
CHAPTER 2

Preliminaries

In this chapter, the underlying concepts of stability, important defini-

tions, lemmas, propositions and results, are provided which will be used in later

chapters.

2.1 Types of Matrix

Let M ∈ Rn×n, then we have the following definitions.

Definition 2.1.1 Matrix M is semi-positive definite if xTMx ≥ 0 for all x ∈ Rn.

Definition 2.1.2 Matrix M is positive definite (M > 0) if for all x ∈ Rn, x 6= 0.

Definition 2.1.3 Matrix M is semi-negative definite (M ≤ 0) if for all x ∈ Rn.

Definition 2.1.4 Matrix M is negative definite (M < 0) if for all x ∈ Rn, x 6= 0.

2.2 Notations

We give some important notations will be used throughout this thesis:

R+ denotes the set of all non-negative real numbers;

Rn denotes the n-dimensional Euclidean space;

M > 0 (M ≥ 0) denotes the square symmetric, M is positive (semi-) definite

matrix;

M < 0 (M ≤ 0) denotes the square symmetric, M is negative (semi-) definite

matrix;

M > N (M ≥ N) denotes the M−N matrix is square symmetric positive (semi-)

definite matrix;

M < N (M ≤ N) denotes the M − N matrix is square symmetric negative

(semi-) definite matrix;

Rn×m denotes the space of all (n×m) real matrices;

AT denotes the transpose of the vector/matrix A;

A−1 denotes the inverse of a non-singular matrix A;

I denotes the identity matrix;

λ(A) denotes the set of all eigenvalues of A;
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λmax(A) = max {Re λ : λ ∈ λ(A)},

λmin(A) = min {Re λ : λ ∈ λ(A)};

〈x, y〉 or x⊤y− the scalar product of two vector x, y ;

‖x‖ denotes the Euclidean vector norm of x;

L2([0, t],R
m) denotes the set of all the Rm-valued square integrable functions on

[0, t];

C([0, t],Rn) denotes the set of all Rn-valued continuous functions on [0, t];

Ch = C([−h, 0],Rn), h > 0 denotes the Banach space of continuous functions;

mapping the interval [−h, 0] into Rn, with the topology of uniform convergence;

xt = {x(t + s) : s ∈ [−h, 0]}, ‖xt‖ = sup
s∈[−h,0]

‖x(t+ s)‖;

‖xt‖ ∈ Ch defined xt = x(t+ θ),−h ≤ θ ≤ 0 and ‖xt‖Ch
= sup−h≤θ≤0 ‖x(t + θ)‖.

2.3 Stability of Ordinary Differential Equation

Consider a dynamical system described by

ẋ(t) = f(t, x(t)) (2.1)

where x ∈ Rn and f is a vector having components fi(t, x1, ..., xn), i = 1, 2, ..., n.

We shall assume that the fi are continuous and satisfy standard conditions, such

as having continuous first partial derivatives so that the solution of (2.1) exists

and is unique for the given initial conditions. If fi do not depend explicitly on t,

(2.1) is called autonomous (otherwise, nonautonomous). If f(t, c) = 0 for all t,

where c is some constant vector, then it follows at once from (2.1) that if x(t0) = c

then x(t) = c for all t ≥ t0. Thus solutions starting at c remain there, and c is

said to be an equilibrium or critical point. Clearly, by introducing new variables

x́i = xi − ci we can arrange for the equilibrium point to be transferred to the

origin; we shall assume that this has been done for any equilibrium point under

consideration (there may well be several for a given system (2.1) so that we then

have f(t, 0) = 0, t ≥ t0.

2.3.1 Autonomous systems

Consider the autonomous system

ẋ = f(x) (2.2)
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where f : D → Rn is locally Lipschitz map from a domain D ⊂ Rn into Rn. We

shall always assume that f(x) satisfies f(0) = 0, and study stability of the origin

x = 0.

