CHAPTER 2

Preliminaries

In this chapter, the underlying concepts of stability, important defini-
tions, lemmas, propositions and results, are provided which will be used in later

chapters.

2.1 Types of Matrix

Let M € R™ ™, then we have the following definitions.

Definition 2.1.1 Matrix M is semi-positive definite if 27 Mz > 0 for all z € R™.
Definition 2.1.2 Matrix M is positive definite (M > 0) if for all x € R"™, = # 0.
Definition 2.1.3 Matrix M is semi-negative definite (M < 0) if for all z € R™.
Definition 2.1.4 Matrix M is negative definite (M < 0) if for all z € R", x # 0.

2.2 Notations

We give some important notations will be used throughout this thesis:

R denotes the set of all non-negative real numbers;

R™ denotes the n-dimensional Euclidean space;

M > 0 (M > 0) denotes the square symmetric, M is positive (semi-) definite
matrix;

M < 0 (M < 0) denotes the square symmetric, M is negative (semi-) definite
matrix;

M > N (M > N) denotes the M — N matrix is square symmetric positive (semi-)
definite matrix;

M < N (M < N) denotes the M — N matrix is square symmetric negative
(semi-) definite matrix;

R™™ denotes the space of all (n x m) real matrices;

AT denotes the transpose of the vector/matrix A;

A~! denotes the inverse of a non-singular matrix A;

I denotes the identity matrix;

A(A) denotes the set of all eigenvalues of A;



max(A) = max {Re A : A € A\(A)},
min(A) = min {Re X\ : A € A(A)};

(z,y) or #"y— the scalar product of two vector z,y ;

A
A

||| denotes the Euclidean vector norm of x;

Ly(]0,t], R™) denotes the set of all the R™-valued square integrable functions on
[0, ];

C(]0,t], R™) denotes the set of all R"-valued continuous functions on [0, ¢];

Cy = C([=h,0],R™), h > 0 denotes the Banach space of continuous functions;
mapping the interval [—h, 0] into R", with the topology of uniform convergence;
xp={x(t+s) s e€[=h0}, |z = supo] |zt + s)|l;

sE€[—h,

|2¢|| € Cp defined xy = z(t +0), —h < 0 < 0 and ||z¢||¢, = sup_j<gp<o |2(t +0)].

2.3 Stability of Ordinary Differential Equation

Consider a dynamical system described by

2(t) = f(t, 2(t)) (2.1)

where x € R™ and f is a vector having components f;(t, x1,...,2z,), i =1,2,...,n.
We shall assume that the f; are continuous and satisfy standard conditions, such
as having continuous first partial derivatives so that the solution of (2.1) exists
and is unique for the given initial conditions. If f; do not depend explicitly on ¢,
(2.1) is called autonomous (otherwise, nonautonomous). If f(¢,¢) = 0 for all ¢,
where ¢ is some constant vector, then it follows at once from (2.1) that if x(ty) = ¢
then x(t) = ¢ for all t > t5. Thus solutions starting at ¢ remain there, and c is
said to be an equilibrium or critical point. Clearly, by introducing new variables
Z¥; = x; — ¢; we can arrange for the equilibrium point to be transferred to the
origin; we shall assume that this has been done for any equilibrium point under
consideration (there may well be several for a given system (2.1) so that we then
have f(t,0) =0, t > .

2.3.1 Autonomous systems

Consider the autonomous system

i = f(x) (2.2)



where f: D — R" is locally Lipschitz map from a domain D C R" into R". We
shall always assume that f(x) satisfies f(0) = 0, and study stability of the origin
rz=0.

Definition 2.3.1 [20] The equilibrium point x =0 of (2.2) is
(i) stable if for each € > 0, there is 6 = (€) > 0 such that

()] <0 = [lzf] <€ VE=0,

(7i) unstable if it is not stable, that is, there exists € > 0 such that for every
d > 0 there exist an x(0) with |z(0)|| < ¢ so that |z(t1)|| > € for some t; >
0. If this holds for every x(0) in ||x(0)|| < § the equilibrium is completely

unstable.
(7ii) asymptotically stable if it is stable and § can be chosen such that
|lx(0)]] <6 = tllglo z(t) = 0.

