CONTENTS

		Page
Acknowled	gements	iii
Abstract in	ı Thai	iv
Abstract in	n English	\mathbf{v}
Table of Co	ontents	vi
List of Tab	les	viii
List of Fig	ures	ix
1/	of Originality in Thai	X
Statement	of Originality in English	xi
Chapter 1	Introduction	1
Chapter 2	Preliminaries	5
	2.1 Types of Matrix	5
	2.2 Notations	5
	2.3 Stability of Ordinary Differential Equation	6
	2.3.1 Autonomous systems	6
	2.3.2 Non-autonomous systems	8
	2.4 Time Delays System	11
	2.5 Preliminary results	13
Chapter 3	Robust stability criteria for uncertain neutral systems with	
	time-varying delays and nonlinear perturbations	17
	3.1 Stability criteria for neutral systems	18
	3.2 Numerical examples	28
Chapter 4	Exponential stabilization of neutral-type neural networks	
	with interval and distributed time-varying delays	34
	4.1 Exponential stabilization for nominal interval time-varying	

	delay systems	34
	4.2 Exponential stabilization for interval time-varying delay	
	systems	43
	4.3 Numerical examples	48
Chapter 5	Robust stability of a class of uncertain Lur'e systems of	
	neutral-type with time-varying delay	50
	5.1 Stability of uncertain Lur'e systems	5 1
	5.2 Numerical examples	61
Chapter 6	A new absolute stability criteria for Lur'e systems	
	of neutral type with time-varying delays	65
	6.1 Absolute stability criteria for Lur'e systems of neutral type	65
	6.2 Numerical examples	74
Chapter 7	Novel delay-dependent exponential stability criteria for	
	neutral-type neural networks with time-varying discrete	
	and neutral delays	77
	7.1 Exponential stability criteria for neutral-type neural networks	77
	7.2 Numerical examples	89
Chapter 8	Conclusion	96
Bibliograp	hy	98
Vita		105

ลิขสิทธิมหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

		Page
Table 3.1	Maximum allowable upper bounds τ_M for $\gamma = 0.1$.	29
Table 3.2	Maximum allowable upper bounds τ_M for $\gamma = 0.5$.	29
Table 3.3	Maximum allowable upper bounds τ_M of the time-varying delay	
	for different values of the lower bounds τ_m and $c = 0.1$.	32
Table 3.4	Maximum allowable upper bounds τ_M of the time-varying delay	
	for different values of the lower bounds τ_m , $d = 0.1$ and $c = 0.1$.	33
Table 5.1	Maximum allowable upper bound h_2 with $h_1 = 0$, $K = 100$ for	
	(5.37) obtained in Corollary 5.1.4 with nonlinear term satisfying	
	(5.3).	62
Table 5.2	Maximum allowable upper bound h_2 with $h_1 = 0$ for (5.37)	
	obtained in Corollary 5.1.5 with nonlinear term satisfying (5.4).	63
Table 5.3	Maximum allowable upper bounds h_2 of the uncertain Lur'e	
	system with interval time-varying delay (5.38) for different	
	values of the η_d and decay rates with $h_1 = 0.1$, $\eta_d = 0.8$,	
	$\eta = 0.1, d = 0.2 \text{ and } K = 0.5I.$	64
Table 6.1	Maximum allowable upper bounds h_2 of neutral-type neural	
	networks with $h_1 = 0, \delta = 0.9$ and different values of μ .	75
Table 6.2	Maximum allowable upper bounds h_2 of neutral-type neural	
	networks with $h_1 = 0$ and $\tau(t) = h(t)$.	76
Table 7.1	Maximum allowable upper bounds h_2 of neutral-type neural	
	networks with time-varying delay for different values of h_1 and	
	decay rates α .	91
Table 7.2	Maximum allowable upper bounds h_2 of neutral-type neural	
	networks with time-varying delay for different values of h_1 .	93
Table 7.3	Maximum allowable upper bounds h_2 of uncertain neutral-type	
	neural networks with time-varying delay for different values	
	h_1 of the and decay rates.	95

LIST OF FIGURES

		Page
Figure 3.1	The trajectories of $x_1(t)$ and $x_2(t)$ of the system (3.32) with	
	time-varying delay $\tau(t) = 0.1 + 0.75 \sin 10t $.	31
Figure 3.2	The trajectories of $x_1(t)$ and $x_2(t)$ of the system (3.33) with	
	time-varying delay $\tau(t) = 0.3 + 0.5 \cos 10t $.	33
Figure 7.1	The trajectories of $x_1(t)$ and $x_2(t)$ of the system (7.28) with	
	time-varying delay $h(t) = 0.1 + 0.1 \sin t $ and $\eta(t) = \cos^2(e^t)$.	92

