
CHAPTER 2

Basic and Preliminaries

The purpose of this chapter is to collect notations, terminologies and elementary

results used throughout the thesis.

2.1 Metric Spaces, Convex Metric Spaces and Convex Prestructure

Definition 2.1.1. Let X be a nonempty set and d be a real-valued function defined on

X ×X satisfying

(D1) d(x, y) ≥ 0 for each x, y ∈ X;

(D2) d(x, y) = 0 if and only if x = y;

(D3) d(x, y) = d(y, x) for each x, y ∈ X;

(D4) d(x, y) ≤ d(x, z) + d(z, y) for each x, y, z ∈ X.

Then d is called a distance or metric on X, and X together with d is called a metric space

which will be denoted by (X, d).

Example 2.1.1.

1. The Euclidian space Rn with

d(x, y) =

[
n∑

i=1

(xi − yi)
2

] 1
2

,

for each x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ Rn, is a metric space. The metric

d is called the usual metric for Rn.

2. Let X be a nonempty set and for x, y ∈ X define a metric d by

d(x, y) =


0 if x = y

1 if x ̸= y.

Then (X, d) is a metric space, called a discrete space.

8



3. Let X be the set of continuous functions from [a, b] to R. We define a metric d by

d(f, g) = max
x∈[a,b]

|f(x)− g(x)| for all f, g ∈ X.

Then (X, d) is a metric space and usually denoted by C[a, b].

Definition 2.1.2. A sequence {xn} in a metric space (X, d) is said to be convergent if

there exists a point x ∈ X such that limn→∞ d(xn, x) = 0. In this case, we write either

limn→∞ xn = x or xn → x.

Definition 2.1.3. A sequence {xn} in a metric space (X, d) is said to be Cauchy if there

exists a sequence {αn} of nonnegative real numbers such that d(xm, xn) ≤ αn (m > n)

and limn→∞ αn = 0.

Definition 2.1.4. A metric space (X, d) is said to be complete if every Cauchy sequence

in X converges to a point in X.

Proposition 2.1.2. Every convergent sequence in a metric space is a Cauchy sequence.

Theorem 2.1.3 (Double Extract Subsequence Principle). Let {xn} be a sequence in a

metric space (X, d) and x ∈ X. If for any subsequence {xni} of {xn} there exists a

subsequence {xnij
} of {xni} converging to x, then limn→∞ xn = x.

Proposition 2.1.4. Let C be a nonempty subset of a metric space (X, d). Then

1. C is closed if and only if {xn} ⊂ C and xn → x imply x ∈ C.

2. C is compact if and only if any sequence {xn} of C has a subsequence {xnk
} which

converges to a point of C.

Definition 2.1.5. Let X and Y be metric spaces and T be a mapping of X into Y . Then

T is said to be continuous at x0 in X if xn → x0 ⇒ Txn → Tx0. A mapping T of X into

Y is continuous if it is continuous at each x in X.

In 1970, Takahashi [19] introduced the concept of convex metric spaces by using the

convex structure as follows:

Definition 2.1.6. Let (X, d) be a metric space. A mapping W : X ×X × [0, 1] → X is

said to be a convex structure on X if for each x, y ∈ X and λ ∈ [0, 1],

d(z,W (x, y, λ)) ≤ λd(z, x) + (1− λ)d(z, y) for all z ∈ X.

A metric space (X, d) together with a convex structure W is called a convex metric space

which will be denoted by (X, d,W ).
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A nonempty subset C of X is said to be convex if W (x, y, λ) ∈ C for all x, y ∈ C

and λ ∈ [0, 1]. It is easy to see that open and closed balls are convex and the intersection

of a family of convex subsets of X is also convex; see [19]. A function f : X → R is said

to be convex if f(W (x, y, λ)) ≤ λf(x) + (1− λ)f(y) for all x, y ∈ X and λ ∈ (0, 1).

Clearly, a normed space and each of its convex subsets are convex metric spaces,

but the converse does not hold. (see more details in [19, 20].)

In 1979, Gudder [21] introduced the concept of convexity for any nonempty set.

