CHAPTER 3

Admissible Functions and Convergence Theorems

In this chapter, we study fixed point theorem for nonexpansive mapping and quasi-
nonexpansive mapping in Banach spaces as follows: Section 3.1 contains the definition of
admissible function and iterative algorithms in terms of admissible functions. Section 3.2
contains the convergence theorems for fixed point iterative methods defined by admissible

function for nonexpansive mapping and quasi-nonexpansive mapping.
3.1 Admissible Functions and Iterative Algorithms in Terms of Admis-
sible Functions

In the previous sections, we have introduced the admissible functions. We will now

give some of their examples:

Example 3.1.1. Let X = R with usual metric d and G : R x R — R defined by

x if x=y
G(z,y) = r
éx’# it Al

Then G is an admissible function.

Example 3.1.2. Let (X, +,R) be a real vector space, C' C X a convex subset, A € (0, 1)
and G : C' x C — C defined by

Glx,y)=1—-Nzx+ Xy, =z,y¢€C.
It is easy to see that G satisfies conditions G1 and G2, then G is an admissible function.

Example 3.1.3. Let (X, +,R) be areal vector space, C C X a convex subset, x : CxC —
(0,1) and G : C x C — C defined by

G(z,y) = (1 —x(@y)r+ x(z,v)y, z,y€X

It is clear that G is an admissible function.
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Example 3.1.4. Let (X, +,R) be a real vector space, C' C X a convex subset, n € N and
Gy : C x C = C defined by

1 1

Thus, for each n € N, we have GG, is an admissible function.

Example 3.1.5. Let (X,d) be a metric space endowed with a W-convex structure of
Takahashi (see Definition 2.1.6). Here W : X x X x [0,1] — X is an operator with the

following property
d(u, W(z,y,\)) < Ad(u,z) + (1 = Nd(u,y),Vz,y,u € X, A € [0,1].

We additionally suppose that A € (0,1) and G(z,y) := W(x,y,A). Let z,y € X and
A€ (0,1), we have

d(u, W(z,z,))) < M(u,z) + (1 — N)d(u,z) = d(u, z).
Choose u = z, then d(z, W(z,z,\)) = 0. That is G(z,z) = W(x,z,\) = x.
Now we suppose z = G(x,y) = W(z,y, A), then

d(u, z) = d(u, W(z,y,A)) < Ad(u, z) + (1 = N)d(u, y).
Thus,

(1= Nd(u, ) = (1 = A)d(u, y),

and choose u = x, then d(x,y) = 0. That is z = y.
Therefore G(z,y) :== W(z,y,\) with A € (0,1) is an admissible function.

Example 3.1.6. Let X be a nonempty set endowed with an F-convex structure of Gudder
(see Definition 2.1.7), where F : [0,1] x X x X — X is an operator satisfies the conditions
(P1)-(P5). We additionally suppose that A € (0,1) and G(z,y) := F(\, z,y). It is easy

to see the conditions [P3] and [P5] implies G is an admissible function.

It is clear that the iterations in example 3.1.1, 3.1.2, 3.1.3, 3.1.5 and example 3.1.6
are GK-algorithms. Now we will introduce another representation of iterative algorithms

in terms of admissible functions.

Definition 3.1.1. (GM-algorithm) Let G, : X x X — X be an admissible function for
n € Nand T : X — X be an operator. Then the iterative algorithm {z,} C X given by
z1 € X and

Tnt1 = Gp(zn, T(2y)), neN (3.1)

is called the Mann algorithm corresponding to G, or the GM-algorithm.
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It is easy to see that example 3.1.4 is the GM-algorithm and in the particular
case when C' is a nonempty convex subset of a Banach space X and G, (zp,Tz,) =
(1 = A)zn + NIz, with {\,} C [0,1] for n € N, we have that {z,} C C, where

ZTnt1 = Gp(xn, Txy), is a usual Mann iteration.

Definition 3.1.2. (GH-algorithm) Let G, : X x X — X be admissible functions for
n € Nand T : X — X be an operator. Then the iterative algorithm {z,,} C X given by
1 € X, u € X and

ZTpy1 = Gp(u,Txy,), neN (3.2)

is called the Halpern algorithm corresponding to G, or the GH-algorithm.

