
CHAPTER 3

Admissible Functions and Convergence Theorems

In this chapter, we study fixed point theorem for nonexpansive mapping and quasi-

nonexpansive mapping in Banach spaces as follows: Section 3.1 contains the definition of

admissible function and iterative algorithms in terms of admissible functions. Section 3.2

contains the convergence theorems for fixed point iterative methods defined by admissible

function for nonexpansive mapping and quasi-nonexpansive mapping.

3.1 Admissible Functions and Iterative Algorithms in Terms of Admis-

sible Functions

In the previous sections, we have introduced the admissible functions. We will now

give some of their examples:

Example 3.1.1. Let X = R with usual metric d and G : R× R → R defined by

G(x, y) =


x if x = y

2x2y
x2+y2

if x ̸= y.

Then G is an admissible function.

Example 3.1.2. Let (X,+,R) be a real vector space, C ⊆ X a convex subset, λ ∈ (0, 1)

and G : C × C → C defined by

G(x, y) = (1− λ)x+ λy, x, y ∈ C.

It is easy to see that G satisfies conditions G1 and G2, then G is an admissible function.

Example 3.1.3. Let (X,+,R) be a real vector space, C ⊆ X a convex subset, χ : C×C →

(0, 1) and G : C × C → C defined by

G(x, y) = (1− χ(x, y))x+ χ(x, y)y, x, y ∈ X

It is clear that G is an admissible function.
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Example 3.1.4. Let (X,+,R) be a real vector space, C ⊆ X a convex subset, n ∈ N and

Gn : C × C → C defined by

Gn(x, y) = (1− 1

n
)x+

1

n
y, x, y ∈ C.

Thus, for each n ∈ N, we have Gn is an admissible function.

Example 3.1.5. Let (X, d) be a metric space endowed with a W-convex structure of

Takahashi (see Definition 2.1.6). Here W : X × X × [0, 1] → X is an operator with the

following property

d(u,W (x, y, λ)) ≤ λd(u, x) + (1− λ)d(u, y),∀x, y, u ∈ X,λ ∈ [0, 1].

We additionally suppose that λ ∈ (0, 1) and G(x, y) := W (x, y, λ). Let x, y ∈ X and

λ ∈ (0, 1), we have

d(u,W (x, x, λ)) ≤ λd(u, x) + (1− λ)d(u, x) = d(u, x).

Choose u = x, then d(x,W (x, x, λ)) = 0. That is G(x, x) = W (x, x, λ) = x.

Now we suppose x = G(x, y) = W (x, y, λ), then

d(u, x) = d(u,W (x, y, λ)) ≤ λd(u, x) + (1− λ)d(u, y).

Thus,

(1− λ)d(u, x) = (1− λ)d(u, y),

and choose u = x, then d(x, y) = 0. That is x = y.

Therefore G(x, y) := W (x, y, λ) with λ ∈ (0, 1) is an admissible function.

Example 3.1.6. LetX be a nonempty set endowed with an F -convex structure of Gudder

(see Definition 2.1.7), where F : [0, 1]×X×X → X is an operator satisfies the conditions

(P1)-(P5). We additionally suppose that λ ∈ (0, 1) and G(x, y) := F (λ, x, y). It is easy

to see the conditions [P3] and [P5] implies G is an admissible function.

It is clear that the iterations in example 3.1.1, 3.1.2, 3.1.3, 3.1.5 and example 3.1.6

are GK-algorithms. Now we will introduce another representation of iterative algorithms

in terms of admissible functions.

Definition 3.1.1. (GM-algorithm) Let Gn : X ×X → X be an admissible function for

n ∈ N and T : X → X be an operator. Then the iterative algorithm {xn} ⊆ X given by

x1 ∈ X and

xn+1 = Gn(xn, T (xn)), n ∈ N (3.1)

is called the Mann algorithm corresponding to Gn or the GM-algorithm.
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It is easy to see that example 3.1.4 is the GM-algorithm and in the particular

case when C is a nonempty convex subset of a Banach space X and Gn(xn, Txn) =

(1 − λn)xn + λnTxn with {λn} ⊆ [0, 1] for n ∈ N, we have that {xn} ⊆ C, where

xn+1 = Gn(xn, Txn), is a usual Mann iteration.

Definition 3.1.2. (GH-algorithm) Let Gn : X × X → X be admissible functions for

n ∈ N and T : X → X be an operator. Then the iterative algorithm {xn} ⊆ X given by

x1 ∈ X, u ∈ X and

xn+1 = Gn(u, Txn), n ∈ N (3.2)

is called the Halpern algorithm corresponding to Gn or the GH-algorithm.

When C is a nonempty convex subset of a Banach spaceX, u ∈ X andGn(xn, Txn) =

(1 − λn)u + λnTxn with {λn} ⊆ [0, 1] for n ∈ N, then we have {xn} ⊆ C, where

xn+1 = Gn(u, Txn), is a usual Halpern iteration.

Definition 3.1.3. (GI-algorithm) Let G1
n, G

2
n : X ×X → X be admissible functions for

n ∈ N and T : X → X be an operator. Then the iterative algorithm {xn} ⊆ X given by

x1 ∈ X and  yn = G2
n(xn, Txn),

xn+1 = G1
n(xn, T yn), n ∈ N,

(3.3)

is called the Ishikawa algorithm corresponding to G1
n and G2

n or the GI-algorithm.