Definition 2.1.7. A convex prestructure is a nonempty set S together with a map F :

[0, 1] × S × S → S and a convex structure is a convex prestructure (S, F ) in witch F

satisfies the following five conditions.

(P1) F (λ, x, y) = F (1− λ, y, x) for every λ ∈ [0, 1] and x, y ∈ S,

(P2) F (λ, x, F (µ, y, z)) = F (λ+(1−λ)µ, F (λ(λ+(1−λ)µ)−1, x, y), z) for every λ, µ ∈ [0, 1]

with λ+ (1− λ)µ ̸= 0 and x, y, z ∈ S,

(P3) F (λ, x, x) = x for every λ ∈ [0, 1] and x ∈ S,

(P4) F (0, x, y) = y for every x, y ∈ S,

(P5) If F (λ, x, y) = F (λ, x, z) for some λ ̸= 1, x ∈ S, then y = z.

2.2 Banach Spaces and Useful Properties

The concept of a norm comes from thinking of vectors as follows. A norm on a

vector space is function that assigns th each vector a length. There are some obvious

properties that such a function should be required to have. Here are the definitions.

Definition 2.2.1. Let X be a vector space. A norm on X is a real-valued function ∥ · ∥

on X such that the following conditions are satisfied by all members x and y of X and

each scalar α:

(N1) ∥x∥ ≥ 0 ,

(N2) ∥x∥ = 0 if and only if x = 0,

(N3) ∥αx∥ = |α|∥x∥,

(N4) ∥x+ y∥ ≤ ∥x∥+ ∥y∥.
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A norm on X defines a metric d on X which is given by

d(x, y) = ∥x− y∥

and is called the metric induced by the norm. The normed space just defined by (X, ∥ · ∥)

or simply by X. A Banach space is a complete normed space (complete in the metric

defined by the norm).

For later use we notice that (N4) implies

|∥x∥ − ∥y∥ ≤ ∥x− y∥.

This formula implies an important property of the norm, that is, x 7→ ∥x∥ is con-

tinuous mapping of normed space X into R.

Example 2.2.1.

1. Euclidean space Rn and unitary space Cn. They are Banach spaces with norm

defined by

∥x∥ =

[
n∑

i=1

|xi|2
] 1

2

,

for x = (x1, x2, . . . , xn) ∈ Rn and Cn.

In fact, Rn and Cn are complete with metric induced by the norm

d(x, y) = ∥x− y∥ =

[
n∑

i=1

(xi − yi)
2

] 1
2

,

for each x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ Rn and Cn.

2. Space C[a,b]. Let C[a, b] be the set of continuous functions from [a, b] to R. This

space is a Banach space with norm given by

∥f∥ = max
x∈[a,b]

|f(x)|, for each f ∈ C[a, b].

Then C[a, b] is complete with metric induced by the norm

d(f, g) = ∥f − g∥ = max
x∈[a,b]

|f(x)− g(x)|, for all f, g ∈ C[a, b].

3. Space lp. Let p ≥ 1 be a fixed real number. By definition, each element in the

space lp is a sequence x = (x1, x2, . . . ) such that

∞∑
i=1

|xi|p < ∞.
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It is a Banach space with norm given by

∥x∥ =

[ ∞∑
i=1

|xi|p
] 1

p

.

In fact, this norm induces the metric

d(x, y) = ∥x− y∥ =

[ ∞∑
i=1

|xi − yi|p
] 1

p

, for all x, y ∈ lp.

Definition 2.2.2. A sequence {xn} in a normed space X is said to be strongly convergent

(or convergent in the norm) if there exists a point x ∈ X such that limn→∞ ∥xn−x∥ = 0.

In this case, we write either limn→∞ xn = x or xn → x and we say that {xn} converges

strongly to x.

Definition 2.2.3. A nonempty subset C of a normed space X is said to be convex if

λx+ (1− λ)y ∈ C for all x, y ∈ C and λ ∈ (0, 1).

Definition 2.2.4. Let X be a normed space. A function f : X → (−∞,∞) is said to be

convex if f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) for all x, y ∈ X and t ∈ (0, 1).