When C' is a nonempty convex subset of a Banach space X, v € X and G, (2, T'zy,) =
(1 = X\p)u + A\Tzp, with {A\,} C [0,1] for n € N, then we have {z,} C C, where

ZTnt1 = Gp(u, Txy,), is a usual Halpern iteration.

Definition 3.1.3. (GI-algorithm) Let G},G2 : X x X — X be admissible functions for
n € Nand T : X — X be an operator. Then the iterative algorithm {z,,} C X given by

x1 € X and

Yn = Gi(xn,Txn), (3.3)
LTn+1 = G}L(»TmTyn), nec Nu

is called the Ishikawa algorithm corresponding to G. and G2 or the GI-algorithm.

In this case, when C'is a nonempty convex subset of a Banach space X, G2 (z,, Try,) =
(1 — Bn)xn + BnTry and Gl (2, T(G2 (2, Txy))) = (1 — an)zn + anT(G? (20, Ty)) with
{an},{Bn} are sequence of real number in [0,1] for n € N. The sequence {z,} C C

generated by z,,41 = GL (2, Tyy), where y, = G2(x,, Tx,) is a usual Ishikawa iteration.

Definition 3.1.4. (GS-algorithm) Let GL, G2 : X x X — X be admissible functions for
n € Nand T : X — X be an operator. Then the iterative algorithm {z,,} C X given by

z1 € X and

Yn = Gi(fEna Tl’n), (3‘4)
Tn4+1 = G}L<T$N7Ty’n>7 nec N7

is called the S-algorithm corresponding to G and G? or the GS-algorithm.

We see that when C is a nonempty convex subset of a Banach space X, G2 (xz,,, Txzy,) =
(1 — Bp)xp + BuTxy and GL(Tz,, T(G?(zn, Txy))) = (1 — )Ty + anT(G? (2, Txy))
with {ay}, {Bn} are sequence of real number in [0, 1] for n € N. The sequence {z,} C C

generated by z,11 = GL(Txy,, Ty,), where y, = G%(x,, Tx,) is a S-iteration.
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Definition 3.1.5. (GC-algorithm) Let GL,G? : X x X — X be admissible functions for
n € Nand S,T: X — X be operators. Then the iterative algorithm {z,,} C X given by

z1 € X and

Yn = G%(xnaTZEn)»
(3.5)
Tpt+1l = G;(ymsfyn), ne N7

is called the Common algorithm corresponding to G and G? or the GC-algorithm.

If G2 (20, T(20)) = (1=Bn)Tn+BuTzn and GL(G? (zn, T(21)), S(G2 (2, T(1,)))) =
(1= )G (20, T(2n)) + @ S(G? (20, T(2,))) with {a, }, {8, } are sequence of real number
in [0, 1] for n € N and C is a nonempty convex subset of a Banach space X. The sequence
{x,} C C generated by z,,+1 = GL(yn, S(yn)), where y,, = G2(x,,, Tx,) is a common fixed

point iteration.

3.2 Convergence Theorems for Fixed Point Iterative Methods Defined
by Admissible Function

In this section, we find control conditions for iterative methods defined by admissible
function to converge to fixed points.
First, recall that let G be an admissible function on a normed space X. We say that

G is affine Lipschitzian if there exist a constant p € [0, 1] such that

1G (21, 91) — Gz, y2)l| < llp(zr = 22) + (1= p)(y1 = y2)ll,

for all z1,z9,y1,y2 in X and it is clear that an admissible function in example 3.1.2 is
affine Lipschitzian.
We begin with the GK-algorithm of nonexpansive mapping in a uniformly convex

Banach space.

Theorem 3.2.1. Let C' be a closed convex bounded subset of a uniformly convex Banach
space X and T : C — C be a nonexpansive and demicompact mapping. If G : Cx C — C
is an affine Lipschitzian admissible function which constant A € (0,1). Then the GK-

algorithm {x,}2° given by x1 € C and
Tnt1 = G(xp, Txry), neEN
converges(strongly) to a fized point of T in C.