In this case, when C is a nonempty convex subset of a Banach spaceX, G2
n(xn, Txn) =

(1− βn)xn + βnTxn and G1
n(xn, T (G

2
n(xn, Txn))) = (1−αn)xn +αnT (G

2
n(xn, Txn)) with

{αn}, {βn} are sequence of real number in [0, 1] for n ∈ N. The sequence {xn} ⊆ C

generated by xn+1 = G1
n(xn, T yn), where yn = G2

n(xn, Txn) is a usual Ishikawa iteration.

Definition 3.1.4. (GS-algorithm) Let G1
n, G

2
n : X ×X → X be admissible functions for

n ∈ N and T : X → X be an operator. Then the iterative algorithm {xn} ⊆ X given by

x1 ∈ X and  yn = G2
n(xn, Txn),

xn+1 = G1
n(Txn, T yn), n ∈ N,

(3.4)

is called the S-algorithm corresponding to G1
n and G2

n or the GS-algorithm.

We see that when C is a nonempty convex subset of a Banach spaceX, G2
n(xn, Txn) =

(1 − βn)xn + βnTxn and G1
n(Txn, T (G

2
n(xn, Txn))) = (1 − αn)Txn + αnT (G

2
n(xn, Txn))

with {αn}, {βn} are sequence of real number in [0, 1] for n ∈ N. The sequence {xn} ⊆ C

generated by xn+1 = G1
n(Txn, T yn), where yn = G2

n(xn, Txn) is a S-iteration.
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Definition 3.1.5. (GC-algorithm) Let G1
n, G

2
n : X ×X → X be admissible functions for

n ∈ N and S, T : X → X be operators. Then the iterative algorithm {xn} ⊆ X given by

x1 ∈ X and  yn = G2
n(xn, Txn),

xn+1 = G1
n(yn, Syn), n ∈ N,

(3.5)

is called the Common algorithm corresponding to G1
n and G2

n or the GC-algorithm.

If G2
n(xn, T (xn)) = (1−βn)xn+βnTxn and G1

n(G
2
n(xn, T (xn)), S(G

2
n(xn, T (xn)))) =

(1−αn)G
2
n(xn, T (xn))+αnS(G

2
n(xn, T (xn))) with {αn}, {βn} are sequence of real number

in [0, 1] for n ∈ N and C is a nonempty convex subset of a Banach space X. The sequence

{xn} ⊆ C generated by xn+1 = G1
n(yn, S(yn)), where yn = G2

n(xn, Txn) is a common fixed

point iteration.

3.2 Convergence Theorems for Fixed Point Iterative Methods Defined

by Admissible Function

In this section, we find control conditions for iterative methods defined by admissible

function to converge to fixed points.

First, recall that let G be an admissible function on a normed space X. We say that

G is affine Lipschitzian if there exist a constant µ ∈ [0, 1] such that

∥G(x1, y1)−G(x2, y2)∥ ≤ ∥µ(x1 − x2) + (1− µ)(y1 − y2)∥,

for all x1, x2, y1, y2 in X and it is clear that an admissible function in example 3.1.2 is

affine Lipschitzian.

We begin with the GK-algorithm of nonexpansive mapping in a uniformly convex

Banach space.

Theorem 3.2.1. Let C be a closed convex bounded subset of a uniformly convex Banach

space X and T : C → C be a nonexpansive and demicompact mapping. If G : C ×C → C

is an affine Lipschitzian admissible function which constant λ ∈ (0, 1). Then the GK-

algorithm {xn}∞n=1 given by x1 ∈ C and

xn+1 = G(xn, Txn), n ∈ N

converges(strongly) to a fixed point of T in C.

Proof. By Theorem 1.1.2, F (T ) is nonempty set. Let p ∈ F (T ). We first show that

the sequence {xn − Txn} converges strongly to zero. Since G is an affine Lipschitzian
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admissible function and T is nonexpansive, we have

∥xn+1 − p∥ = ∥G(xn, Txn)−G(p, p)∥

≤ ∥λ(xn − p) + (1− λ)(Txn − p)∥

≤ λ∥(xn − p)∥+ (1− λ)∥(Txn − p)∥

≤ λ∥(xn − p)∥+ (1− λ)∥(xn − p)∥

= ∥xn − p∥.

That is limn→∞ ∥xn − p∥ exist. Suppose that limn→∞ ∥xn − p∥ = a, then

lim sup
n→∞

∥Txn − p∥ ≤ lim
n→∞

∥xn − p∥ = a

and since

a = lim
n→∞

∥xn+1 − p∥ ≤ lim
n→∞

∥λ(xn − p) + (1− λ)(Txn − p)∥ ≤ lim
n→∞

∥xn − p∥ = a,

we have

lim
n→∞

∥λ(xn − p) + (1− λ)(Txn − p)∥ = a

By Theorem 2.2.16, we get

lim
n→∞

∥xn − Txn∥ = 0.

This shows that xn − Txn → 0. Since T is demicompact and {xn} is bounded in C, it

follows that there exist a subsequence {xnk
} ⊆ C of {xn} and q ∈ C such that

lim
n→∞

xnk
= q.

But T is nonexpansive, hence continuous. This implies

lim
n→∞

Txnk
= Tq.

That is

0 = lim
n→∞

(xnk
− Txnk

) = q − Tq.

This means that q is a fixed point of T and since limn→∞ ∥xn−q∥ = limn→∞ ∥xnk
−q∥ = 0.

Therefore, {xn} converges strongly to a fixed point of T in C.