Of special interest are operators which ”preserve” the two algebraic operations of

vector space, in the sense of the following definition.

Definition 2.2.5. (Linear Operator) Let X and Y be vector spaces. A linear operator

from X into Y is a function T : X → Y such that the following two condition are satisfied

whenever x, y ∈ X and α ∈ F:

1. T (x+ y) = T (x) + T (y)

2. T (αx) = αT (x).

If F is viewed as a one-dimentional vector space, then a linear operator from X into

F is called a linear functional or linear form on X. Observe the notation; we write Tx

instead of T (x); this simplification is standard in function analysis.

Example 2.2.2.

1. Identity operator. The identity operator Ix : X → X is defined by Ix(x) = x for

all x ∈ X. We also write simply I for Ix.

2. Zero operator. The zero operator 0 : X → Y is defined by 0(x) = 0 for all x ∈ X.
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3. Differentiation. Let X be the vector space of all polynomials on [a, b]. We may

define a linear operator T on X by setting

Tx(t) = x′(t).

Definition 2.2.6. Let X,Y be a normed spaces and T : X → Y a linear operator. The

operator T is said to be bounded if there is a real number c > 0 such that for all x ∈ X,

∥Tx∥ ≤ c∥x∥.

The collection of all bounded linear operators from X into Y is denoted by B(X,Y )

and B(X,F) for the collection of all bounded linear functional from X into F.

Example 2.2.3.

1. Identity operator. The identity operator I : X → X on a normed space X ̸= {0}

is bounded and has ∥I∥ = 1.

2. Zero operator. The zero operator 0 : X → Y on a normed space X is bounded

and has norm ∥0∥ = 0.

3. Differentiation. Let X be the normed space of all polynomials on [0, 1] with norm

given ∥x∥ = max |x(t)|, t ∈ [0, 1]. A differentiation operator T is defined on X by

Tx(t) = x′(t),

where the prime denotes differentiation with respect to t. This operator is linear

but not bounded. Indeed, let xn(t) = tn, where n ∈ N. Then ∥xn∥ = 1 and

Txn(t) = ntn−1,

so that ∥Txn∥ = n and ∥Txn∥/∥xn∥ = n. Since n ∈ N is arbitrary, this shows that

there is no fixed number c such that ∥Txn∥/∥xn∥ ≤ c.

Definition 2.2.7. Let X be a normed space. The dual space of X is the normed space

B(X,F) of all bounded linear functional on X with the norm defined by

∥T∥ = sup
x∈X,x ̸=0

|Tx|
∥x∥

, for each T ∈ B(X,F)

This space is denoted by X∗.

If X is a normed space and Y is a Banach space, then B(X,Y ) is a Banach space.

Letting Y = F in this result produces this theorem
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Theorem 2.2.4. ([22]) If X is a norm space, then X∗ is a Banach space.

Example 2.2.5.

1. The dual space of Rn is Rn.

2. The dual space of l1 is l∞.

3. The dual space of lp is lq, where 1 < p < ∞ and 1/p+ 1/q = 1

The topology induced by a norm is quiet strong in the sense that it has many

open sets. Indeed, in order that each bounded sequence in X has a norm convergent

subsequence, it is necessary and sufficient that X be finite dimensional. This fact leads

us to consider other weaker topologies on normed spaces which are related to the linear

structure of the spaces to search for subsequential extraction principles. So it is worthwhile

to define the weaker topology for a normed space X.

Definition 2.2.8. A sequence {xn} in a normed space X is said to be weakly convergent

if there exists a point x ∈ X such that limn→∞ f(xn) = f(x) for all f ∈ X∗. In this case,

we write either w − limn→∞ xn = x or xn ⇀ x and we say that {xn} converges weakly to

x.

Proposition 2.2.6. ([23]) Let {xn} be a sequence in a normed space X such that xn → x.

Then xn ⇀ x.

Lemma 2.2.7. ([24]) Let {xn} be a weakly convergent sequence in a normed space X,

say, xn → x. Then:

1. The weak limit x of {xn} is unique.

2. Every subsequence of {xn} converges weakly to x.

3. The sequence {∥xn∥} is bounded.

Definition 2.2.9. Let X be a normed space. The second dual space or double dual space

of X is the dual space (X∗)∗ of X∗ and denoted by X∗∗.