Definition 2.3.1 [20] The equilibrium point x = 0 of (2.2) is

(i) stable if for each ǫ > 0, there is δ = δ(ǫ) > 0 such that

‖x(0)‖ < δ ⇒ ‖x‖ < ǫ, ∀t ≥ 0,

(ii) unstable if it is not stable, that is, there exists ε > 0 such that for every

δ > 0 there exist an x(0) with ‖x(0)‖ < δ so that ‖x(t1)‖ ≥ ε for some t1 >

0. If this holds for every x(0) in ‖x(0)‖ < δ the equilibrium is completely

unstable.

(iii) asymptotically stable if it is stable and δ can be chosen such that

‖x(0)‖ < δ ⇒ lim
t→∞

x(t) = 0.

Definition 2.3.2 [20] A function V (·) : Rn → R is said to be Lyapunov-Krasovskii

functional if it satisfies the following:

1. V (x) and all its partial derivatives
∂V

∂xi

are continuous.

2. V (x) is positive definite, i.e. V (0) = 0 and V (x) > 0 for x 6= 0 in

some neighborhood ‖ x ‖≤ k of the origin.

3. The derivative of V with respect to (2.2), namely

V̇ =
∂V

∂x1
ẋ1 +

∂V

∂x2
ẋ2 + ... +

∂V

∂xn

ẋn

=
∂V

∂x1
f1 +

∂V

∂x2
f2 + ...+

∂V

∂xn

fn (2.3)

is negative semidefinite i.e. V̇ (0) = 0, and for all x satisfy ‖x‖ ≤ k, V̇ (x) ≤ 0.

Theorem 2.3.3 [20] Let x = 0 be an equilibrium point for (2.2) and D ⊂ Rn be

a domain containing x = 0. Let V (x) : D → R be a continuously differentiable

function, such that

V (0) = 0 and V (x) > 0 in D − {0},

V̇ (x) ≤ 0 in D.

Then, x = 0 is stable. Moreover, if

V̇ (x) < 0 in D − {0},

then x = 0 is asymptotically stable.
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Theorem 2.3.4 [20] Let x = 0 be an equilibrium point for (2.2). Let V (x) :

Rn → R be a continuously differentiable function, such that

V (0) = 0 and V (x) > 0, ∀x 6= 0,

‖x‖ → ∞ ⇒ V (x) → ∞,

V̇ (x) < 0, ∀x 6= 0,

then x = 0 is globally asymptotically stable.

Theorem 2.3.5 [20] Let x = 0 be an equilibrium point for (2.2) and f : D → Rn

is continuously differentiable and D is a neighborhood of the origin. Let

A =
∂f

∂x
(x) |x=0 .

Then,

1. The origin is asymptotically stable if Re(λi) < 0 for all eigenvalues of

A.

2. The origin is unstable if Re(λi) > 0 for one or more of the eigenvalues

of A.

2.3.2 Non-autonomous systems

Consider the non-autonomous system

ẋ(t) = f(t, x(t)), x(t0) = x0, x(t) ∈ Rn, t ∈ R+, (2.4)

where f : R+ × D → Rn is piecewise continuous in t and locally Lipschitz in x

on R+ ×Rn and D ⊂ Rn is domain that contains the origin x = 0. The origin

is an equilibrium point for (2.4) if

f(t, 0) = 0, ∀t ≥ t0.

Definition 2.3.6 [20] The equilibrium point x = 0 of the system (2.4) is

(i) stable if, for each ǫ > 0, there is δ = δ(ǫ, t0) > 0 such that

‖x(t0)‖ < δ ⇒ ‖x(t)‖ < ǫ, ∀t ≥ t0 ≥ 0, (2.5)

(ii) uniformly stable if, for each ǫ > 0, there is δ = δ(ǫ) > 0, independent of

t0, such that (2.5) is satisfied,
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(iii) unstable if not stable,

(iv) asymptotically stable if it is stable and there is c = c(t0) > 0 such that

x(t) → 0 as t → ∞, for all ‖x(t0)‖ < c,

(v) uniformly asymptotically stable if it is uniformly stable and there is c > 0,

independent of t0, such that for all ‖x(t0)‖ < c, x(t) → 0 as t → ∞,

uniformly in t0, for each ǫ > 0, there is T = T (ǫ) > 0 such that

‖x(t)‖ < ǫ, ∀t ≥ t0 + T (ǫ), ∀‖x(t0)| < c,

(vi) globally uniformly asymptotically stable if it is uniformly stable and, for

each pair of positive numbers ǫ and c, there is T = T (ǫ, c) > 0 such that

‖x(t)‖ < ǫ, ∀t ≥ t0 + T (ǫ, c), ∀‖x(t0)| < c.