Proof. By Theorem 1.1.2, F(T') is nonempty set. Let p € F(T). We first show that

the sequence {z,, — Tx,} converges strongly to zero. Since G is an affine Lipschitzian
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admissible function and T is nonexpansive, we have

[#ntr —pl = G(2n, Ten) = Gp,p)ll
< A@n = p) + (1 = (T = p)|
< Al@a =2l + A = NI(Tzn - p)l
< AMl(@n = p) I+ 1@ =)l —p)

ll#n —pl|.
That is lim, e |2 — p|| exist. Suppose that lim,, s« ||z, — p|| = a, then

limsup [T, — p|| < lim ||z, —p|| =a
n—00 n—oo

and since
a= lim |[[zp41 —pl| < lim [[A(zn —p) + (1 = A)(Tzn —p)|| < lim ||z, —pl| = a,
n—oo n—o0 n—oo

we have

lim A = p) + (1= \)(Tan ~ )| = a

n—o0

By Theorem 2.2.16, we get

lim |z, — Tz,| = 0.
n—oo

This shows that =, — Tx, — 0. Since T is demicompact and {x,} is bounded in C, it

follows that there exist a subsequence {x,, } C C of {z,} and ¢ € C such that
lim z,, =q.
n—oo

But T is nonexpansive, hence continuous. This implies

lim Txp, -=Tq.

n—oo

That is
0= lim (2, —Tay,,) =q—Tq.

n—oo
This means that ¢ is a fixed point of 7" and since lim,, o ||25 —¢|| = limy, o0 ||Zn, —¢|| = O.

Therefore, {z,} converges strongly to a fixed point of T in C. O

We now consider a class of mappings that properly includes the class of nonexpansive
mappings with fixed points, that is quasi-nonexpansive mappings. The following example
shows that there exists a nonlinear continuous quasi-nonexpansive mapping that is not

nonexpansive.
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Example 3.2.2. Let X =l with ||z]c = supien|zi|, C = Bx = {7 €l : ||7]|co < 1}
and T : C' — C' a mapping define by

Tx = (0,22 23,23,...) for & = (x1,29,23,...) € C.
It is clear that T is continuous mapping with unique fixed point 0 in C'. Moreover,

HTx - OHOO 3 H(O,ZU%«T%,JJ%, g )HOO 3 ”(0,-@17%2,«733, 5 )HOO . HJZ _p”007

for all x € C. Then T is quasi-nonexpansive. However, for x = (%, %, %, ...)and y =
(%,%,%,...), we have
Do) 40 ) T
Tax—T = — ... =— > = — .
T ~ Thloo = 100 gyt 153 oo =z > 7= lle e

Then T is not nonexpansive mapping.

A condition that ensures strong convergence of iterative sequences to fixed points

of quasi-nonexpansive type mappings was introduced in [23].

Definition 3.2.1. Let C be a nonempty subset of a Banach space X and T : C' —
C a mapping with F(T) # (). Then T is said to satisfy Condition I if there exist a
nondecreasing function f : [0,00) — [0,00) with f(0) = 0, f(¢t) > t for t € (0,00) such
that

lo =Tz = f(d(z, F(T))),

where d(z, F(T)) = inf{||z — p|| : p € F(T)}.

Example 3.2.3. Let C' be a nonempty subset of a Banach space X and T : C — C a
mapping such that

[Tz — Tyl < allz = yll + bllx = Tz|| + clly — Ty]|

for all z,y € C, where a,b,c > 0 with a + b+ ¢ < 1/2 and F(T) # 0.
Let p € F(T'), then

[Tz —pll < allz —pll +bllz = Tzl < ||z = pll + b(llz — pll + llp — T=|),

which implies that

b
T2 - pl| < &

< 3500w — pl < Jlz ol

Hence T is quasi-nonexpansive. Observe that
1Tz —pl| 2 [|Tz — = — ||z = pll| = [|o = pl| — ||z — T
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That is
allz —pl| + bz — Tz > [z — p|| — [z — Tz,

which gives

1-—
-T
o - Tall > 1

Therefore, T is satisfies Condition I, where f(|lx —pl||) = %ZHQU —pll-

ll = pll-

Next, we introduce a new property for the algorithms.

Definition 3.2.2. Let G, : X x X — X be an admissible function on a normed space X
for n € N. We say that {G,} is sequentially affine Lipschitzian if there exist a sequence

of real number {«,} in [0, 1] such that

[Gn(®1,91) = Grlz2,92)|| < llan(zr —22) + (1 — o) (y1 — y2) I,
for all z1,x2,y1 and yo in X.

