ denotes the square symmetric, M is negative (semi-) definite matrix;

 $M>N\ (M\geq N)$ denotes the M-N matrix is square symmetric positive (semi-) definite matrix;

 $M < N \ (M \le N)$ denotes the M-N matrix is square symmetric negative (semi-) definite matrix;

 $\mathcal{R}^{n\times m}$ denotes the space of all $(n\times m)$ real matrices;

 A^T denotes the transpose of the vector/matrix A;

 A^{-1} denotes the inverse of a non-singular matrix A;

I denotes the identity matrix;

 $\lambda(A)$ denotes the set of all eigenvalues of A;

 $\lambda_{\max}(A) = \max \left\{ \operatorname{Re} \lambda : \lambda \in \lambda(A) \right\},$ $\lambda_{\min}(A) = \min \left\{ \operatorname{Re} \lambda : \lambda \in \lambda(A) \right\};$ $\langle x, y \rangle \text{ or } x^{\top}y - \text{ the scalar product of two vector } x, y ;$ $\|x\| \text{ denotes the Euclidean vector norm of } x;$ $L_2([0, t], \mathcal{R}^m) \text{ denotes the set of all the } \mathcal{R}^m \text{-valued square integrable functions on } [0, t];$ $C([0, t], \mathcal{R}^n) \text{ denotes the set of all } \mathcal{R}^n \text{-valued continuous functions on } [0, t];$ $C_h = C([-h, 0], \mathcal{R}^n), h > 0 \text{ denotes the Banach space of continuous functions;}$ $\max_{t \in \{x(t+s) : s \in [-h, 0]\}, \|x_t\| = \sup_{s \in [-h, 0]} \|x(t+s)\|;$ $\|x_t\| \in C_h \text{ defined } x_t = x(t+\theta), -h \leq \theta \leq 0 \text{ and } \|x_t\|_{C_h} = \sup_{-h \leq \theta \leq 0} \|x(t+\theta)\|.$

2.3 Stability of Ordinary Differential Equation

Consider a dynamical system described by

$$\dot{x}(t) = f(t, x(t)) \tag{2.1}$$

where $x \in \mathbb{R}^n$ and f is a vector having components $f_i(t, x_1, ..., x_n)$, i = 1, 2, ..., n. We shall assume that the f_i are continuous and satisfy standard conditions, such as having continuous first partial derivatives so that the solution of (2.1) exists and is unique for the given initial conditions. If f_i do not depend explicitly on t, (2.1) is called autonomous (otherwise, nonautonomous). If f(t,c) = 0 for all t, where c is some constant vector, then it follows at once from (2.1) that if $x(t_0) = c$ then x(t) = c for all $t \geq t_0$. Thus solutions starting at c remain there, and c is said to be an equilibrium or critical point. Clearly, by introducing new variables $x_i = x_i - c_i$ we can arrange for the equilibrium point to be transferred to the origin; we shall assume that this has been done for any equilibrium point under consideration (there may well be several for a given system (2.1) so that we then have f(t,0) = 0, $t \geq t_0$.

2.3.1 Autonomous systems

Consider the autonomous system

$$\dot{x} = f(x) \tag{2.2}$$

where $f: D \to \mathbb{R}^n$ is locally Lipschitz map from a domain $D \subset \mathbb{R}^n$ into \mathbb{R}^n . We shall always assume that f(x) satisfies f(0) = 0, and study stability of the origin x = 0.

Definition 2.3.1 [20] The equilibrium point x = 0 of (2.2) is

(i) stable if for each $\epsilon > 0$, there is $\delta = \delta(\epsilon) > 0$ such that

$$||x(0)|| < \delta \Rightarrow ||x|| < \epsilon, \quad \forall t \ge 0,$$

- (ii) **unstable** if it is not stable, that is, there exists $\varepsilon > 0$ such that for every $\delta > 0$ there exist an x(0) with $||x(0)|| < \delta$ so that $||x(t_1)|| \ge \varepsilon$ for some $t_1 > 0$. If this holds for every x(0) in $||x(0)|| < \delta$ the equilibrium is completely unstable.
- (iii) asymptotically stable if it is stable and δ can be chosen such that

$$||x(0)|| < \delta \Rightarrow \lim_{t \to \infty} x(t) = 0.$$

Definition 2.3.2 [20] A function $V(\cdot): \mathbb{R}^n \to \mathbb{R}$ is said to be Lyapunov-Krasovskii functional if it satisfies the following:

- 1. V(x) and all its partial derivatives $\frac{\partial V}{\partial x_i}$ are continuous.
- 2. V(x) is positive definite, i.e. V(0) = 0 and V(x) > 0 for $x \neq 0$ in some neighborhood $||x|| \leq k$ of the origin.
 - 3. The derivative of V with respect to (2.2), namely

$$\dot{V} = \frac{\partial V}{\partial x_1} \dot{x}_1 + \frac{\partial V}{\partial x_2} \dot{x}_2 + \dots + \frac{\partial V}{\partial x_n} \dot{x}_n
= \frac{\partial V}{\partial x_1} f_1 + \frac{\partial V}{\partial x_2} f_2 + \dots + \frac{\partial V}{\partial x_n} f_n$$
(2.3)

is negative semidefinite i.e. $\dot{V}(0) = 0$, and for all x satisfy $||x|| \leq k$, $\dot{V}(x) \leq 0$.

Theorem 2.3.3 [20] Let x = 0 be an equilibrium point for (2.2) and $D \subset \mathbb{R}^n$ be a domain containing x = 0. Let $V(x) : D \to \mathbb{R}$ be a continuously differentiable function, such that

$$V(0) = 0 \quad and \quad V(x) > 0 \quad in \quad D - \{0\},$$

$$\dot{V}(x) \le 0 \quad in \quad D.$$

Then, x = 0 is stable. Moreover, if

$$\dot{V}(x) < 0 \quad in \quad D - \{0\},$$

then x = 0 is asymptotically stable.

Theorem 2.3.4 [20] Let x = 0 be an equilibrium point for (2.2). Let V(x): $\mathbb{R}^n \to \mathbb{R}$ be a continuously differentiable function, such that

$$\begin{split} V(0) &= 0 \quad and \quad V(x) > 0, \quad \forall x \neq 0, \\ \|x\| &\to \infty \Rightarrow V(x) \to \infty, \\ \dot{V}(x) &< 0, \quad \forall x \neq 0, \end{split}$$

then x = 0 is globally asymptotically stable.

Theorem 2.3.5 [20] Let x = 0 be an equilibrium point for (2.2) and $f: D \to \mathbb{R}^n$ is continuously differentiable and D is a neighborhood of the origin. Let

$$A = \frac{\partial f}{\partial x}(x) \mid_{x=0} .$$

Then,

- 1. The origin is asymptotically stable if $Re(\lambda_i) < 0$ for all eigenvalues of A.
- 2. The origin is unstable if $Re(\lambda_i) > 0$ for one or more of the eigenvalues of A.

2.3.2 Non-autonomous systems

Consider the non-autonomous system

$$\dot{x}(t) = f(t, x(t)), \quad x(t_0) = x_0, \quad x(t) \in \mathbb{R}^n, \quad t \in \mathbb{R}^+,$$
 (2.4)

where $f: \mathcal{R}^+ \times D \to \mathcal{R}^n$ is piecewise continuous in t and locally Lipschitz in x on $\mathcal{R}^+ \times \mathcal{R}^n$ and $D \subset \mathcal{R}^n$ is domain that contains the origin x = 0. The origin is an equilibrium point for (2.4) if

$$f(t,0) = 0, \quad \forall t \ge t_0.$$

Definition 2.3.6 [20] The equilibrium point x = 0 of the system (2.4) is

(i) stable if, for each $\epsilon > 0$, there is $\delta = \delta(\epsilon, t_0) > 0$ such that

$$||x(t_0)|| < \delta \Rightarrow ||x(t)|| < \epsilon, \quad \forall t \ge t_0 \ge 0, \tag{2.5}$$

(ii) uniformly stable if, for each $\epsilon > 0$, there is $\delta = \delta(\epsilon) > 0$, independent of t_0 , such that (2.5) is satisfied,