We now consider a class of mappings that properly includes the class of nonexpansive

mappings with fixed points, that is quasi-nonexpansive mappings. The following example

shows that there exists a nonlinear continuous quasi-nonexpansive mapping that is not

nonexpansive.
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Example 3.2.2. Let X = l∞ with ∥x∥∞ = supi∈N|xi|, C = BX = {x ∈ l∞ : ∥x∥∞ ≤ 1}

and T : C → C a mapping define by

Tx = (0, x21, x
2
2, x

2
3, . . . ) for x = (x1, x2, x3, . . . ) ∈ C.

It is clear that T is continuous mapping with unique fixed point 0 in C. Moreover,

∥Tx− 0∥∞ = ∥(0, x21, x22, x23, . . . )∥∞ ≤ ∥(0, x1, x2, x3, . . . )∥∞ = ∥x− p∥∞,

for all x ∈ C. Then T is quasi-nonexpansive. However, for x = (12 ,
1
2 ,

1
2 , . . . ) and y =

(34 ,
3
4 ,

3
4 , . . . ), we have

∥Tx− Ty∥∞ = ∥(0, 5

16
,
5

16
,
5

16
, . . . )∥∞ =

5

16
>

1

4
= ∥x− y∥∞.

Then T is not nonexpansive mapping.

A condition that ensures strong convergence of iterative sequences to fixed points

of quasi-nonexpansive type mappings was introduced in [23].

Definition 3.2.1. Let C be a nonempty subset of a Banach space X and T : C →

C a mapping with F (T ) ̸= ∅. Then T is said to satisfy Condition I if there exist a

nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0, f(t) > t for t ∈ (0,∞) such

that

∥x− Tx∥ ≥ f(d(x, F (T ))),

where d(x, F (T )) = inf{∥x− p∥ : p ∈ F (T )}.

Example 3.2.3. Let C be a nonempty subset of a Banach space X and T : C → C a

mapping such that

∥Tx− Ty∥ ≤ a∥x− y∥+ b∥x− Tx∥+ c∥y − Ty∥

for all x, y ∈ C, where a, b, c ≥ 0 with a+ b+ c ≤ 1/2 and F (T ) ̸= ∅.

Let p ∈ F (T ), then

∥Tx− p∥ ≤ a∥x− p∥+ b∥x− Tx∥ ≤ ∥x− p∥+ b(∥x− p∥+ ∥p− Tx∥),

which implies that

∥Tx− p∥ ≤ a+ b

1− b
∥x− p∥ ≤ ∥x− p∥.

Hence T is quasi-nonexpansive. Observe that

∥Tx− p∥ ≥ |∥Tx− x∥ − ∥x− p∥| ≥ ∥x− p∥ − ∥x− Tx∥
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That is

a∥x− p∥+ b∥x− Tx∥ ≥ ∥x− p∥ − ∥x− Tx∥,

which gives

∥x− Tx∥ ≥ 1− a

1 + b
∥x− p∥.

Therefore, T is satisfies Condition I, where f(∥x− p∥) = 1−a
1+b∥x− p∥.

Next, we introduce a new property for the algorithms.

Definition 3.2.2. Let Gn : X ×X → X be an admissible function on a normed space X

for n ∈ N. We say that {Gn} is sequentially affine Lipschitzian if there exist a sequence

of real number {αn} in [0, 1] such that

∥Gn(x1, y1)−Gn(x2, y2)∥ ≤ ∥αn(x1 − x2) + (1− αn)(y1 − y2)∥,

for all x1, x2, y1 and y2 in X.

It is easy to see that admissible functions in example 3.1.2 and 3.1.4 are sequentially

affine Lipschitzian. In the particular case when Gn(x, y) = (1− αn)x+ αny with {αn} ⊆

[0, 1] and n ∈ N, we have {Gn} is sequentially affine Lipschitzian.

We prove the strong convergence of the GM-iteration for quasi-nonexpansive map-

pings satisfying Condition I.

Theorem 3.2.4. Let C be a closed convex subset of a uniformly convex Banach space X

and T : C → C be a continuous quasi-nonexpansive mapping with satisfies Condition I. If

{Gn} is sequentially affine Lipschitzian with a sequence {αn} which is bounded away from

0 and 1. Then the GM-algorithm {xn}∞n=1 given by x1 ∈ C and

xn+1 = Gn(xn, Txn), n ∈ N

converges(strongly) to a fixed point of T in C.

Proof. Let p ∈ F (T ). Since {Gn} is sequentially affine Lipschitzian and T is quasi-

nonexpansive, we have

∥xn+1 − p∥ = ∥Gn(xn, Txn)−Gn(p, p)∥

≤ ∥αn(xn − p) + (1− αn)(Txn − p)∥

≤ αn∥(xn − p)∥+ (1− αn)∥(Txn − p)∥

≤ αn∥(xn − p)∥+ (1− αn)∥(xn − p)∥

= ∥xn − p∥.
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Using the same proof as in Theorem 3.2.1, we can show that limn→∞ ∥xn − Txn∥ = 0.

Because for p ∈ F (T ), ∥xn+1 − p∥ ≤ ∥xn − p∥, it follows that

d(xn+1, F (T )) ≤ d(xn, F (T )).

Since T satisfies condition I, we have

∥xn − Txn∥ ≥ f(d(xn, F (T ))), n ≥ 0.

This implies, limn→∞ d(xn, F (T )) = 0. Then for each ϵ > 0, there exist n0 ∈ N such that

d(xn, F (T )) < ϵ/2 for all n ≥ n0.