It is easy to see that admissible functions in example 3.1.2 and 3.1.4 are sequentially
affine Lipschitzian. In the particular case when G, (z,y) = (1 — ay)z + ey with {ay,} C
[0,1] and n € N, we have {G,,} is sequentially affine Lipschitzian.

We prove the strong convergence of the GM-iteration for quasi-nonexpansive map-

pings satisfying Condition I.

Theorem 3.2.4. Let C be a closed convex subset of a uniformly conver Banach space X
and T : C — C be a continuous quasi-nonexrpansive mapping with satisfies Condition I. If
{G,} is sequentially affine Lipschitzian with a sequence {ap} which is bounded away from

0 and 1. Then the GM-algorithm {x,}5%, given by x1 € C' and
T et £ 0 O A 7P
converges(strongly) to a fized point of T in C.

Proof. Let p € F(T). Since {G,} is sequentially affine Lipschitzian and T is quasi-

nonexpansive, we have

[Zns1 —pll - = G2, Tn) — Gulp, p)l
< lan(@zn —p) + (1 = an)(Tzn = p)||
< anll(@n —p)l[ + (1 = an)[(Tzn — )|
< anll(zn —p)l[ + (1 = an)ll(zn — D)

[0 = pll-



Using the same proof as in Theorem 3.2.1, we can show that lim, . |2, — Tzy| = 0.

Because for p € F(T), ||zn+1 — p|| < ||zn — p||, it follows that
A(wns1, F(T)) < d(wn, F(T)).
Since T satisfies condition I, we have
[2n — Tan|| 2 f(d(zn, F(T))),n = 0.

This implies, lim,,_,~c d(zy, F(T)) = 0. Then for each € > 0, there exist ng € N such that

d(xn, F(T)) < €/2 for all n > ny.
Consider, for n,m > ng. So there is a p € F(T) such that d(xy,,p) < €/2, we have

[2n = 2m|| < llen = pll + |2m — pll < 220, = pll <e

Thus, {z,} is a Cauchy sequence and by completeness of X, we have lim,,_,o ,, = ¢ for
some ¢ € C. Since T is continuous and lim,_,« ||@y, — Txy|| = 0. Therefore, ¢ € F(T)

implies that {x, } converges strongly to a fixed point of 7" in C. O

Now, we will work on Hilbert space with GH-algorithm and find a new condition

for convergence of this algorithm.

Definition 3.2.3. Let G,, : X x X — X be a admissible function on a normed space X
for n € N. We say that G, has the property (C*) if there exist a sequence of real number
ay, in [0,1] such that

Gr(z1,91) — Gno1(x2,y2)|| < [[(anz1 — an—122) + ((1 — an)yr — (1 — an—1)y2) ||,
for all x1,x2,y1 and y9 in X.

It is clear that admissible functions in example 3.1.2 and 3.1.4 have the property

(C*) and if o, = A(constant), then the property (C*) is an affine Lipschitzian property.

Theorem 3.2.5. Let C' be a closed convex subset of a real Hilbert space H andT : C — C
be a nonexpansive mapping with F(T) # 0. If G, : H x H — H is an admissible function
which has the property (C*) for each n € N and {G,} is sequentially affine Lipschitzian
with {an} satisfying the following conditions:

1. limn_>oo Ay = 0;
2. Y2 g0y = 00,
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Qn—Qn—-1 __ 0

3. limy, oo o

Then the GH-algorithm {x,}>2, given by z1 € C, u € C and
Tnt1 = Gp(u, Tzy), neN,
converges(strongly) to a fized point of T in C.

Proof. Let ¢ € F(T) and since {G,} is sequentially affine Lipschitzian, we get

[#n+1 =gl = [[Gn(u,Tzn) = Gnlq, 9l
< llan(u—q) + (1= an)(Tz, — q)
< anll(u— gl + (1 = an)ll(zn — )|l
< ap(max{llu =g, [zn — qll}) + (1 — an)(max{flu — qll, [lzn — q|I})
< max{|lu — gll, lzn = q|}-

Since
2]l = llgll < [lent1 — gll and [Tz || — gl < [Tani1 — qll < [Jznta — gl
Then by induction, we have
201 — qll < max{[ju—ql|, |z1 —q[l}, neN.