- (iii) unstable if not stable,
- (iv) asymptotically stable if it is stable and there is $c = c(t_0) > 0$ such that $x(t) \to 0$ as $t \to \infty$, for all $||x(t_0)|| < c$,
- (v) uniformly asymptotically stable if it is uniformly stable and there is c > 0, independent of t_0 , such that for all $||x(t_0)|| < c$, $x(t) \to 0$ as $t \to \infty$, uniformly in t_0 , for each $\epsilon > 0$, there is $T = T(\epsilon) > 0$ such that

$$||x(t)|| < \epsilon, \quad \forall t \ge t_0 + T(\epsilon), \quad \forall ||x(t_0)| < c,$$

(vi) globally uniformly asymptotically stable if it is uniformly stable and, for each pair of positive numbers ϵ and c, there is $T = T(\epsilon, c) > 0$ such that

$$||x(t)|| < \epsilon, \quad \forall t \ge t_0 + T(\epsilon, c), \quad \forall ||x(t_0)| < c.$$

Definition 2.3.7 [20] The equilibrium point x = 0 of the system (2.4) is exponentially stable if there exist three positive real constants ϵ , K and λ such that

$$||x(t)|| \le K||x_0||e^{-\lambda(t-t_0)}, \quad \forall ||x_0|| < \epsilon, \quad t \ge t_0;$$

The largest constant λ which may be utilized in above inequality is called the rate of convergence.

Definition 2.3.8 [20] The function W(x) is said to be positive (negative) definite if W(x) > 0(-W(x) > 0) and W(x) = 0 if and only if x = 0. The function W(x) is said to be positive (negative) semi-definite if $W(x) \ge 0(-W(x) \ge 0)$.

Definition 2.3.9 [20] The function W(x) is said to be radially unbounded, positive definite if W(x) is positive definite and $W(x) \to \infty$ as $||x|| \to \infty$.

Let B_{ϵ} be a ball of size ϵ around the origin,

$$B_{\epsilon} = \{ x \in \mathcal{R}^n : ||x|| < \epsilon \}.$$

Definition 2.3.10 [38] A function $V(\cdot): \mathbb{R}^+ \times \mathbb{R}^n \to \mathbb{R}$ is said to be Lyapuno-Krasovskii functional if it satisfies the following:

(i) V(t,x) and all its partial derivatives $\frac{\partial V}{\partial t}$, $\frac{\partial V}{\partial x_i}$ are continuous for all i=1,2,3,...,n.

- (ii) V(t,x) is positive definite function, i.e., V(0) = 0 and V(t,x) > 0, $x \neq 0$, $\forall x \in B_{\epsilon}$.
- (iii) The derivative of V(t,x) with respect to system (2.4), namely

$$\dot{V}(t,x) = \frac{\partial V}{\partial t} + \frac{\partial V}{\partial x_1} \dot{x}_1 + \frac{\partial V}{\partial x_2} \dot{x}_2 + \dots + \frac{\partial V}{\partial x_n} \dot{x}_n
= \frac{\partial V}{\partial t} + \frac{\partial V}{\partial x_1} f_1 + \frac{\partial V}{\partial x_2} f_2 + \dots + \frac{\partial V}{\partial x_n} f_n.$$
(2.6)

 $\dot{V}(t,x)$ is negative semi-definite i.e., $\dot{V}(t,0)=0$ and $\forall x\in B_{\epsilon}, \dot{V}(t,x)\leq 0$.

Theorem 2.3.11 [20] Let x = 0 be an equilibrium point for (2.4) and $D \subset \mathbb{R}^n$ be a domain containing x = 0. Let $V : \mathcal{R}^+ \times D \to \mathcal{R}$ be a continuously differentiable function, such that

$$W_1(x) \le V(t, x) \le W_2(x),$$
 (2.7)

$$W_1(x) \le V(t, x) \le W_2(x),$$

$$\frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} f(t, x) \le -W_3(x)$$
(2.7)

 $\forall t \geq t_0 \geq 0, \ \forall x \in D \ \text{where} \ W_1(x), \ W_2(x) \ \text{and} \ W_3(x) \ \text{are continuous positive}$ definite functions on D. Then, x = 0 is uniformly asymptotically stable.

Corollary 2.3.12 [20] Suppose that all the assumptions of Theorem 2.3.11 are satisfied globally (for all $x \in \mathbb{R}^n$) and $W_1(x)$ is radially unbounded. Then, x = 0is globally uniformly asymptotically stable.