Definition 2.3.7 [20] The equilibrium point x = 0 of the system (2.4) is expo-

nentially stable if there exist three positive real constants ǫ,K and λ such that

‖x(t)‖ ≤ K‖x0‖e
−λ(t−t0), ∀‖x0‖ < ǫ, t ≥ t0;

The largest constant λ which may be utilized in above inequality is called the rate

of convergence.

Definition 2.3.8 [20] The function W (x) is said to be positive (negative) definite

if W (x) > 0(−W (x) > 0) and W (x) = 0 if and only if x = 0. The function

W (x) is said to be positive (negative) semi-definite if W (x) ≥ 0(−W (x) ≥ 0).

Definition 2.3.9 [20] The function W (x) is said to be radially unbounded, posi-

tive definite if W (x) is positive definite and W (x) → ∞ as ‖x‖ → ∞.

Let Bǫ be a ball of size ǫ around the origin,

Bǫ = {x ∈ Rn : ‖x‖ < ǫ}.

Definition 2.3.10 [38] A function V (·) : R+ × Rn → R is said to be Lyapuno-

Krasovskii functional if it satisfies the following:

(i) V (t, x) and all its partial derivatives
∂V

∂t
,
∂V

∂xi

are continuous for all i =

1, 2, 3, ..., n.
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(ii) V (t, x) is positive definite function, i.e., V (0) = 0 and V (t, x) > 0, x 6= 0,

∀x ∈ Bǫ.

(iii) The derivative of V (t, x) with respect to system (2.4), namely

V̇ (t, x) =
∂V

∂t
+

∂V

∂x1
ẋ1 +

∂V

∂x2
ẋ2 + ...+

∂V

∂xn

ẋn

=
∂V

∂t
+

∂V

∂x1
f1 +

∂V

∂x2
f2 + ...+

∂V

∂xn

fn. (2.6)

V̇ (t, x) is negative semi-definite i.e., V̇ (t, 0) = 0 and ∀x ∈ Bǫ, V̇ (t, x) ≤ 0.

Theorem 2.3.11 [20] Let x = 0 be an equilibrium point for (2.4) and D ⊂ Rn be

a domain containing x = 0. Let V : R+×D → R be a continuously differentiable

function, such that

W1(x) ≤ V (t, x) ≤ W2(x), (2.7)

∂V

∂t
+

∂V

∂x
f(t, x) ≤ −W3(x) (2.8)

∀t ≥ t0 ≥ 0, ∀x ∈ D where W1(x), W2(x) and W3(x) are continuous positive

definite functions on D. Then, x = 0 is uniformly asymptotically stable.

Corollary 2.3.12 [20] Suppose that all the assumptions of Theorem 2.3.11 are

satisfied globally (for all x ∈ Rn) and W1(x) is radially unbounded. Then, x = 0

is globally uniformly asymptotically stable.

Corollary 2.3.13 [20] Suppose all the assumptions of Theorem 2.3.11 are satis-

fied with

W1(x) ≥ k1‖x‖
c, W2(x) ≤ k2‖x‖

c, W3(x) ≥ k3‖x‖
c

for some positive constants k1, k2, k3 and c. Then, x = 0 is exponentially stable.

Moreover, if the assumptions hold globally, then, x = 0 is globally exponentially

stable.

Theorem 2.3.14 [20] Let x = 0 be an equilibrium point for the nonlinear system

ẋ(t) = f(t, x)

where f : [0,∞)×D → Rn is continuously differentiable, D = {x ∈ Rn|‖x‖2 <

r}, and Jacobian matrix [∂f
∂x
] is bounded and Lipschitz on D, uniformly in t. Let

A(t) =
∂f

∂x
(t, x)|x=0.