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ข้อความแห่งการริเริ่ม

- 1) เราได้เงื่อนไขเพียงพอใหม่ สำหรับ เงื่อนไขการมีเสถียรภาพ แบบทนทาน สำหรับ ระบบเป็นกลางไม่แน่นอน ที่มีตัวหน่วงแปรผันตามเวลาแบบเป็นช่วง และ การรบกวนแบบไม่ เชิงเส้นที่แปรผันตามเวลา โดยที่ฟังก์ชันของตัวหน่วงที่แปรผัน ตามเวลานั้น ไม่จำเป็นต้องหา อนุพันธ์ได้
- 2) เราได้เงื่อนไขเพียงพอใหม่ สำหรับ ปัญหาเสถียรภาพแบบเลขชี้กำลัง สำหรับเครือ ข่ายประสาทชนิด เป็นกลางกับตัวหน่วงแปรผันตามเวลาแบบช่วงและฟังก์ชันการกระตุ้นทั่วไปโดยที่ฟังก์ชันของตัวหน่วง แบบวิยุค และ แบบแจกแจงซึ่งไม่จำเป็นต้องหาอนุพันธ์ได้ ซึ่งทำให้ ตัวหน่วงเป็นฟังก์ชันที่หลากหลายขึ้น
- 3) เราได้เงื่อนไขเพียงพอใหม่ สำหรับปัญหาของเสถียรภาพ เลขชี้กำลังสำหรับประเภท ของระบบเลอกับตัวหน่วงแปรผันตามเวลาแบบช่วง และส่วนจำกัดแบบไม่เชิงเส้น
- 4) เราได้เงื่อนไขเพียงพอใหม่ สำหรับปัญหาเสถียรภาพประเภทของระบบเลอชนิดเป็น กลางกับตัวหน่วงแปรผันตามเวลา และฟังก์ชันส่วนจำกัดแบบไม่เชิงเส้น
- 5) เราได้เงื่อนไขเพียงพอใหม่ สำหรับปัญหา ของเสถียรภาพแบบเลขชี้กำลัง สำหรับ เครือข่ายประสาทชนิด เป็นกลางกับตัวหน่วงแปรผันตามเวลาแบบช่วงและฟังก์ชันกระตุ้นแบบ ทั่วไป โดยที่ฟังก์ชันของตัวหน่วง แบบวิยุคไม่จำเป็นต้องหาอนุพันธ์ได้และ ไม่ต้องการข้อมูลอนุ พันธ์ของตัวหน่วงเป็นกลาง โดยจุดเด่นของงานวิจัยนี้คือ เป็นการศึกษาครั้งแรกภายใต้เงื่อนไข ของตัวหน่วงวิยุคและตัวหน่วงเป็นกลาง

ลิ**บสิทธิ์มหาวิทยาลัยเชียงใหม**่ Copyright[©] by Chiang Mai University All rights reserved

STATEMENT OF ORIGINALITY

- 1) We obtained a new sufficient condition for the robust stability criteria for uncertain neutral systems with interval time-varying delays and time-varying nonlinear perturbations. The constraint on the derivative of the time-varying delay is not required.
- 2) We obtained new delay-dependent sufficient conditions for the exponential stability problem for neutral-type neural networks with interval time-varying delays and generalized activation functions. The restrictions on the differentiability of discrete and distributed delays are removed, which means that a fast time-varying delays is allowed.
- 3) We obtained new delay-dependent sufficient conditions for exponential stability for a class of Lur'e systems with interval time-varying delay and sector-bounded nonlinear functions.
- 4) We obtained new delay-dependent sufficient conditions for absolute stability of neutral type Lur'e systems with time-varying delays and sector-bounded nonlinear functions.
- 5) We obtained new delay-dependent sufficient conditions for the exponential stability problem for uncertain neutral-type neural networks with interval time-varying delays and generalized activation functions. The constraint on the differential discrete delay is not necessarily differentiable. In addition the information on derivative of neutral delay is not required. To the best of our knowledge, this is the first study under these conditions on discrete and neutral delays.

Copyright[©] by Chiang Mai University All rights reserved