Therefore, {z,} and {Tx,} are bounded.

We next use Lemma 2.3.8 to show limsup,, . (u — p,z, — p) < 0, where z, =
anpu + (1 — a)Txy, and p = limy_0 2¢ such that z; = tu+ (1 — )Tz, t € (0,1).

The boundedness of {T'z,} also implies that {z,} is bounded and since T nonex-

pansive, thus {T'z,} is bounded. By Lemma 2.3.7, we have
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|2t
<
<
<
Hence
(U — 245 2n —

_ZnH2 =

[t(w = 2n) + (1 = 8)(Tz — 20) |2

(1 =02 T2 — znl|* + 2t{u — 20, 2 — 23)

(1 =02 Tz — Tzp + Tz — 2al|® + 2t{u — 2 + 20 — 24, 26 — 2n)

(1= (T2 = Tzall + T2 — 2all)* + 2t (ll2e — zl® + (u — 21, 2 — 20))
(1 =2t + (|| T2z = Tznl> + 2| T2t — Tzn || T 20 — 2all + | T20 — 2a|?)
+2t|| 26 — 2 || + 2t{u — 28,26 — 25)

(1= 2t + ) (|2 — zull” + 2ll2e = 2a |1 T2 — 20l + T2 — 2nl?)

+2t||l 2 — zn |24 2t(u = 24, 2 — 2n)

(1 + )zt = 2all* + 21 = )2t = 201 T2 — 20l + (1 = 8[| T20 — 20
+2t(u — 2,2t — 2p)

(L + )zt — 2all? + (1 = 1)1 T2 — 2zall2llze — 2nll + | T2 — 2all)

+2t(u — 24, 24 — 2n.)

t o (1—1)?
2) < gla =zl + 1T — 2|2z — zall + 1 T20 — 20l])

t 1
< iuzt - ZnH2 ! | EHTZn — zn|2ll2t — zull + | 720 — 2nll)- (3.6)

Since Gy, has the property (C*) and {G,,} is sequentially affine Lipschitzian, we have that

and

[ns1 = Taall = [|Ga(ts Tn) — Ga(Tn, Tan)|
< lom(u = Tan) + (1 — an) (T — Tzy)||
= apllu—=Tz,|| =0, as n — oo (3.7)
st — all = Gt Tn) — G (1, Tt )|
< ey — an—1u) + (1 = an)Tzn = (1 — an—1)Txn-1))||
= (e —an-1)(u = Trp-1) + (1 — an)(Txp — Tzn—1)||
< an —an-alllu = Tep-a || + (1 — an)[[T2n — Ton-1||
< (A =ap)llzn = zn-all + |om — ana|M
< (I —an)lzn — -1l + @nfBn,
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where M := sup,,>; [[u — Twy 1| and 3, := M% By assumptions and {T'z,} is
bounded, then M < oo and 3, — 0. Hence by Lemma 2.3.9 we get ||[zp41 — zp| — 0.
This together with (3.7) implies that lim,,_« ||z, — Tz,|| = 0. Consider

lzn — Tzn|| = |lonu+ (1 — apn)Txy, — T2y
< agllu =Tzl + | Tzn = T2yl
< anlu—Tzpl| + [z — 2]
= anlu—Tap| +{|zn — anu = (1 — o) Tay||
< 2ap|lu = Tzu|| + ||zn = Ty (3.8)
Since limy, o0 ||Zn, — T2y || = 0, we have lim,,_, o ||z, — T2, || = 0.

By taking limsup as n — oo in (3.6), we can conclude that

y . t 2

lim sup(u — 2, 2, — 2¢) < limsup —||z; — zn||*,

n—00 n—oo 2
and since lim; g z; = p, we get

limsup(u — p, 2z, — p) < 0. (3.9)
n—oo

Lastly, we show that {x,} converges strongly to p. By Lemma 2.3.8, implies p is fixed
point of T'. So

|Znt1 = pI? = |Gn(u, Tan) — Gulp,p)|1?
< lan(u —p) + (1 = an)(Tan — p)II?
< (1= an)?[Ten — pl* + 2an{u = p, (1 — an)(Tzp — p) + an(u —p))
= (1—0ap)?|Tzn — p|*> + 200t — p, apu+ (1 — o) Ty — p)
= (1 —an)’[Tzn — pl? + 20:m(u — p, 20 — p)
< (1= an)|Ten = p|? + 200 (u = p, 20 — p),
for every n € N. Thus Lemma 2.3.9 and (3.9) imply lim,,_,c 2, = p. ]

We show that Gl-algorithm with only sequentially affine Lipschitzian property con-

verges weakly on Hilbert space.