Definition 2.3.2 [20] A function V (-) : R™ — R is said to be Lyapunov-Krasovskii
functional if it satisfies the following:

1. V(z) and all its partial derivatives 8—;/; are continuous.

2. V(x) is positive definite, i.e. V(0) =0 and V(z) > 0 for x # 0 in
some neighborhood || x ||< k of the origin.

3. The derivative of V' with respect to (2.2), namely
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is negative semidefinite i.e. V(0) =0, and for all x satisfy ||z|| < k, V(z) < 0.

Theorem 2.3.3 [20] Let x = 0 be an equilibrium point for (2.2) and D C R™ be
a domain containing x = 0. Let V(x) : D — R be a continuously differentiable

function, such that

V(0)=0 and V(x)>0 in D—{0},

V(z) <0 in D.
Then, x = 0 is stable. Moreover, if
V(r) <0 in D—{0},

then x = 0 1s asymptotically stable.



Theorem 2.3.4 [20] Let x = 0 be an equilibrium point for (2.2). Let V(x) :
R"™ — R be a continuously differentiable function, such that

V(0)=0 and V(z)>0, Vz#0,
|z|| = 00 = V(z) — oo,

V(z) <0, Vz#£0,
then x = 0 s globally asymptotically stable.

Theorem 2.3.5 [20] Let x = 0 be an equilibrium point for (2.2) and f: D — R"

1s continuously differentiable and D is a neighborhood of the origin. Let

=

= @) lemo.
Then,
1. The origin is asymptotically stable if Re(\;) < 0 for all eigenvalues of
A.
2. The origin is unstable if Re(\;) > 0 for one or more of the eigenvalues
of A.

2.3.2 Non-autonomous systems

Consider the non-autonomous system
i(t) = f(t,z(t)), x(ty) =z, xz(t)ER", teRT, (2.4)

where f: Rt x D — R" is piecewise continuous in ¢ and locally Lipschitz in x
on R" x R™ and D C R" is domain that contains the origin = 0. The origin

is an equilibrium point for (2.4) if
f(t,0) =0, Vt>t.
Definition 2.3.6 [20] The equilibrium point x = 0 of the system (2.4) is
(i) stable if, for each € > 0, there is 6 = (€, t9) > 0 such that

|lx(to)]] <0 = ||lx(t)]| <€ Vt>1ty>0, (2.5)

(ii) uniformly stable if, for each € > 0, there is § = d(€) > 0, independent of
to, such that (2.5) is satisfied,



(7i) unstable if not stable,

(iv) asymptotically stable if it is stable and there is ¢ = c(ty) > 0 such that
z(t) = 0 as t — oo, for all ||z(ty)|| < c,

(v) uniformly asymptotically stable if it is uniformly stable and there is ¢ > 0,
independent of ty, such that for all ||x(to)| < ¢, z(t) — 0 ast — oo,
uniformly in to, for each € > 0, there is T = T(e) > 0 such that

|let)|| <e, Vt>to+T(e), V|x(to)| <c,

(vi) globally uniformly asymptotically stable if it is uniformly stable and, for

each pair of positive numbers € and ¢, there is T = T(e,c) > 0 such that

lzt)] <€ Vt>to+T(ec), V|z(to)l <ec.

Definition 2.3.7 [20] The equilibrium point x = 0 of the system (2.4) is expo-

nentially stable if there exist three positive real constants e, K and X\ such that
lz()]] < Kllzolle ™), Vlzol| <€, ¢ > to;

The largest constant X which may be utilized in above inequality is called the rate

of convergence.

Definition 2.3.8 [20] The function W (x) is said to be positive (negative) definite
if W(z) > 0(=W(z) > 0) and W(zx) = 0 if and only if + = 0. The function
W (x) is said to be positive (negative) semi-definite if W (x) > 0(=W (x) > 0).