Corollary 2.3.13 [20] Suppose all the assumptions of Theorem 2.3.11 are satisfied with

$$W_1(x) \ge k_1 ||x||^c$$
, $W_2(x) \le k_2 ||x||^c$, $W_3(x) \ge k_3 ||x||^c$

for some positive constants k_1 , k_2 , k_3 and c. Then, x = 0 is exponentially stable. Moreover, if the assumptions hold globally, then, x = 0 is globally exponentially stable. stable.

Theorem 2.3.14 [20] Let x = 0 be an equilibrium point for the nonlinear system

$$\dot{x}(t) = f(t, x)$$

where $f:[0,\infty)\times D\to \mathcal{R}^n$ is continuously differentiable, $D=\{x\in \mathcal{R}^n|\|x\|_2<$ r}, and Jacobian matrix $\left[\frac{\partial f}{\partial x}\right]$ is bounded and Lipschitz on D, uniformly in t. Let

$$A(t) = \frac{\partial f}{\partial x}(t, x)|_{x=0}.$$

Then, the origin is an exponentially stable equilibrium point for nonlinear system if and only if it is an exponentially stable equilibrium point for linear system

$$\dot{x}(t) = A(t).$$

2.4 Time Delays System

We consider the system with time-delay of the form [11]

$$\dot{x}(t) = f(t, x(t-h)), \quad \forall t \ge 0,
x(t_0 + \theta) = \phi(\theta), \quad \forall \theta \in [-h, 0],$$
(2.9)

where $x(t) \in \mathbb{R}^n$ is the state variable, $h \in \mathbb{R}^+$ is the delay and $f: \mathbb{R}^+ \times C[-h, 0] \to \mathbb{R}^n$. $\phi(t)$ is a continuous vector-valued initial condition. We assume f(t, 0) = 0 so that system (2.9) admits the trivial solution. The following Theorem guarantee for an existence and uniqueness solution of (2.9) through (t_0, ϕ) .

Theorem 2.4.1 [11] (uniqueness) Suppose that $\Omega \subseteq \mathcal{R} \times C$ is an open set, $f: \Omega \to \mathcal{R}^n$ is continuous, and $f(t,\phi)$ is Lipschitzian in ϕ in each compact set in Ω . That is, for each given compact set $\Omega_0 \subset \Omega$, there exists a constant L, such that

$$|| f(t, \phi_1) - f(t, \phi_2) || \le L || \phi_1 - \phi_2 ||$$
 (2.10)

for any $(t, \phi_1) \in \Omega_0$ and $(t, \phi_2) \in \Omega_0$. If $(t_0, \phi) \in \Omega$, then there exists an existence and uniqueness solution of (2.9) through (t_0, ϕ) .

Definition 2.4.2 For the system described by (2.9), the trivial solution x(t) = 0 is said to be

(i) stable if for any $t_0 \in \mathcal{R}$ and any $\epsilon > 0$, there exists a $\delta = \delta(t_0, \epsilon) > 0$ such that

$$||x_{t_0}||_c < \delta \Rightarrow ||x(t)|| < \epsilon, \quad \forall t \ge t_0,$$

- (ii) uniformly stable if it is stable and $\delta(t_0, \epsilon)$ can be chosen independently of t_0 ,
- (iii) asymptotically stable if it is stable, and for any $t_0 \in \mathcal{R}$ and any $\epsilon > 0$ there exists a $\delta_a = \delta_a(t_0, \epsilon) > 0$ such that

$$||x_{t_0}||_c < \delta_a \Rightarrow \lim_{t \to \infty} = 0,$$

(iv) uniformly asymptotically stable if it is uniformly stable and there exists a $\delta_a > 0$ such that for any $\eta > 0$, there exists a $T = T(\delta_a, \eta)$, such that

$$||x_{t_0}||_c < \delta_a \Rightarrow ||x(t)|| < \eta, \quad \forall t \ge t_0 + T,$$

(v) **exponentially stable** if there exists constants $\alpha > 0$ and $\beta > 0$ such that

$$\| x(t) \| \le \beta \sup_{-h < \theta < 0} \| x(\theta) \| e^{-\alpha t},$$
 (2.11)

then the trivial solution of (2.9) is globally exponentially stable, and α is called the exponential convergence rate.