To each x ∈ X and g ∈ X∗∗, which is a linear function defined on X∗, by choosing

a fixed x ∈ X and setting

g(f) = gx(f) = f(x), for each f ∈ X∗.
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This defines a mapping

C : X → X∗∗

x 7→ gx.

C is called the canonical mapping of X into X∗∗. It can be shown that the canonical

mapping C is isomorphism of X onto the range R(C) ⊆ X∗∗.

Definition 2.2.10. A normed space X is said to be reflexive if

R(C) = X∗∗,

where C : X → X∗∗ is the canonical mapping.

Theorem 2.2.8. ([22]) If a norm space X is reflexive, then X is a Banach space.

A subset C of X is weakly closed if it is closed in the weak topology, that is, if it

contains the weak limit of all of its weakly convergent sequences. The weakly open sets

are now taken as those sets whose complements are weakly closed. The resulting topology

on X is called the weak topology on X. Sets which are compact in this topology are said

to be weakly compact.

Theorem 2.2.9. ([25]) Let X be a Banach space. Then X is reflexive if and only if every

closed convex bounded subset of X is weakly compact.

Lemma 2.2.10. ([23]) Let X be a Banach space. Then the following are equivalent.

1. X is reflexive.

2. X∗ is reflexive.

3. Every bounded sequence in X has a weakly convergent subsequence.

4. Whenever {Cn} is a sequence of nonempty bounded closed convex sets in X such

that Cn+1 ⊂ Cn for each n, it follows that
∩∞

n=1Cn ̸= ∅.

The basic property of a norm of a Banach space X is that it is always convex, i.e.,

∥(1− λ)x+ λy∥ ≤ (1− λ)∥x∥+ λ∥y∥, for all x, y ∈ X and λ ∈ [0, 1].

A number of Banach spaces do not have equality when x ̸= y, i.e.,

∥(1− λ)x+ λy∥ < (1− λ)∥x∥+ λ∥y∥, for all x, y ∈ X,x ̸= y and λ ∈ [0, 1].
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We use Sx to denote the unit sphere SX = {x ∈ X : ∥x∥ = 1} on Banach space X.

If x, y ∈ SX with x ̸= y, then we have

∥(1− λ)x+ λy∥ < 1, for all λ ∈ (0, 1),

which say that the unit sphere SX contains no line segments. This suggests strict convexity

of norm.

Definition 2.2.11. A Banach space X is said to be strictly convex if x, y ∈ SX with

x ̸= y, then

∥(1− λ)x+ λy∥ < 1, for all λ ∈ (0, 1).

This says that the midpoint (x + y)/2 of two distinct points x and y in the unit sphere

SX of X does not lie on SX . In other words, if x, y ∈ SX with ∥x∥ = ∥y∥ = ∥(x+ y)/2∥,

then x = y.

Example 2.2.11.

1. Consider X = Rn, n ≥ 2 with norm ∥x∥2 defined by

∥x∥2 =

[
n∑

i=1

x2i

] 1
2

, for x = (x1, x2, . . . , xn) ∈ Rn.

Then X is strictly convex.

2. Consider X = Rn, n ≥ 2 with norm ∥x∥1 defined by

∥x∥1 = |x1|+ |x2|+ · · ·+ |xn|, for x = (x1, x2, . . . , xn) ∈ Rn.

Then X is not strictly convex. To see it, let

x = (1, 0, 0, . . . , 0) and y = (0, 1, 0, . . . , 0).

It easy to see that x ̸= y, ∥x∥1 = 1 = ∥y∥1, but ∥x+ y∥1 = 2.

3. Consider X = Rn, n ≥ 2 with norm ∥x∥∞ defined by

∥x∥∞ = max1≤i<n|xi|, for x = (x1, x2, . . . , xn) ∈ Rn.