Consider, for n,m ≥ n0. So there is a p ∈ F (T ) such that d(xn0 , p) < ϵ/2, we have

∥xn − xm∥ ≤ ∥xn − p∥+ ∥xm − p∥ ≤ 2∥xn0 − p∥ < ϵ.

Thus, {xn} is a Cauchy sequence and by completeness of X, we have limn→∞ xn = q for

some q ∈ C. Since T is continuous and limn→∞ ∥xn − Txn∥ = 0. Therefore, q ∈ F (T )

implies that {xn} converges strongly to a fixed point of T in C.

Now, we will work on Hilbert space with GH-algorithm and find a new condition

for convergence of this algorithm.

Definition 3.2.3. Let Gn : X ×X → X be a admissible function on a normed space X

for n ∈ N. We say that Gn has the property (C*) if there exist a sequence of real number

αn in [0, 1] such that

∥Gn(x1, y1)−Gn−1(x2, y2)∥ ≤ ∥(αnx1 − αn−1x2) + ((1− αn)y1 − (1− αn−1)y2)∥,

for all x1, x2, y1 and y2 in X.

It is clear that admissible functions in example 3.1.2 and 3.1.4 have the property

(C*) and if αn = λ(constant), then the property (C*) is an affine Lipschitzian property.

Theorem 3.2.5. Let C be a closed convex subset of a real Hilbert space H and T : C → C

be a nonexpansive mapping with F (T ) ̸= ∅. If Gn : H ×H → H is an admissible function

which has the property (C*) for each n ∈ N and {Gn} is sequentially affine Lipschitzian

with {αn} satisfying the following conditions:

1. limn→∞ αn = 0,

2. Σ∞
n=0αn = ∞,
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3. limn→∞
αn−αn−1

αn
= 0.

Then the GH-algorithm {xn}∞n=1 given by x1 ∈ C, u ∈ C and

xn+1 = Gn(u, Txn), n ∈ N,

converges(strongly) to a fixed point of T in C.

Proof. Let q ∈ F (T ) and since {Gn} is sequentially affine Lipschitzian, we get

∥xn+1 − q∥ = ∥Gn(u, Txn)−Gn(q, q)∥

≤ ∥αn(u− q) + (1− αn)(Txn − q)∥

≤ αn∥(u− q)∥+ (1− αn)∥(xn − q)∥

≤ αn(max{∥u− q∥, ∥xn − q∥}) + (1− αn)(max{∥u− q∥, ∥xn − q∥})

≤ max{∥u− q∥, ∥xn − q∥}.

Since

∥xn∥ − ∥q∥ ≤ ∥xn+1 − q∥ and ∥Txn∥ − ∥q∥ ≤ ∥Txn+1 − q∥ ≤ ∥xn+1 − q∥.

Then by induction, we have

∥xn+1 − q∥ ≤ max{∥u− q∥, ∥x1 − q∥}, n ∈ N.

Therefore, {xn} and {Txn} are bounded.

We next use Lemma 2.3.8 to show lim supn→∞⟨u − p, zn − p⟩ ≤ 0, where zn =

αnu+ (1− αn)Txn and p = limt→0 zt such that zt = tu+ (1− t)Tzt, t ∈ (0, 1).

The boundedness of {Txn} also implies that {zn} is bounded and since T nonex-

pansive, thus {Tzn} is bounded. By Lemma 2.3.7, we have
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∥zt − zn∥2 = ∥t(u− zn) + (1− t)(Tzt − zn)∥2

≤ (1− t)2∥Tzt − zn∥2 + 2t⟨u− zn, zt − zn⟩

= (1− t)2∥Tzt − Tzn + Tzn − zn∥2 + 2t⟨u− zn + zt − zt, zt − zn⟩

≤ (1− t)2(∥Tzt − Tzn∥+ ∥Tzn − zn∥)2 + 2t(∥zt − zn∥2 + ⟨u− zt, zt − zn⟩)

= (1− 2t+ t2)(∥Tzt − Tzn∥2 + 2∥Tzt − Tzn∥∥Tzn − zn∥+ ∥Tzn − zn∥2)

+2t∥zt − zn∥2 + 2t⟨u− zt, zt − zn⟩

≤ (1− 2t+ t2)(∥zt − zn∥2 + 2∥zt − zn∥∥Tzn − zn∥+ ∥Tzn − zn∥2)

+2t∥zt − zn∥2 + 2t⟨u− zt, zt − zn⟩

= (1 + t2)∥zt − zn∥2 + 2(1− t)2∥zt − zn∥∥Tzn − zn∥+ (1− t)2∥Tzn − zn∥2

+2t⟨u− zt, zt − zn⟩

= (1 + t2)∥zt − zn∥2 + (1− t)2∥Tzn − zn∥(2∥zt − zn∥+ ∥Tzn − zn∥)

+2t⟨u− zt, zt − zn.⟩

Hence

⟨u− zt, zn − zt⟩ ≤ t

2
∥zt − zn∥2 +

(1− t)2

2t
∥Tzn − zn∥(2∥zt − zn∥+ ∥Tzn − zn∥)

≤ t

2
∥zt − zn∥2 +

1

2t
∥Tzn − zn∥(2∥zt − zn∥+ ∥Tzn − zn∥). (3.6)

Since Gn has the property (C*) and {Gn} is sequentially affine Lipschitzian, we have that