Definition 2.3.9 [20] The function W(z) is said to be radially unbounded, posi-
tive definite if W(x) is positive definite and W (x) — oo as ||z| — oo.

Let B. be a ball of size € around the origin,
B.={z € R": ||z| <€}

Definition 2.3.10 [38/ A function V(-) : RT x R™ — R is said to be Lyapuno-

Krasovskii functional if it satisfies the following:

(i) V(t,x) and all its partial derivatives o are continuous for all i =

o
8t ' 8@
1,2,3,...,n.



(i) V(t,x) is positive definite function, i.e., V(0) =0 and V (t,x) > 0, x # 0,
Vx € B,.

(iii) The derivative of V(t,x) with respect to system (2.4), namely
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V(t,x) is negative semz’—deﬁmte i.e., V(t, 0) =0 and Yz € B, V(t,z) <0.

Theorem 2.3.11 [20] Let x = 0 be an equilibrium point for (2.4) and D C R™ be
a domain containingx = 0. Let V : Rt x D — R be a continuously differentiable

function, such that

Wi(z) < V(t,x) < Wy(x), (2.7)
oV oV
a9 + B f(t,z) < =Ws(x) (2.8)

YVt >ty > 0, Yo € D where Wi(x), Wa(x) and Ws(x) are continuous positive

definite functions on D. Then, x = 0 is uniformly asymptotically stable.

Corollary 2.3.12 /20] Suppose that all the assumptions of Theorem 2.53.11 are
satisfied globally (for all x € R™) and Wi (z) is radially unbounded. Then, x =0
1s globally uniformly asymptotically stable.

Corollary 2.3.13 /20] Suppose all the assumptions of Theorem 2.3.11 are satis-
fied with

Wi(z) = k]|, Walz) < koll]l®, Wa(x) = ksllz|®

for some positive constants ki, ko, k3 and c. Then, x = 0 is exponentially stable.
Moreover, if the assumptions hold globally, then, x = 0 is globally exponentially
stable.

Theorem 2.3.14 [20] Let x = 0 be an equilibrium point for the nonlinear system

(t) = f(t,x)
where f:[0,00) x D — R™ is continuously differentiable, D = {x € R"|||x|2 <

r}, and Jacobian matriz | x] 15 bounded and Lipschitz on D, uniformly in t. Let

A = 9 )lmo.

Then, the origin is an exponentially stable equilibrium point for nonlinear system

if and only if it is an exponentially stable equilibrium point for linear system

#(t) = A(t).
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2.4 Time Delays System

We consider the system with time-delay of the form [11]
©(t) = f(t,z(t—h)), vt > 0,
Pt +0) = 0(0). ¥ € [—h, 0], (2.9

where () € R"™ is the state variable, h € RT is the delay and
f:R" x C[=h,0] = R™ ¢(t) is a continuous vector-valued initial condition.
We assume f(¢,0) = 0 so that system (2.9) admits the trivial solution. The

following Theorem guarantee for an existence and uniqueness solution of (2.9)
through (g, @).

Theorem 2.4.1 [11] (uniqueness) Suppose that @ C R x C' is an open set, f :
QO — R™ is continuous, and f(t,d) is Lipschitzian in ¢ in each compact set in Q.

That is, for each given compact set )y C (), there exists a constant L, such that

| f @t d1) = f(t,d2) IS L 1 — 2 | (2.10)

for any (t, ¢1) € Qo and (t, ¢2) € Q. If (to, @) € €, then there exists an existence
and uniqueness solution of (2.9) through (to, @).

Definition 2.4.2 For the system described by (2.9), the trivial solution z(t) = 0

18 said to be

(i) stable if for any to € R and any € > 0, there exists a 6 = 6(tg,€) > 0 such
that

[zt lle < & = [le@)|| <€ V> to,

(#) uniformly stable if it is stable and §(to,€) can be chosen independently of
tO;

(iii) asymptotically stable if it is stable, and for any ty € R and any € > 0 there
exists a 0q = da(to, €) > 0 such that

||xt0||c < 5(1 = lim = 07
t—00

(iv) uniformly asymptotically stable if it is uniformly stable and there ezists a
da > 0 such that for any n > 0, there exists a T = T (04,7m), such that

[2tolle < 00 = lz(@)l <n, VE=to+T,
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(v) exponentially stable if there exists constants o > 0 and 5 > 0 such that
[zt) <8 sup | 2(0) || e, (2.11)
—h<0<0

then the trivial solution of (2.9) is globally exponentially stable, and o is

called the exponential convergence rate.