Then, the origin is an exponentially stable equilibrium point for nonlinear system

if and only if it is an exponentially stable equilibrium point for linear system

ẋ(t) = A(t).
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2.4 Time Delays System

We consider the system with time-delay of the form [11]

ẋ(t) = f(t, x(t− h)), ∀t ≥ 0,

x(t0 + θ) = φ(θ), ∀θ ∈ [−h, 0], (2.9)

where x(t) ∈ Rn is the state variable, h ∈ R+ is the delay and

f : R+ × C[−h, 0] → Rn. φ(t) is a continuous vector-valued initial condition.

We assume f(t, 0) = 0 so that system (2.9) admits the trivial solution. The

following Theorem guarantee for an existence and uniqueness solution of (2.9)

through (t0, φ).

Theorem 2.4.1 [11] (uniqueness) Suppose that Ω ⊆ R × C is an open set, f :

Ω → Rn is continuous, and f(t, φ) is Lipschitzian in φ in each compact set in Ω.

That is, for each given compact set Ω0 ⊂ Ω, there exists a constant L, such that

‖ f(t, φ1)− f(t, φ2) ‖≤ L ‖ φ1 − φ2 ‖ (2.10)

for any (t, φ1) ∈ Ω0 and (t, φ2) ∈ Ω0. If (t0, φ) ∈ Ω, then there exists an existence

and uniqueness solution of (2.9) through (t0, φ).

Definition 2.4.2 For the system described by (2.9), the trivial solution x(t) = 0

is said to be

(i) stable if for any t0 ∈ R and any ǫ > 0, there exists a δ = δ(t0, ǫ) > 0 such

that

‖xt0‖c < δ ⇒ ‖x(t)‖ < ǫ, ∀t ≥ t0,

(ii) uniformly stable if it is stable and δ(t0, ǫ) can be chosen independently of

t0,

(iii) asymptotically stable if it is stable, and for any t0 ∈ R and any ǫ > 0 there

exists a δa = δa(t0, ǫ) > 0 such that

‖xt0‖c < δa ⇒ lim
t→∞

= 0,

(iv) uniformly asymptotically stable if it is uniformly stable and there exists a

δa > 0 such that for any η > 0, there exists a T = T (δa, η), such that

‖xt0‖c < δa ⇒ ‖x(t)‖ < η, ∀t ≥ t0 + T,
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(v) exponentially stable if there exists constants α > 0 and β > 0 such that

‖ x(t) ‖≤ β sup
−h≤θ≤0

‖ x(θ) ‖ e−αt, (2.11)

then the trivial solution of (2.9) is globally exponentially stable, and α is

called the exponential convergence rate.

Definition 2.4.3 [20] A functional V : R+ × C → R+ is called a Lyapunov-

Krasovskii functional for the system (2.9) if it has the following properties. There

exist λ1, λ2, λ3 > 0 such that

(i) λ1‖x(t)‖
2 ≤ V (t, xt) ≤ λ2‖xt‖

2,

(ii) V̇ (t, xt) ≤ −λ3‖x(t)‖
2.

Lemma 2.4.4 [11] Consider the non-autonomous time-delay system (2.9). If

there exist a Lyapunov-Krasovskii functional V (t, xt) and λ1, λ2 > 0 such that for

every solution x(t) of the system, the following conditions hold,

(i) λ1‖x(t)‖
2 ≤ V (t, xt) ≤ λ2‖xt‖

2,

(ii) V̇ (t, xt) ≤ 0,

then the solution of the system is bounded, i.e., there exists N > 0 such that

‖x(t, φ)‖ ≤ N‖φ‖, ∀t ≥ 0.

Theorem 2.4.5 [11] Suppose that u, v, w : R+ → R+ are continuous nondecreas-

ing functions, where additionally u(s) and v(s) are positive for s > 0, and u(0) =

v(0) = 0. If there exist a continuous differentiable functional V : R+ × C → R

such that

u(‖φ(0)‖) ≤ V (t, x(t)) ≤ v(‖φ‖),

the equilibrium point x∗ = 0 of system (2.9) is

(i) uniformly stable if

V̇ (t, x(t)) ≤ −w(‖φ(0)‖),

(ii) asymptotically stable if

V̇ (t, x(t)) ≤ −w(‖φ(0)‖),

where w(0) = 0,
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(iii) uniformly asymptotically stable if

V̇ (t, x(t)) ≤ −w(‖φ(0)‖),

where w(s) > 0 for s > 0,

(iv) globally uniformly asymptotically stable if

V̇ (t, x(t)) ≤ −w(‖φ(0)‖),

and u(s) is radially unbounded.