∥xn+1 − Txn∥ = ∥Gn(u, Txn)−Gn(Txn, Txn)∥

≤ ∥αn(u− Txn) + (1− αn)(Txn − Txn)∥

= αn∥u− Txn∥ → 0, as n → ∞ (3.7)

and

∥xn+1 − xn∥ = ∥Gn(u, Txn)−Gn−1(u, Txn−1)∥

≤ ∥(αnu− αn−1u) + ((1− αn)Txn − (1− αn−1)Txn−1))∥

= ∥(αn − αn−1)(u− Txn−1) + (1− αn)(Txn − Txn−1)∥

≤ |αn − αn−1|∥u− Txn−1∥+ (1− αn)∥Txn − Txn−1∥

≤ (1− αn)∥xn − xn−1∥+ |αn − αn−1|M

≤ (1− αn)∥xn − xn−1∥+ αnβn,
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where M := supn≥1 ∥u − Txn−1∥ and βn := M |αn−αn−1|
αn

. By assumptions and {Txn} is

bounded, then M < ∞ and βn → 0. Hence by Lemma 2.3.9 we get ∥xn+1 − xn∥ → 0.

This together with (3.7) implies that limn→∞ ∥xn − Txn∥ = 0. Consider

∥zn − Tzn∥ = ∥αnu+ (1− αn)Txn − Tzn∥

≤ αn∥u− Txn∥+ ∥Txn − Tzn∥

≤ αn∥u− Txn∥+ ∥xn − zn∥

= αn∥u− Txn∥+ ∥xn − αnu− (1− αn)Txn∥

≤ 2αn∥u− Txn∥+ ∥xn − Txn∥. (3.8)

Since limn→∞ ∥xn − Txn∥ = 0, we have limn→∞ ∥zn − Tzn∥ = 0.

By taking lim sup as n → ∞ in (3.6), we can conclude that

lim sup
n→∞

⟨u− zt, zn − zt⟩ ≤ lim sup
n→∞

t

2
∥zt − zn∥2,

and since limt→0 zt = p, we get

lim sup
n→∞

⟨u− p, zn − p⟩ ≤ 0. (3.9)

Lastly, we show that {xn} converges strongly to p. By Lemma 2.3.8, implies p is fixed

point of T . So

∥xn+1 − p∥2 = ∥Gn(u, Txn)−Gn(p, p)∥2

≤ ∥αn(u− p) + (1− αn)(Txn − p)∥2

≤ (1− αn)
2∥Txn − p∥2 + 2αn⟨u− p, (1− αn)(Txn − p) + αn(u− p)⟩

= (1− αn)
2∥Txn − p∥2 + 2αn⟨u− p, αnu+ (1− αn)Txn − p⟩

= (1− αn)
2∥Txn − p∥2 + 2αn⟨u− p, zn − p⟩

≤ (1− αn)∥Txn − p∥2 + 2αn⟨u− p, zn − p⟩,

for every n ∈ N. Thus Lemma 2.3.9 and (3.9) imply limn→∞ xn = p.

We show that GI-algorithm with only sequentially affine Lipschitzian property con-

verges weakly on Hilbert space.

Theorem 3.2.6. Let C be a closed convex bounded subset of a Hilbert space H and

T : C → C be a nonexpansive mapping. If G1
n, G

2
n : H ×H → H are admissible function

for all n ∈ N and {G1
n}, {G2

n} are sequentially affine Lipschitzian with {αn} and {βn}

respectively, and suppose that

lim sup
n→∞

αn < 1 and 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1.
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Then the GI-algorithm {xn}∞n=1 given by x1 ∈ X and yn = G2
n(xn, Txn),

xn+1 = G1
n(xn, T yn), n ∈ N,

converges weakly to a fixed point of T .

Proof. By Theorem 1.1.2, F (T ) is nonempty and convex set. Let us consider p ∈ F (T ),

{G2
n} is sequentially affine Lipschitzian with {βn} and T is nonexpansive mapping, we

have

∥yn − p∥ = ∥G2
n(xn, Txn)−G2

n(p, p)∥

≤ ∥βn(xn − p) + (1− βn)(Txn − p)∥

≤ βn∥xn − p∥+ (1− βn)∥xn − p∥

≤ ∥xn − p∥,

and since {G1
n} is sequentially affine Lipschitzian with {αn}, we have

∥xn+1 − p∥ = ∥G1
n(xn, T yn)−G1

n(p, p)∥

≤ ∥αn(xn − p) + (1− αn)(Tyn − p)∥

≤ αn∥xn − q∥+ (1− αn)∥yn − p∥

≤ αn∥xn − q∥+ (1− αn)∥xn − p∥

≤ ∥xn − q∥,

which shows that limn→∞ ∥xn − p∥ is exist. By Lemma 2.3.6, we get

∥yn − p∥2 = ∥G2
n(xn, Txn)−G2

n(p, p)∥2

≤ ∥βn(xn − p) + (1− βn)(Txn − p)∥2

= βn∥xn − p∥2 + (1− βn)∥xn − p∥2 − βn(1− βn)∥xn − Txn∥2

= ∥xn − p∥2 − βn(1− βn)∥xn − Txn∥2,

and

∥xn+1 − p∥2 = ∥G1
n(xn, T yn)−G1

n(p, p)∥2

≤ ∥αn(xn − p) + (1− αn)(Tyn − p)∥2

= αn∥xn − p∥2 + (1− αn)∥Tyn − p∥2 − αn(1− αn)∥xn − Tyn∥2

≤ αn∥xn − p∥2 + (1− αn)∥yn − p∥2

≤ αn∥xn − p∥2 + (1− αn)(∥xn − p∥2 − βn(1− βn)∥xn − Txn∥2)

= ∥xn − p∥2 − βn(1− αn)(1− βn)∥xn − Txn∥2.
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Thus

βn(1− αn)(1− βn)∥xn − Txn∥2 ≤ ∥xn − p∥2 − ∥xn+1 − p∥2.

