
CHAPTER 1

Introduction

Fixed point theory plays an important role in nonlinear analysis. This is because

many practical problems in applied science, economics, physics and engineering can be

reformulated as a problem of finding fixed points of nonlinear mappings.

1.1 The Background of Fixed Point Theory

Definition 1.1.1. Let X be a nonempty set and T : X → X be a function. A fixed point

of T is an element x ∈ X which satisfies T (x) = x. The set of fixed points of T denoted

by F (T ) or Fix(T ).

The study of fixed point theory is concerned with finding conditions on the structure

that the set X must be endowed as well as on the properties of the mapping T : X → X,

in order to obtain results on:

• the existence and the uniqueness of fixed points;

• the structure of fixed point sets;

• the approximation of fixed points.

For any given x ∈ X, we define Tnx inductively by T 0x = x and Tn+1x = TTnx;

we call Tnx the iterate of x under T . For n ≥ 1, the mapping Tn is called the nth iterate

of T . For any x1 ∈ X, the sequence {xn} given by

xn+1 = Txn = Tnx1 for all n ∈ N

is called the sequence of successive approximations or Picard iteration. Many researchers

concentrate in obtaining (additional) conditions on T and X as general as possible, and

which should guarantee the (strong) convergence of the Picard iteration to a fixed point

of T .

In 1922, the Polish mathematician Stefan Banach established a unusual fixed point

theorem known as the “Banach Contraction Principle”which is one of the most important

results of analysis and considered as the main source of metric fixed point theory. Banach

[1] proved the famous theorem in fixed point theory for a contraction as follows:
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Theorem 1.1.1. (The Banach Contraction Principle) Let (X, d) be a complete metric

space and T : X → X be a self-map. Assume that there exists a nonnegative number

k < 1 such that

d(Tx, Ty) ≤ kd(x, y), for all x, y ∈ X.

Then T has a unique fixed point x in X. Moreover, for each x ∈ X, the sequence {Tnx}

converges strongly to x.

Since this theorem was proved by Banach, many researchers have used this theorem

to show the existence and uniqueness of solutions for differential and integral equations.

Definition 1.1.2. Let C be a nonempty subset of a Banach space X. A mapping T :

C → C is called nonexpansive if

∥Tx− Ty∥ ≤ ∥x− y∥ for all x, y ∈ C.

The famous fixed point theorem for nonexpansive mappings have first studied by

Browder [2] and Göhde [3] in Banach spaces as follows:

Theorem 1.1.2. Let X be a uniformly convex Banach space and C be a nonempty closed

convex bounded subset of X. Then every nonexpansive mapping T : C → C has a fixed

point.

However, the Picard iteration does not converge in general or, even if it converges,

its limit is not a fixed point of T

Example 1.1.3. Let C = [0, 1] and T : C → C defined by T (x) = 1− x for all x ∈ [0, 1].

Then T is nonexpansive, T has a unique fixed point, F (T ) = {1/2}. But, for any x0 =

a ̸= 1/2, the Picard iteration yields an oscillatory sequence a, 1− a, a, 1− a, ... .

Many researchers have been trying to find conditions to guarantee the existence of

fixed points for nonexpansive mappings. Moreover, the fixed point theory for mappings

which are more general than nonexpansive mappings is also interesting.

We now consider a class of mappings that properly includes the class of nonexpansive

mappings with fixed points.

Definition 1.1.3. Let C be a nonempty subset of Banach spaces X and T : C → C be an

operator that has at least one fixed point p ∈ C. Then T is said to be a quasi-nonexpansive

mapping if

||Tx− p|| ≤ ||x− p|| for all x ∈ C, p ∈ F (T ).
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It is easy to see that a nonexpansive mapping with at least one fixed point is quasi-

nonexpansive and a linear quasi-nonexpansive is nonexpansive.

Construction of fixed point iteration methods of nonlinear mappings is an important

subject in the theory of nonlinear mappings, and finds application in a number of applied

areas. Now, fixed point iteration methods for approximating fixed point of nonexpansive

mappings and generalized nonexpansive mappings in various spaces have been studied by

many mathematicians.

The following classical iteration methods are often used to approximate a fixed point

of a mapping T . In 1953, Mann [4] introduced the following iteration method which was

referred to as Mann iteration for approximating a fixed point of T .

Let C be a nonempty subset of Banach spaces X and T : C → C be a self-map.