Lemma 2.4.6 [11] Consider the autonomous time-delay system (2.9). If there

exist a Lyapunov-Krasovskii functional V (xt) and λ1, λ2, λ3 > 0 such that for

every solution x(t) of the system, the following conditions hold,

(i) λ1‖x(t)‖
2 ≤ V (xt) ≤ λ2‖xt‖

2,

(ii) V̇ (xt) ≤ −λ3‖x(t)‖
2,

then the solution of the system (2.9) is exponentially stable.

Definition 2.4.7 suppose f : R+ × Ch → Rn, D : R+ × Ch → Rn are given

continuous functions. The relation

d

dt
D(t, xt) = f(t, xt),

is called the neutral differential equation. The function D will be called the oper-

ator for the neutral differential equation.

Definition 2.4.8 The operator D is said to be stable if solution x̄ = 0 of the

homogeneous difference equation D(t, xt) = 0, t ≥ 0 is stable where

D : Rn × Ch → Rn.

2.5 Preliminary results

Lemma 2.5.1 [11] (Schur Complement Lemma) Given constant symmetric ma-

trices Q, S

and R ∈ Rn×n where R(x) < 0, Q(x) = QT (x) and R(x) = RT (x) we have
[

Q(x) S(x)

ST (x) R(x)

]

< 0 ⇔ Q(x)− S(x)R−1(x)ST (x) < 0.
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Lemma 2.5.2 [11] Suppose λmin(Q) is minimum eigenvalue of matrix Q and

λmax(Q) is maximum eigenvalue of matrix Q. The following inequalities hold:

λmin(Q)xTx ≤ xTQx ≤ λmax(Q)xTx,

for symmetric matrix Q ∈ Rn×n for all x ∈ Rn.

Lemma 2.5.3 [31] Let U, V,W and M be real matrices of appropriate dimensions

with M satisfying M = MT , then M + UV W +W TV TUT < 0 for all V TV ≤ I

if and only if there exists a scalar ǫ > 0 such that M + ǫ−1UUT + ǫW TW < 0.

Lemma 2.5.4 [11] There exists a symmetric matrix X such that
(

P1 − LXLT Q1

QT
1 R1

)

< 0 and

(

P2 +X Q2

QT
2 R2

)

< 0

if and only if






P1 + LP2L
T Q1 LQ2

QT
1 R1 0

QT
2L

T 0 R2






< 0.

Lemma 2.5.5 (Cauchy inequality) For any symmetric positive definite matrix

N ∈ Mn×n and x, y ∈ Rn we have

±2xTy ≤ xTNx+ yTN−1y.

Lemma 2.5.6 [11] (Jensen’s inequality) For any symmetric positive definite ma-

trix M > 0, scalar γ > 0 and vector function ω : [0, γ] → Rn such that the

integrations concerned are well defined, the following inequality holds
(
∫ γ

0

ω(s) ds

)T

M

(
∫ γ

0

ω(s) ds

)

≤ γ

(
∫ γ

0

ωT (s)Mω(s) ds

)

.

Lemma 2.5.7 [58] (Wirtinger inequality) For a given matrix R > 0, the following

inequality holds for all continuously differentiable function ω in [a, b] → Rn:
∫ b

a

ω̇T (u)Rω̇(u)du ≥
1

b− a
(ω(b)− ω(a))TR (2.12)

×(ω(b)− ω(a)) +
3

b− a
Ω̃TRΩ̃

where Ω̃ = ω(b) + ω(a)− 2
b−a

∫ b

a
ω(u)du.
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Lemma 2.5.8 [68] Let h(t) be a continuous function satisfying 0 ≤ h1 ≤ h(t) ≤

h2. For any n × n real matrix R1 > 0 and a vector ẋ : [−h2, 0] → Rn such that

the integration concerned below is well defined, the following inequality holds for

any 2n× 2n real matrices S1 satisfying

[

R̃1 S1

ST
1 R̃1

]