Definition 2.4.3 [20] A functional V : RT x C — R* is called a Lyapunov-
Krasovskii functional for the system (2.9) if it has the following properties. There
exist A1, Ay, A3 > 0 such that

(i) Mllz(B)I* < V(E, ) < Aolzl?,
(ii) V(t,x) < =Xslla ()],
Lemma 2.4.4 [11] Consider the non-autonomous time-delay system (2.9). If

there exist a Lyapunov-Krasovskii functional V (t,z,) and Ay, As > 0 such that for

every solution x(t) of the system, the following conditions hold,
(1) Mllz@)]? < V(E ) < Aol
(it) V(t,z;) <0,

then the solution of the system is bounded, i.e., there exists N > 0 such that
lz(t, )| < Nl|gl|, vt > 0.

Theorem 2.4.5 [11] Suppose that u,v,w : RT — R are continuous nondecreas-
ing functions, where additionally u(s) and v(s) are positive for s > 0, and u(0) =
v(0) = 0. If there exist a continuous differentiable functional V : R* x C' — R
such that

u(([¢(0)]]) < V(¢ z(t) < v([|8]]),
the equilibrium point x* = 0 of system (2.9) is

(i) uniformly stable if

V(t,2(t) < —w(|lo0)]]),
(ii) asymptotically stable if
V(t,z(t) < —w([6(0)][),
where w(0) = 0,
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(i1i) uniformly asymptotically stable if

V(t,z(t) < —w(lle(0)])),
where w(s) > 0 for s >0,

(iv) globally uniformly asymptotically stable if

Vit z(t)) < —w([o(0)]]),
and u(s) is radially unbounded.

Lemma 2.4.6 [11] Consider the autonomous time-delay system (2.9). If there
exist a Lyapunov-Krasovskii functional V(z,) and A\, Ao, A3 > 0 such that for

every solution x(t) of the system, the following conditions hold,
(i) Allz@))? < V(@) < Aoflze?,
(ii) V(x:) < =Xl (t)]]?,

then the solution of the system (2.9) is exponentially stable.

Definition 2.4.7 suppose f : R™ x C,, — R",D : R" x C;, — R" are given
continuous functions. The relation

d

%D(tv xt) - f(twrt)a

is called the neutral differential equation. The function D will be called the oper-

ator for the neutral differential equation.

Definition 2.4.8 The operator D is said to be stable if solution T = 0 of the
homogeneous difference equation D(t,x;) =0, t > 0 is stable where
D:R"xCy —R".

2.5 Preliminary results

Lemma 2.5.1 [11] (Schur Complement Lemma) Given constant symmetric ma-
trices @), S
and R € R™™ where R(z) <0, Q(z) = QT (x) and R(z) = RT (x) we have

[@(z) S(x)

ST(x)  R(x) <0& Qx)— S(x)R H(x)ST(x) < 0.
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Lemma 2.5.2 [11] Suppose A\pin(Q) is minimum eigenvalue of matriz ) and

Amaz (@) 18 mazimum eigenvalue of matriz Q). The following inequalities hold:
Amzn(Q)sz S xTQ:E S )\max(Q)xTxa
for symmetric matriz Q@ € R™™"™ for all x € R™.

Lemma 2.5.3 [31] Let U, V,W and M be real matrices of appropriate dimensions
with M satisfying M = MT, then M +UVW +WTVTUT <0 for all VIV < 1
if and only if there exists a scalar € > 0 such that M + e *UUT + eWTW < 0.