The sequence {xn}∞n=1 ⊆ C defined by

xn+1 = (1− αn)xn + αnTxn, for all n ∈ N, (1.1)

where x1 ∈ C and {αn} is a sequence of real number in [0, 1]. He proved a weak conver-

gence for a nonexpansive mapping under the control conditions {αn} is chosen such that∑∞
n=1 αn(1 − αn) = ∞. For αn = λ (constant), the Mann iteration (1.1) reduces to the

so-called Krasnoselskij iteration [5] that is

xn+1 = (1− λ)xn + λTxn, for all n ∈ N, (1.2)

In 1967, Halpern [6] introduced the modified Mann iteration as follows: a sequence

{xn}∞n=1 ⊆ C defined by x1 ∈ C and

xn+1 = (1− αn)u+ αnTxn, for all n ∈ N, (1.3)

where u ∈ C are arbitrarily chosen and {αn} is a sequence in [0, 1]. Such a iteration

is called the Halpern Iteration. He proved, in a real Hilbert space, the sequence {un}

converges strongly to a fixed point of T where αn := n−a, a ∈ (0, 1). In 1977, Lions [7]

obtained a strong convergence provide the sequence {αn} satisfies the control conditions

limn→∞ αn = 0,
∑∞

n=1 αn = ∞ and limn→∞
αn−αn−1

α2
n

= 0. However, The concept of

Halpern iteration has been widely used to approximate the fixed points of nonexpansive

mappings (see, for instance, [8, 9, 10, 11, 12]).

In 1974, Ishikawa [13] introduced a generalization of Mann iteration, which is

called the Ishikawa iteration, as follows: a sequence {xn}∞n=1 ⊆ C defined by x1 ∈ C and yn = (1− βn)xn + βnTxn,

xn+1 = (1− αn)xn + αnTyn, for all n ∈ N,
(1.4)
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where {αn} and {βn} are sequences in [0, 1]. The Ishikawa iteration was first used to

establish the strong convergence to a fixed point for a Lipschitzian, pseudo-contractive

and nonexpansive mapping of a compact convex subset of a Hilbert space.

In 2007, Agarwal, ORegan and Sahu [14] introduced the S-iteration process in a

Banach space, a sequence {xn}∞n=1 ⊆ C defined by x1 ∈ C and yn = (1− βn)xn + βnTxn,

xn+1 = (1− αn)Txn + αnTyn, for all n ∈ N,
(1.5)

where {αn} and {βn} are sequences in [0, 1]. They showed that their process is independent

of those of Mann and Ishikawa and converges faster than both of these for asymptotically

nonexpansive mappings. (see [14], Proposition 3.1).

The problem of finding common fixed points is now has been extensively studied

by mathematicians. To deal with a fixed point problem of two nonlinear mappings, there

have been several ways appeared in the literature.

In 2011, Suthep Suantai [15] introduced the following iteration. Let C be a nonempty

subset of Banach spaces X and S, T : C → C be a self-map. The sequence {xn}∞n=1 ⊆ C

defined by x1 ∈ C and yn = (1− βn)xn + βnTxn,

xn+1 = (1− αn)yn + αnSyn, for all n ∈ N,
(1.6)

where {αn} and {βn} are sequences in [0, 1]. They proved some weak and strong conver-

gence results for approximating common fixed points of two nonexpansive self-mappings.

1.2 Some Convergence Theorems for Fixed Point Iterative Methods

Defined by Admissible Function

In the previous section, we stated elementary concepts, notations and a brief history

of fixed point theory of nonexpansive mappings and quasi-nonexpansive mapping.

This section, we talk about a new approach of fixed point iterative methods, based

on the concept of admissible functions (see Definition 1.2.1) of a self operator. The theory

of admissible functions of an operator opened a new direction of research and unified the

most important aspects of the iterative approximation of fixed point for single valued self

operators. A general fixed point iterative method defined by means of the new concept of

admissible function was introduced by Rus in 2012 ([16]).

Definition 1.2.1. ([16, 17, 18]) Let X be a nonempty set. A mapping G : X ×X → X

is called an admissible function if it satisfies
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(G1) G(x, x) = x, for all x ∈ X and

(G2) G(x, y) = x implies y = x, for x, y ∈ X.

In 2013, Berinde [17] introduced a iterative algorithm in terms of admissible func-

tions, which is called the Krasnoselskij algorithm corresponding to G or the GK-algorithm.