By the control conditions on {αn} and {βn}, we get limn→∞ ∥xn − p∥ exists, therefore

limn→∞ ∥xn − Txn∥ = 0.

Next, we show that if {xnj}j∈N converges weakly to p0 ∈ C, then p0 is a fixed point

of T . Consider

∥xnj − Tp0∥ ≤ ∥xnj − Txnj∥+ ∥Txnj − Tp0∥ ≤ ∥xnj − Txnj∥+ ∥xnj − p0∥,

that is

lim sup
j→∞

(∥xnj − Tp0∥ − ∥xnj − p0∥) ≤ lim sup
j→∞

∥xnj − Txnj∥ = 0. (3.10)

By definition of inner product, we have

∥xnj − Tp0∥2 = ∥(xnj − p0) + (p0 − Tp0)∥2

= ∥xnj − p0∥2 + ∥p0 − Tp0∥2 + 2⟨xnj − p0, p0 − Tp0⟩,

This together with xnj ⇀ p0 as j → ∞, we obtain

lim
j→∞

(∥xnj − Tp0∥2 − ∥xnj − p0∥2) = ∥p0 − Tp0∥2

Since C is bounded, the sequence {∥xnj −Tp0∥−∥xnj − p0∥}, {∥xnj −Tp0∥+ ∥xnj − p0∥}

are bounded, and by equation (3.10) we get

∥p0 − Tp0∥2 = lim
j→∞

((∥xnj − Tp0∥ − ∥xnj − p0∥)(∥xnj − Tp0∥+ ∥xnj − p0∥)) ≤ 0.

Therefore, p0 ∈ F (T ).

Lastly, we show that {xn} converges weakly to a fixed point of T . Let g : F (T ) →

[0,∞) defined by

g(p) = lim
n→∞

∥xn − p∥,

since ∥xn+1 − p∥ ≤ ∥xn − p∥ for each n ∈ N, which shows that the function g is well

defined and it’s clear that g is a continuous convex function on F (T ). Let

d0 = inf{g(p) : p ∈ F (T )}.

For each ϵ > 0, we define

Fϵ = {y ∈ F (T ) : g(y) ≤ d0 + ϵ},
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by definition of infimum and C is bounded, we have Fϵ is nonempty closed convex bounded

subset of H. Therefore
∩

ϵ>0 Fϵ ̸= ∅ by Lemma 2.2.10. Let

F0 = {y ∈ Fix(T ) : g(y) = d0},

it is easy to see that F0 =
∩

ϵ>0 Fϵ. Moreover, F0 contains exactly one point. Indeed, let

q0, q1 ∈ F0 such that q0 ̸= q1,λ ∈ (0, 1) and qλ = (1− λ)q0 + λq1, that is

(d0)
2 = (g(qλ))

2

= lim
n→∞

∥qλ − xn∥2

= lim
n→∞

∥λq1 + (1− λ)q0 − xn∥2

= lim
n→∞

∥λ(q1 − xn) + (1− λ)(q0 − xn)∥2

= lim
n→∞

(λ2∥q1 − xn∥2 + (1− λ)2∥q0 − xn∥2 + 2λ(1− λ) < q1 − xn, q0 − xn >)

= lim
n→∞

(λ2∥q1 − xn∥2 + (1− λ)2∥q0 − xn∥2 + 2λ(1− λ)∥q1 − xn∥∥q0 − xn∥)

+ lim
n→∞

(2λ(1− λ) < q1 − xn, q0 − xn > −2λ(1− λ)∥q1 − xn∥∥q0 − xn∥)

= lim
n→∞

(λ∥q1 − xn∥+ (1− λ)∥q0 − xn∥)2

+ lim
n→∞

(2λ(1− λ) < q1 − xn, q0 − xn > −2λ(1− λ)∥q1 − xn∥∥q0 − xn∥)

= (λd0 + (1− λ)d0)
2

+ lim
n→∞

(2λ(1− λ) < q1 − xn, q0 − xn > −2λ(1− λ)∥q1 − xn∥∥q0 − xn∥)

= (d0)
2 + lim

n→∞
(2λ(1− λ) < q1 − xn, q0 − xn > −2λ(1− λ)∥q1 − xn∥∥q0 − xn∥).

Hence

lim
n→∞

(2λ(1− λ) < q1 − xn, q0 − xn > −2λ(1− λ)∥q1 − xn∥∥q0 − xn∥) = 0,

since limn→∞ ∥q1 − xn∥ = d0 = limn→∞ ∥q0 − xn∥, that is

lim
n→∞

< p1 − xn, p0 − xn >= (d0)
2.