Then X is not strictly convex. Indeed, for x = (1, 0, 0, . . . , 0) and y = (1, 1, 0, . . . , 0).

we have, x ̸= y, ∥x∥∞ = 1 = ∥y∥∞, but ∥x+ y∥∞ = 2.

In such spaces, we have no information about 1− ∥(x+ y)/2∥, the distance of mid-

points from the unit sphere SX . A stronger property than strict convexity that provides

information about the distance 1− ∥(x− y)/2∥ is uniform convexity.
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Definition 2.2.12. A Banach space X is said to be uniformly convex if for any ϵ, 0 <

ϵ ≤ 2, the inequalities ∥x∥ ≤ 1, ∥y∥ ≤ 1 and ∥x− y∥ ≥ ϵ imply there exists a δ = δ(ϵ) > 0

such that ∥(x+ y)/2∥ ≤ 1− δ.

Example 2.2.12.

1. The Banach space lp with 1 < p < ∞ is uniformly convex.

2. The spaces l1,l∞ and C[a, b] are not uniformly convex.

We derive some consequences from the definition of uniform convexity.

Theorem 2.2.13. ([23]) Every uniformly convex Banach space is strictly convex.

For the class of uniform convex Banach spaces, we have the following important

results:

Theorem 2.2.14. ([23]) Every uniformly convex Banach space is reflexive.

Theorem 2.2.15. ([26]) Let r > 0 be a fixed real number. Then a Banach space X

is uniformly convex if and only if there is a continuous strictly increasing convex map

g : [0,∞) → [0,∞) with g(0) = 0 such that for all x, y ∈ Br = {x ∈ X : ∥x∥ ≤ r},

∥λx+ (1− λ)y∥2 ≤ λ∥x∥2 + (1− λ)∥y∥2 − λ(1− λ)g(∥x− y∥)

for all λ ∈ [0, 1].

Theorem 2.2.16. ([23] , Theorem 2.3.13) Let X be a uniformly convex Banach space

and let {tn} be a sequence of real numbers in (0, 1) bounded away from 0 and 1. Let {xn}

and {yn} be two sequences in X such that

lim sup
n→∞

∥xn∥ ≤ a, lim sup
n→∞

∥yn∥ ≤ a and lim sup
n→∞

∥tnxn + (1− tn)yn∥ = a

for some a ≥ 0. Then limn→∞ ∥xn − yn∥ = 0.

Definition 2.2.13. Let C be a nonempty subset of Banach space X, v ∈ X and T : C →

X a mapping. Then T is said to be demiclosed at v if for any sequence {xn} in C the

following implication holds:

xn ⇀ u ∈ C and Txn −→ v imply Tu = v.

Definition 2.2.14. A Banach space X is said to satisfy the Opial condition if whenever

a sequence {xn} in X converges weakly to x0 ∈ X, then

lim sup
n−→∞

∥xn − x0∥ < lim sup
n−→∞

∥xn − x∥ for all x ∈ X,x ̸= x0.
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Theorem 2.2.17. ([27]) Let X be a uniformly convex Banach space satisfying the Opial

condition and C a nonempty closed convex subset of X. If T : C −→ C is a nonexpansive

mapping. Then I − T is demiclosed with respect to zero.

2.3 Hilbert spaces and Useful Lemmas

The spaces to be considered in this section are defined as follows.

Definition 2.3.1. Let X be a vector space. A inner product on X is a mapping of X×X

into the scalar field K of X; that is, with every pair of vectors x and y there is associated

a scalar which is written

⟨x, x⟩

and is called inner product of x and y, such that for all members x, y and z of X and each

scalar α we have

(H1) ⟨x, x⟩ ≥ 0 and ⟨x, x⟩ = 0 ⇔ x = 0.

(H2) ⟨αx, y⟩ = α⟨x, y⟩,

(H3) ⟨x+ y, z⟩ = ⟨x, z⟩+ ⟨y, z⟩,

(H4) ⟨x, y⟩ = ⟨y, x⟩,

An inner product on X defines a norm on X given by

∥x∥ =
√

⟨x, x⟩

and a metric on X given by

d(x, y) = ∥x− y∥ =
√

⟨x− y, x− y⟩

Hence inner product spaces are normed spaces, and Hilbert space is a complete inner

product space, that is Hilbert spaces are Banach spaces.