Definition 2.4.3 [20] A functional $V: \mathbb{R}^+ \times C \to \mathbb{R}^+$ is called a Lyapunov-Krasovskii functional for the system (2.9) if it has the following properties. There exist $\lambda_1, \lambda_2, \lambda_3 > 0$ such that

(i)
$$\lambda_1 ||x(t)||^2 \le V(t, x_t) \le \lambda_2 ||x_t||^2$$
,

(ii)
$$\dot{V}(t, x_t) \le -\lambda_3 ||x(t)||^2$$
.

Lemma 2.4.4 [11] Consider the non-autonomous time-delay system (2.9). If there exist a Lyapunov-Krasovskii functional $V(t, x_t)$ and $\lambda_1, \lambda_2 > 0$ such that for every solution x(t) of the system, the following conditions hold,

(i)
$$\lambda_1 ||x(t)||^2 \le V(t, x_t) \le \lambda_2 ||x_t||^2$$
,

(ii)
$$\dot{V}(t, x_t) \leq 0$$
,

then the solution of the system is bounded, i.e., there exists N > 0 such that $||x(t,\phi)|| \le N||\phi||, \forall t \ge 0.$

Theorem 2.4.5 [11] Suppose that $u, v, w : \mathcal{R}^+ \to \mathcal{R}^+$ are continuous nondecreasing functions, where additionally u(s) and v(s) are positive for s > 0, and u(0) = v(0) = 0. If there exist a continuous differentiable functional $V : \mathcal{R}^+ \times C \to \mathcal{R}$ such that

$$u(\|\phi(0)\|) \le V(t, x(t)) \le v(\|\phi\|),$$

the equilibrium point $x^* = 0$ of system (2.9) is

(i) uniformly stable if

$$\dot{V}(t, x(t)) \le -w(\|\phi(0)\|),$$

(ii) asymptotically stable if

$$\dot{V}(t, x(t)) \le -w(\|\phi(0)\|),$$

where w(0) = 0,

(iii) uniformly asymptotically stable if

$$\dot{V}(t, x(t)) \le -w(\|\phi(0)\|),$$

where w(s) > 0 for s > 0,

(iv) globally uniformly asymptotically stable if

$$\dot{V}(t, x(t)) \le -w(\|\phi(0)\|),$$

and u(s) is radially unbounded.

Lemma 2.4.6 [11] Consider the autonomous time-delay system (2.9). If there exist a Lyapunov-Krasovskii functional $V(x_t)$ and $\lambda_1, \lambda_2, \lambda_3 > 0$ such that for every solution x(t) of the system, the following conditions hold,

(i)
$$\lambda_1 ||x(t)||^2 \le V(x_t) \le \lambda_2 ||x_t||^2$$
,

(ii)
$$\dot{V}(x_t) \le -\lambda_3 ||x(t)||^2$$
,

then the solution of the system (2.9) is exponentially stable.

Definition 2.4.7 suppose $f: \mathcal{R}^+ \times C_h \to \mathcal{R}^n, D: \mathcal{R}^+ \times C_h \to \mathcal{R}^n$ are given continuous functions. The relation

$$\frac{d}{dt}D(t,x_t) = f(t,x_t),$$

is called the neutral differential equation. The function D will be called the operator for the neutral differential equation.

Definition 2.4.8 The operator D is said to be stable if solution $\bar{x} = 0$ of the homogeneous difference equation $D(t, x_t) = 0$, $t \ge 0$ is stable where $D: \mathcal{R}^n \times C_h \to \mathcal{R}^n$.

2.5 Preliminary results

Lemma 2.5.1 [11] (Schur Complement Lemma) Given constant symmetric matrices Q, S

and $R \in \mathbb{R}^{n \times n}$ where R(x) < 0, $Q(x) = Q^{T}(x)$ and $R(x) = R^{T}(x)$ we have

$$\begin{bmatrix} Q(x) & S(x) \\ S^{T}(x) & R(x) \end{bmatrix} < 0 \Leftrightarrow Q(x) - S(x)R^{-1}(x)S^{T}(x) < 0.$$

Lemma 2.5.2 [11] Suppose $\lambda_{min}(Q)$ is minimum eigenvalue of matrix Q and $\lambda_{max}(Q)$ is maximum eigenvalue of matrix Q. The following inequalities hold:

$$\lambda_{min}(Q)x^Tx \le x^TQx \le \lambda_{max}(Q)x^Tx,$$

for symmetric matrix $Q \in \mathbb{R}^{n \times n}$ for all $x \in \mathbb{R}^n$.