Definition 1.2.2. Let X be a nonempty set, G : X ×X → X be an admissible function

and T : X → X be an operator. Then the iterative algorithm {xn} ⊆ X given by x1 ∈ X

and

xn+1 = G(xn, T (xn)), n ∈ N. (1.7)

is called the Krasnoselskij algorithm corresponding to G or the GK-algorithm.

He proved some strong and weak convergence theorems for a Krasnoselskij type

fixed point iterative method defined by admissible function for nonexpansive mapping on

Hilbert spaces. He obtained the following result (Theorem 1.2.1 and 1.2.2).

Definition 1.2.3. ([17]) Let C be a nonempty subset of Banach space X and T : C → C

be a self-map. A mapping T is called demicompact if every bounded {xn} in C such that

{xn − Txn} is strongly convergent, then there exists a subsequence {xnk
} of {xn} which

is strongly convergent.

Definition 1.2.4. ([17]) Let H be a Hilbert space and T : H → H be an operator with

Fix(T ) ̸= ∅. We say that the admissible mapping G : H ×H → H has the property (C)

with respect to T if there exists λ ∈ (0, 1) such that

∥G(x, Tx)− p∥2 ≤ λ2∥x− p∥2 + (1− λ)2∥Tx− p∥2 + 2λ(1− λ) < Tx− p, x− p >

for all x ∈ X and p ∈ Fix(T ).

Theorem 1.2.1. ([17]) Let C be a closed convex bounded subset of a Hilbert space H

and T : C → C be a nonexpansive and demicompact operator. Then the set Fix(T ) is a

nonempty convex set. Moreover, if G : H ×H → H is an admissible function which has

the property (C), then the GK-algorithm {xn}∞n=1 given by x1 ∈ C and

xn+1 = G(xn, Txn), n ∈ N

converges(strongly) to a fixed point of T in C.

In next theorem, he removed the demicompactness assumption and a defined new

property, which is call affine Lipschitzian, and have a new result for the GK-algorithm.
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Definition 1.2.5. ([18]) Let G : X × X → X be an admissible function on a normed

space X. We say that G is affine Lipschitzian if there exist a constant µ ∈ [0, 1] such that

∥G(x1, y1)−G(x2, y2)∥ ≤ ∥µ(x1 − x2) + (1− µ)(y1 − y2)∥,

for all x1, x2, y1 and y2 in X.

Theorem 1.2.2. ([17]) Let C be a closed convex bounded subset of a Hilbert space H

and T : C → C be a nonexpansive operator. If G : H ×H → H is a affine Lipschitzian

admissible function which has the property (C), then the GK-algorithm {xn}∞n=1 given by

x1 ∈ C and

xn+1 = G(xn, Txn), n ∈ N

converges weakly to a fixed point of T in C.

The following year, Berinde proved some convergence theorems for a GK-algorithm

of a nonlinear φ-pseudocontractive operator defined on a closed convex subset of a Hilbert

space and obtain the result in [18].

Definition 1.2.6. ([18]) Let H be a real Hilbert space and C be a nonempty subset

of H. An operator T : C → C is said to be (strictly) φ-pseudocontractive if, for given

a, b, c ∈ R+ with a + b + c = 1, there exist a (comparison) function φ : R+ → R+ such

that

a · ∥x− y∥2 + b < Tx− Ty, x− y > +c∥Tx− Ty∥2 ≤ φ2(∥x− y∥),

holds, for all x, y ∈ C.

Theorem 1.2.3. ([18]) Let C be a nonempty closed and convex subset of a real Hilbert

space C and T : C → C a strictly φ-pseudocontractive. Then

1. T has a unique fixed point p in C;

2. If G : H × H → H is a affine Lipschitzian admissible function which constant

λ ∈ (0, 1), then the GK-algorithm {xn}∞n=1 given by x1 ∈ C and

xn+1 = G(xn, Txn), n ∈ N

converges (strongly) to p, for any x1 ∈ C

This result unifies and generalizes many convergence theorems in the existing liter-

ature.
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The thesis consists of four chapters. Chapter 1 introduces the concepts and the aim

of the research. Chapter 2 deals with some basic concepts, preliminaries and some useful

results that will be used in the later chapter. Chapter 3 states and proves the main results

of the research and the concluded in Chapter 4.
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