In (H3), the bar denotes complex conjugation. Consequently, if X is a real vector

space, we simply have

⟨x, y⟩ = ⟨y, x⟩

and from (H2) to (H3) we obtain the formula

1. ⟨αx+ βy, z⟩ = α⟨x, z⟩+ β⟨y, z⟩.

2. ⟨x, αy⟩ = α⟨x, y⟩,
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3. ⟨x, αy + βz⟩ = α⟨x, y⟩+ β⟨x, z⟩.

Example 2.3.1.

1. Euclidean space Rn. The space Rn is a Hilbert space with inner product defined

by

⟨x, y⟩ = x1y1 + · · ·+ xnyn

where x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) ∈ Rn.

In fact, we obtain

∥x∥ =
√

⟨x, x⟩ =

[
n∑

i=1

x2i

] 1
2

,

and from this the Euclidean metric defined by

d(x, y) = ∥x− y∥ =
√

⟨x− y, x− y⟩ =

[
n∑

i=1

(xi − yi)
2

] 1
2

.

2. Unitary space Cn. The space Cn is a Hilbert space with inner product given by

⟨x, y⟩ = x1y1 + · · ·+ xnyn

where x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) ∈ Cn.

In fact, we obtain the norm defined by

∥x∥ =
√

⟨x, x⟩ =

[
n∑

i=1

|xi|2
] 1

2

.

3. Space C[a,b]. The space C[a, b] is not an inner product space, hence not a Hilbert

space.

4. Space l2. The space l2 is a Hilbert space with inner product defined by

⟨x, y⟩ =
∞∑
i=1

xiyi.

where x = (x1, x2, . . . ) and y = (y1, y2, . . . ) ∈ l2.

In fact, the norm is defined by

∥x∥ =
√

⟨x, x⟩ =

[ ∞∑
i=1

|xi|2
] 1

2

.

5. Space lp. The space lp with p ̸= 2 is not an inner product space, hence not a Hilbert

space.
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Theorem 2.3.2. (parallelogram law) For any inner product space X, the following holds:

∥x+ y∥2 + ∥x− y∥2 = 2∥x∥2 + 2∥y∥2 for allx, y ∈ X.

Lemma 2.3.3. (Schwarz inequality) Let X be a inner product space. If x, y ∈ X, then

|⟨x, y⟩| ≤ ∥x∥∥y∥.

Theorem 2.3.4. ([24]) Every Hilbert space H is reflexive

Theorem 2.3.5. ([24]) Let {xn} be a sequence in Hilbert space H, xn ⇀ x if and only if

⟨xn, z⟩ → ⟨x, z⟩ for all z in H

Lemma 2.3.6. ([28]) Let x, y and z be points in a Hilbert space and λ ∈ [0, 1] then

∥λx+ (1− λ)y − z∥2 = λ∥x− z∥2 + (1− λ)∥y − z∥2 − λ(1− λ)∥x− y∥2.

Lemma 2.3.7. ([29]) Let x, y be points in a real Hilbert space then

∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩.

Lemma 2.3.8. ([30]) Let H be a Hilbert space, C be a closed convex subset of H and

S : C → C be a nonexpansive mapping such that F (T ) ̸= ∅. Let {zt} be a sequence given

by for a fixed number t ∈ (0, 1), a point u ∈ C and

zt = tu+ (1− t)Szt.

Then the strong limt→0zt exists and is a fixed point of S.

If X is a uniformly smooth Banach space, Reich [31] proved that strong limt→0zt

exists and is a fixed point of S.

Lemma 2.3.9. ([32]) Let {sn} be a sequence of nonnegative real number satisfying

sn+1 ≤ (1− αn)sn + αnβn + γn, n ≥ 0,

where {αn}, {βn} and {γn} satisfy the condition:

1. {αn} ⊆ [0, 1] and Σnαn = ∞,

2. lim supn→∞ βn ≤ 0

3. γn ≥ 0 and Σnγn < ∞.

Then limn→∞sn = 0.
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