Lemma 2.5.3 [31] Let U, V, W and M be real matrices of appropriate dimensions with M satisfying $M = M^T$, then $M + UVW + W^TV^TU^T < 0$ for all $V^TV \leq I$ if and only if there exists a scalar $\epsilon > 0$ such that $M + \epsilon^{-1}UU^T + \epsilon W^TW < 0$.

Lemma 2.5.4 [11] There exists a symmetric matrix X such that

$$\begin{pmatrix} P_1 - LXL^T & Q_1 \\ Q_1^T & R_1 \end{pmatrix} < 0 \qquad and$$

$$\begin{pmatrix} P_2 + X & Q_2 \\ Q_2^T & R_2 \end{pmatrix} < 0$$

if and only if

$$\begin{pmatrix} P_1 + LP_2L^T & Q_1 & LQ_2 \\ Q_1^T & R_1 & 0 \\ Q_2^TL^T & 0 & R_2 \end{pmatrix} < 0.$$

Lemma 2.5.5 (Cauchy inequality) For any symmetric positive definite matrix $N \in M^{n \times n}$ and $x, y \in \mathbb{R}^n$ we have

$$\pm 2x^T y \le x^T N x + y^T N^{-1} y.$$

Lemma 2.5.6 [11] (Jensen's inequality) For any symmetric positive definite matrix M > 0, scalar $\gamma > 0$ and vector function $\omega : [0, \gamma] \to \mathbb{R}^n$ such that the integrations concerned are well defined, the following inequality holds

$$\left(\int_0^\gamma \omega(s) \, ds\right)^T M\left(\int_0^\gamma \omega(s) \, ds\right) \le \gamma \left(\int_0^\gamma \omega^T(s) M\omega(s) \, ds\right).$$

Lemma 2.5.7 [58] (Wirtinger inequality) For a given matrix R > 0, the following inequality holds for all continuously differentiable function ω in $[a,b] \to \mathbb{R}^n$:

$$\int_{a}^{b} \dot{\omega}^{T}(u)R\dot{\omega}(u)du \geq \frac{1}{b-a}(\omega(b)-\omega(a))^{T}R \qquad (2.12)$$

$$\times(\omega(b)-\omega(a))+\frac{3}{b-a}\tilde{\Omega}^{T}R\tilde{\Omega}$$

where $\tilde{\Omega} = \omega(b) + \omega(a) - \frac{2}{b-a} \int_a^b \omega(u) du$.

Lemma 2.5.8 [68] Let h(t) be a continuous function satisfying $0 \le h_1 \le h(t) \le h_2$. For any $n \times n$ real matrix $R_1 > 0$ and a vector $\dot{x} : [-h_2, 0] \to \mathcal{R}^n$ such that the integration concerned below is well defined, the following inequality holds for any $2n \times 2n$ real matrices S_1 satisfying $\begin{bmatrix} \tilde{R}_1 & S_1 \\ S_1^T & \tilde{R}_1 \end{bmatrix} \ge 0$

$$-(h_{2}-h_{1})\int_{t-h_{2}}^{t-h_{1}}\dot{x}^{T}(s)R_{1}\dot{x}(s)ds$$

$$\leq 2\varphi_{11}^{T}S\varphi_{21}-\varphi_{11}^{T}\tilde{R}_{1}\varphi_{11}-\varphi_{21}^{T}\tilde{R}_{1}\varphi_{21},$$
(2.13)

where $\tilde{R}_1 \triangleq \text{diag}\{R_1, 3R_1\}$ and

$$\varphi_{11} \triangleq \begin{bmatrix} x(t-h(t)) - x(t-h_2) \\ x(t-h(t)) + x(t-h_2) - 2\omega_1(t) \end{bmatrix},$$

$$\varphi_{21} \triangleq \begin{bmatrix} x(t-h_1) - x(t-h(t)) \\ x(t-h_1) + x(t-h(t)) - 2\omega_2(t) \end{bmatrix},$$

where

$$\omega_1 \triangleq \frac{1}{h_2 - h(t)} \int_{t - h_2}^{t - h(t)} x(s) ds,$$

$$\omega_2 \triangleq \frac{1}{h(t) - h_1} \int_{t - h(t)}^{t - h_1} x(s) ds. \tag{2.14}$$