Therefore

∥q1 − q0∥2 = lim
n→∞

∥(q1 − xn) + (xn − q0)∥

= lim
n→∞

(∥p1 − xn∥2 + ∥xn − p0∥2 − 2 < p1 − xn, p0 − xn >)

= (d0)
2 + (d0)

2 − 2(d0)
2 = 0,

giving a contradiction. Since {xnj} converges weakly to p ∈ F (T ), we have

∥xnj − q0∥2 = ∥xnj − p+ p− q0∥2 = ∥xnj − p∥2 + ∥p− q0∥2 − 2 < xnj − p, p− q0 >,
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thus

(d0)
2 = lim

j→∞
∥xnj − q0∥2 = (g(p))2 + ∥p− q0∥2 − 0,

and since (g(p))2 ≥ (d0)
2, then ∥p − q0∥2 = 0, that is p = q0. Therefore {xn} converges

weakly to a fixed point of T .

Theorem 3.2.7. Let X be a uniformly convex Banach space that satisfies Opials con-

dition, C be a nonempty closed convex subset of X and T : C → C be a nonexpansive

mapping with F (T ) ̸= ∅. Let G1
n, G

2
n : X ×X → X be admissible functions for n ∈ N and

{G1
n}, {G2

n} are sequentially affine Lipschitzian with {αn} and {βn} respectively. Sup-

pose that lim supn→∞ αn < 1 and 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1. Then the

GS-algorithm {xn}∞n=1 given by x1 ∈ X and yn = G2
n(xn, Txn),

xn+1 = G1
n(Txn, T yn), n ∈ N,

converges weakly to a fixed point of T .

Proof. Let p ∈ F (T ). By using the same proof as in Theorem 3.2.6, we can show that

∥yn − p∥ ≤ ∥xn − p∥. Since {G1
n} is sequentially affine Lipschitzian with {αn} and T is

nonexpansive mapping, we get

∥xn+1 − p∥ = ∥G1
n(Txn, T yn)−G1

n(p, p)∥

≤ ∥αn(Txn − p) + (1− αn)(Tyn − p)∥

≤ αn∥xn − q∥+ (1− αn)∥yn − p∥

≤ αn∥xn − q∥+ (1− αn)∥xn − p∥

≤ ∥xn − q∥,

therefore, limn→∞ ∥xn−p∥ is exist and hence {xn} is bounded. By Theorem 2.2.15, there

is a continuous strictly increasing convex mapping g with g(0) = 0 such that

∥yn − p∥2 = ∥G2
n(xn, Txn)−G2

n(p, p)∥2

≤ ∥βn(xn − p) + (1− βn)(Txn − p)∥2

≤ βn∥xn − p∥2 + (1− βn)∥xn − p∥2 − βn(1− βn)g(∥xn − Txn∥)

= ∥xn − p∥2 − βn(1− βn)g(∥xn − Txn∥),
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and

∥xn+1 − p∥2 = ∥G1
n(Txn, T yn)−G1

n(p, p)∥2

≤ ∥αn(Txn − p) + (1− αn)(Tyn − p)∥2

≤ αn∥xn − p∥2 + (1− αn)∥yn − p∥2 − αn(1− αn)g(∥Txn − Tyn∥)

≤ αn∥xn − p∥2 + (1− αn)∥yn − p∥2

≤ αn∥xn − p∥2 + (1− αn)(∥xn − p∥2 − βn(1− βn)g(∥xn − Txn∥))

= ∥xn − p∥2 − βn(1− αn)(1− βn)g(∥xn − Txn∥).

Thus

βn(1− αn)(1− βn)g(∥xn − Txn∥) ≤ ∥xn − p∥2 − ∥xn+1 − p∥2.

This implies by the control conditions on αn and βn, we get

lim
n→∞

g(∥xn − Txn∥) = 0.

Then limn→∞ ∥xn − Txn∥ = 0. Because {xn} is bounded in X, it follows that {xn} has

a weakly convergent subsequence {xnj}. Suppose {xnj} converges weakly to p ∈ C. By

Theorem 2.2.17, I − T is demiclosed at zero, from limn→∞ ∥xn − Txn∥ = 0, we have

(I − T )p = 0, so that p ∈ F (T ).

Next, we show that {xn} converges weakly to a fixed point of T . Suppose there

exist another subsequence {xnk
} of {xn} that converges weakly to some q ∈ F (T ) such

that q ̸= p. Since X satisfies the Opials condition, we have

lim
n→∞

∥xn − p∥ = lim
j→∞

∥xnj − p∥ < lim
j→∞

∥xnj − q∥ = lim
n→∞

∥xn − q∥,

and

lim
n→∞

∥xn − q∥ = lim
j→∞

∥xnj − q∥ < lim
j→∞

∥xnj − p∥ = lim
n→∞

∥xn − p∥,

a contradiction, hence p = q. Therefore {xn} converges weakly to p ∈ F (T ).

We next consider common fixed point of two nonexpansive mappings.

Theorem 3.2.8. Let C be a closed convex subset of a uniformly convex Banach space

X. Let S, T : C → C be two nonexpansive mappings such that one of the mappings

T and S satisfies Condition I and F (S) ∩ F (T ) ̸= ∅. If G1
n, G

2
n : H × H → H are

admissible function and {G1
n}, {G2

n} are sequentially affine Lipschitzian with {αn} and

{βn} respectively. Suppose that

0 < lim inf
n→∞

αn ≤ lim sup
n→∞

αn < 1 and 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1.
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Then the GC-algorithm {xn}∞n=1 given by x1 ∈ X and yn = G2
n(xn, Txn),

xn+1 = G1
n(yn, Syn), n ∈ N,

converges(strongly) to a common fixed point of S and T .