Lemma 2.5.4 [11] There exists a symmetric matriz X such that

P —LXLT
! - @ <0 and
Q1 R,

P+ X @ <0
Q7 R

P+ LRLT Q1 LQs
Q{ Ry 0 < 0.
QIIT 0 R

if and only if

Lemma 2.5.5 (Cauchy inequality) For any symmetric positive definite matrix
N e M™™ and x,y € R™ we have

+227y < TNz + y" N1y,

Lemma 2.5.6 [11] (Jensen’s inequality) For any symmetric positive definite ma-
tric M > 0, scalar v > 0 and vector function w : [0,7] — R™ such that the

integrations concerned are well defined, the following inequality holds

([ et ds)TM( [etras) <o [ as).

Lemma 2.5.7 [58] (Wirtinger inequality) For a given matriz R > 0, the following

inequality holds for all continuously differentiable function w in [a,b] — R":

/ wf (u)Rar(u)du > - a(w(b) —w(a)"R (2.12)



Lemma 2.5.8 [68] Let h(t) be a continuous function satisfying 0 < hy < h(t) <
hy. For any n x n real matriz Ry > 0 and a vector & : [—hs,0] — R"™ such that

the integration concerned below is well defined, the following inequality holds for

. L Ry S
any 2n X 2n real matrices S1 satisfying o= >0

~(hy— hl)/t_ T (5) Ry (s)ds

—ho
<2p119¢m — @1 Bionn — o5 Riom, (2.13)
where Ry £ diag{Ry,3R;} and
o 2 [ 2(t—h(t) — z(t — o)
. |2t — h(t)) +2(t — ha) = 2wi(t) |
o A [ a(t—h) —a(t—h) ]
o | 2(t — ) + 2t — h(t)) = 2ws(t) |
where
1 t—h(t)
wp & AL x(s)ds,
L,
1 t—h1
wy & ——— z(s)ds. 2.14
’ h(t) — /t—h(t) (%) (2.14)
Lemma 2.5.9 [11] There exists a symmetric matriz X such that
P —LXLT P+ X
! n @ <0 and j —; @ <0
Q1 Ry Q; R

if and only if
P+ LRL" Q1 LQ,
C?{ Ry 0 < 0.
O LY 0 Ry
Lemma 2.5.10 [67] For any constant symmetric matriz M € R"™"™, M = MT >
0, 0 < hy < h(t) < hy, t >0, and any differentiable vector function x(t) € R",
we have

@ | /tt H(s)ds] M| /tt ts)ds| < /:hmx'T(s)Mx'(s)ds,

— h'm - h'm

o) /t::: x’(s)der[ /t::a':(s)ds]

t—hm

(h(t) — hu) /t T (s)Mi(s)ds

—h(t)

IN
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Lemma 2.5.11 [67] Given matrices Q = QT, H, E and R = RT > 0 with

appropriate dimensions. Then
Q+HFE+ETFTHT <0

for all F satisfying FTF < R, if and only if there exists an € > 0 such that
Q+eHHT + ¢ 'ETRE < 0.

Lemma 2.5.12 [72] The following inequalities are true:

zi(t)

0< /O (fi(s) —ri (8))ds < (fi(wi(t)) — ryi(t))i(t)
zi(t)

0< /0 (ri"(s) = fi(s))ds < (riai(t) = filwi())):(2).

Lemma 2.5.13  [68] Let &,,&1 and & be m x m real symmetric matrices and
a continuous function h satisfy hy < h < ho, where hy and hy are constants
satisfying 0 < hy < hy. If & > 0, then

h?& + héy + & < 0(<0), Yh € [hy, hy),
= R+ hé+&<0(L0), (i=1,2), (2.15)

or

h2& 4 h&y + & > 0(>0), Vh € [hy, ha),
= W+ hé+E>020), (i=1,2). (2.16)

Lemma 2.5.14 [11] A symmetric matriz is positive semidefinite (definite) matriz

if all of its eigenvalues are non-negative (positive).

Lemma 2.5.15 [11] A symmetric matriz is negative semidefinite (definite) matriz

if all of its eigenvalues are non-positive (negative).
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