≥ 0

− (h2 − h1)

∫ t−h1

t−h2

ẋT (s)R1ẋ(s)ds

≤2ϕT
11Sϕ21 − ϕT

11R̃1ϕ11 − ϕT
21R̃1ϕ21, (2.13)

where R̃1 , diag{R1, 3R1} and

ϕ11 ,

[

x(t− h(t))− x(t− h2)

x(t− h(t)) + x(t− h2)− 2ω1(t)

]

,

ϕ21 ,

[

x(t− h1)− x(t− h(t))

x(t− h1) + x(t− h(t))− 2ω2(t)

]

,

where

ω1 ,
1

h2 − h(t)

∫ t−h(t)

t−h2

x(s)ds,

ω2 ,
1

h(t)− h1

∫ t−h1

t−h(t)

x(s)ds. (2.14)

Lemma 2.5.9 [11] There exists a symmetric matrix X such that
[

P1 − LXLT Q1

QT
1 R1

]

< 0 and

[

P2 +X Q2

QT
2 R2

]

< 0

if and only if






P1 + LP2L
T Q1 LQ2

QT
1 R1 0

QT
2L

T 0 R2






< 0.

Lemma 2.5.10 [67] For any constant symmetric matrix M ∈ Rn×n, M = MT >

0, 0 ≤ hm ≤ h(t) ≤ hM , t ≥ 0, and any differentiable vector function x(t) ∈ Rn,

we have

(a)
[

∫ t

t−hm

ẋ(s)ds
]T

M
[

∫ t

t−hm

ẋ(s)ds
]

≤ hm

∫ t

t−hm

ẋT (s)Mẋ(s)ds,

(b)
[

∫ t−hm

t−h(t)

ẋ(s)ds
]T

M
[

∫ t−hm

t−h(t)

ẋ(s)ds
]

≤ (h(t)− hm)

∫ t−hm

t−h(t)

ẋT (s)Mẋ(s)ds

≤ (hM − hm)

∫ t−hm

t−h(t)

ẋT (s)Mẋ(s)ds.
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Lemma 2.5.11 [67] Given matrices Q = QT , H, E and R = RT > 0 with

appropriate dimensions. Then

Q +HFE + ETF THT < 0

for all F satisfying F TF ≤ R, if and only if there exists an ǫ > 0 such that

Q+ ǫHHT + ǫ−1ETRE < 0.

Lemma 2.5.12 [72] The following inequalities are true:

0 ≤

∫ xi(t)

0

(fi(s)− r−i (s))ds ≤ (fi(xi(t))− r−i xi(t))xi(t)

0 ≤

∫ xi(t)

0

(r+i (s)− fi(s))ds ≤ (r+i xi(t)− fi(xi(t)))xi(t).

Lemma 2.5.13 [68] Let ξ0, ξ1 and ξ2 be m × m real symmetric matrices and

a continuous function h satisfy h1 ≤ h ≤ h2, where h1 and h2 are constants

satisfying 0 ≤ h1 ≤ h2. If ξ0 ≥ 0, then

h2ξ0 + hξ1 + ξ2 < 0(≤ 0), ∀h ∈ [h1, h2],

⇐⇒ h2
i ξ0 + hiξ1 + ξ2 < 0(≤ 0), (i = 1, 2), (2.15)

or

h2ξ0 + hξ1 + ξ2 > 0(≥ 0), ∀h ∈ [h1, h2],

⇐⇒ h2
i ξ0 + hiξ1 + ξ2 > 0(≥ 0), (i = 1, 2). (2.16)

Lemma 2.5.14 [11] A symmetric matrix is positive semidefinite (definite) matrix

if all of its eigenvalues are non-negative (positive).

Lemma 2.5.15 [11] A symmetric matrix is negative semidefinite (definite) matrix

if all of its eigenvalues are non-positive (negative).
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