Proof. Let p ∈ F (S) ∩ F (T ). By using the same proof as in Theorem 3.2.6, we get

∥yn − p∥ ≤ ∥xn − p∥. Since T is nonexpansive mapping, we have

∥xn+1 − p∥ = ∥G1
n(yn, Syn)−G1

n(p, p)∥

≤ ∥αn(yn − p) + (1− αn)(Syn − p)∥

≤ αn∥yn − p∥+ (1− αn)∥yn − p∥

= ∥yn − p∥

≤ ∥xn − p∥.

Hence limn→∞ ∥xn − p∥ exist for any p ∈ F (S) ∩ F (T ). By Theorem 2.2.15, there exist a

continuous strictly increasing convex mapping g with g(0) = 0 such that

∥xn+1 − p∥2 = ∥G1
n(yn, T yn)−G1

n(p, p)∥2

≤ ∥αn(yn − p) + (1− αn)(Tyn − p)∥2

≤ αn∥yn − p∥2 + (1− αn)∥yn − p∥2 − αn(1− αn)g(∥Txn − Tyn∥)

≤ ∥yn − p∥2

= ∥G2
n(xn, Txn)−G2

n(p, p)∥2

≤ ∥βn(xn − p) + (1− βn)(Txn − p)∥2

≤ βn∥xn − p∥2 + (1− βn)∥xn − p∥2 − βn(1− βn)g(∥xn − Txn∥)

= ∥xn − p∥2 − βn(1− βn)g(∥xn − Txn∥),

which implies

βn(1− βn)g(∥xn − Txn∥) ≤ ∥xn − p∥2 − ∥xn+1 − p∥2.

By definition of g and condition of {βn}, we get limn→∞ ∥xn − Txn∥ = 0. Suppose that

limn→∞ ∥xn − p∥ = c and since ∥yn − p∥ ≤ ∥xn − p∥, we have

lim sup
n→∞

∥yn − p∥ ≤ c.

Also from ∥Syn − p∥ ≤ ∥yn − p∥, implies that

lim sup
n→∞

∥Syn − p∥ ≤ c.
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Moreover,

∥xn+1 − p∥ = ∥G1
n(yn, Syn)−G1

n(p, p)∥

≤ ∥αn(yn − p) + (1− αn)(Syn − p)∥

≤ ∥xn − q∥.

That is limn→∞ ∥αn(yn − p) + (1 − αn)(Syn − p)∥ = c. By Theorem 2.2.16, we have

limn→∞ ∥yn − Syn∥ = 0. Since

∥yn − xn∥ = ∥G2
n(xn, Txn)−G2

n(xn, xn)∥

≤ ∥βn(xn − xn) + (1− βn)(Txn − xn)∥,

= (1− βn)∥Txn − xn∥,

it implies that limn→∞ ∥yn − xn∥ = 0, and since

∥yn − Txn∥ = ∥G2
n(xn, Txn)−G2

n(Txn, Txn)∥

≤ ∥βn(xn − Txn) + (1− βn)(Txn − Txn)∥,

≤ βn∥xn − Txn∥,

we have limn→∞ ∥yn − Txn∥ = 0. Therefore

∥xn − Sxn∥ ≤ ∥xn − Txn∥+ ∥Txn − yn∥+ ∥yn − Syn∥+ ∥Syn − Sxn∥

≤ ∥xn − Txn∥+ ∥Txn − yn∥+ ∥yn − Syn∥+ ∥yn − xn∥,

and so limn→∞ ∥xn − Sxn∥ = 0. Thus from S, T satisfy condition I, we get

lim
n→∞

f(d(xn, F )) ≤ lim
n→∞

∥xn − Txn∥ = 0

or

lim
n→∞

f(d(xn, F )) ≤ lim
n→∞

∥xn − Sxn∥ = 0,

where F = F (S) ∩ F (T ). In both the cases, we have

lim
n→∞

f(d(xn, F )) = 0.

This implies limn→∞ d(xn, F ) = 0. By using the same proof as in Theorem 3.2.4, we can

conclude that {xn} converges(strongly) to a common fixed point of S and T .

Theorem 3.2.9. Let C be a closed convex subset of a uniformly convex Banach space X

that satisfies Opials condition and let S, T : C → C be two nonexpansive mappings with

F (S) ∩ F (T ) ̸= ∅. If {xn} be a sequence as in Theorem 3.2.8, then {xn}∞n=1 converges

weakly to a common fixed point of S and T .
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Proof. Let p ∈ F (S) ∩ F (T ), then limn→∞ ∥xn − Txn∥ = 0 and limn→∞ ∥xn − Sxn∥ = 0

as proved in Theorem 3.2.8. We prove that {xn} has a unique weak subsequential limit

in F (S) ∩ F (T ). Let u and v be weak limits of the subsequences {xni} and {xnj} of

{xn}, respectively. By Theorem 2.2.17, we get I − T and I − S are demiclosed at 0,

therefore we obtain Tu = u and Su = u. Similarly, we have Tv = v and Sv = v. That is

u, v ∈ F (S) ∩ F (T ).

Next, we prove the uniqueness. Since X satisfies the Opials condition and suppose

u ̸= v, then

lim
n→∞

∥xn − u∥ = lim
j→∞

∥xnj − u∥ < lim
j→∞

∥xnj − v∥ = lim
n→∞

∥xn − v∥,

and

lim
n→∞

∥xn − v∥ = lim
j→∞

∥xnj − v∥ < lim
j→∞

∥xnj − u∥ = lim
n→∞

∥xn − u∥.

This is a contradiction, hence u = v. Therefore {xn} converges weakly to a common fixed

point of S and T .
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