Lemma 2.5.9 [11] There exists a symmetric matrix X such that

$$\begin{bmatrix} P_1 - LXL^T & Q_1 \\ Q_1^T & R_1 \end{bmatrix} < 0 \quad and \quad \begin{bmatrix} P_2 + X & Q_2 \\ Q_2^T & R_2 \end{bmatrix} < 0$$

if and only if

$$\begin{bmatrix} P_1 + LP_2L^T & Q_1 & LQ_2 \\ Q_1^T & R_1 & 0 \\ Q_2^TL^T & 0 & R_2 \end{bmatrix} < 0.$$

Lemma 2.5.10 [67] For any constant symmetric matrix $M \in \mathcal{R}^{n \times n}$, $M = M^T > 0$, $0 \le h_m \le h(t) \le h_M$, $t \ge 0$, and any differentiable vector function $x(t) \in \mathcal{R}^n$, we have

$$(a) \left[\int_{t-h_{m}}^{t} \dot{x}(s)ds \right]^{T} M \left[\int_{t-h_{m}}^{t} \dot{x}(s)ds \right] \leq h_{m} \int_{t-h_{m}}^{t} \dot{x}^{T}(s)M\dot{x}(s)ds,$$

$$(b) \left[\int_{t-h(t)}^{t-h_{m}} \dot{x}(s)ds \right]^{T} M \left[\int_{t-h(t)}^{t-h_{m}} \dot{x}(s)ds \right] \leq (h(t) - h_{m}) \int_{t-h(t)}^{t-h_{m}} \dot{x}^{T}(s)M\dot{x}(s)ds$$

$$\leq (h_{M} - h_{m}) \int_{t-h(t)}^{t-h_{m}} \dot{x}^{T}(s)M\dot{x}(s)ds.$$

Lemma 2.5.11 [67] Given matrices $Q = Q^T$, H, E and $R = R^T > 0$ with appropriate dimensions. Then

$$Q + HFE + E^T F^T H^T < 0$$

for all F satisfying $F^TF \leq R$, if and only if there exists an $\epsilon > 0$ such that

$$Q + \epsilon H H^T + \epsilon^{-1} E^T R E < 0.$$

Lemma 2.5.12 [72] The following inequalities are true:

$$0 \le \int_0^{x_i(t)} (f_i(s) - r_i^-(s)) ds \le (f_i(x_i(t)) - r_i^- x_i(t)) x_i(t)$$
$$0 \le \int_0^{x_i(t)} (r_i^+(s) - f_i(s)) ds \le (r_i^+ x_i(t) - f_i(x_i(t))) x_i(t).$$

Lemma 2.5.13 [68] Let ξ_0, ξ_1 and ξ_2 be $m \times m$ real symmetric matrices and a continuous function h satisfy $h_1 \leq h \leq h_2$, where h_1 and h_2 are constants satisfying $0 \leq h_1 \leq h_2$. If $\xi_0 \geq 0$, then

$$h^{2}\xi_{0} + h\xi_{1} + \xi_{2} < 0 (\leq 0), \ \forall h \in [h_{1}, h_{2}],$$

$$\iff h_{i}^{2}\xi_{0} + h_{i}\xi_{1} + \xi_{2} < 0 (\leq 0), \ (i = 1, 2),$$
(2.15)

or

$$h^{2}\xi_{0} + h\xi_{1} + \xi_{2} > 0(\geq 0), \ \forall h \in [h_{1}, h_{2}],$$

$$\iff h_{i}^{2}\xi_{0} + h_{i}\xi_{1} + \xi_{2} > 0(\geq 0), \ (i = 1, 2).$$
(2.16)

Lemma 2.5.14 [11] A symmetric matrix is positive semidefinite (definite) matrix if all of its eigenvalues are non-negative (positive).

Lemma 2.5.15 [11] A symmetric matrix is negative semidefinite (definite) matrix if all of its eigenvalues are non-positive (negative).