Theorem 3.2.6. Let C' be a closed convexr bounded subset of a Hilbert space H and
T :C — C be a nonexpansive mapping. If GL,G? : H x H — H are admissible function
for all n € N and {GL},{G?} are sequentially affine Lipschitzian with {a,} and {B,}

respectively, and suppose that

limsup oy, < 1 and 0 < liminf 5, < limsup g, < 1.
n—oo

n—oo n—oo
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Then the GI-algorithm {x,}5° | given by x1 € X and

Yn = Gi(xnaTxn)»

Tn+1 = G}Z(xanyn)7 nec N7
converges weakly to a fixed point of T'.

Proof. By Theorem 1.1.2, F(T') is nonempty and convex set. Let us consider p € F(T),

{G2} is sequentially affine Lipschitzian with {#,} and T is nonexpansive mapping, we

have
lyn —pll = GE(2n, Txy) — Ga(p,p)||
< |1Bu(zn —p) + (1 — Brn)(Tzn — )|
< Ballzn —pll + (1 = Ba)llzn — pll
< zm=wpl,

and since {GL} is sequentially affine Lipschitzian with {a,}, we have

[Zn41 =l = Gp(@n, Tyn) — Go(p,p)
< lan(zn —p) + (1 = an)(Tyn — p)|
< anllzn =gl + (1 = an)llyn — b
< agllzn — gl + (1 = an)llzn — pl|
< len — gll,

which shows that lim,_,« ||zn — p|| is exist. By Lemma 2.3.6, we get

lyn = 2> = 1Gi(@n, T2n) — G (p,p)|
< IBa(@n — p) + (1 = Bu)(Tzn — p)||°
= Bullzn — pl* + (1 = Bo)llen = plI* — Bu(1 — Bn)llwn — Tanl|?
= lzn = plI* = Br(1 — Bn)llzn — Tnll?,
and

lznt1 = pI? = (G (@n; Tya) — Grlp:p) I
< lan(zn —p) + (1 — @) (Tyn — p)|?
= anllzn —pl* + (1 — @) I Tyn — plI* — an(1 — o) |0 — Tynll®
< apllza —plI* + (1 = an)llyn — p|?
< apllan —pllP + (1 = an) (|2 — plI> = Ba(1 = Bu) lzn — Tanl|?)
= lzn = pl* = Bl = an)(1 = Bn)llwn — Tanl.
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Thus

Brn(1 — an)(1 = Bp)l|7n — TwnHQ < lzn _pH2 — |lzn41 _pH2~

By the control conditions on {«a,} and {8,}, we get lim, o ||z, — p|| exists, therefore
lim,, o0 |20, — Tz || = 0.

Next, we show that if {z,, }jen converges weakly to po € C, then py is a fixed point
of T'. Consider

||xnj e Tpo” < ||-73n] i Tx”j” + ||Txnj - TPOH < H‘Tnj X Tx”j” + “Inj _p0||7
that is

lim sup ([, — Tpoll = [, — poll) < lim sup [on, — Tn, || = 0. (3.10)

J—00 J—00

By definition of inner product, we have

|z, = Tpoll* = [l(&n; —po) + (po = Tpo)|?
= |l@n, — poll* + lpo — Tpoll* + 2(xn, — Po. Po — Tpo),

This together with z,;, — pg as j — 00, we obtain
lim (|2, — Tpoll* = |zn, = pol®) = llpo — Twol®
j—00

Since C'is bounded, the sequence {||zn; — T'poll — |n; — poll}, {l|zn;, — TPoll + [|2n; — poll}
are bounded, and by equation (3.10) we get

lpo — T'pol|* = Jim ((ln; —Tpoll = llen; = pol)(ll2n; = TPoll + [l — poll)) < 0.

Therefore, po € F(T).
Lastly, we show that {z,} converges weakly to a fixed point of T. Let g : F(T) —
[0, 00) defined by

9(p) = lim ||z, —pl],
since ||xp+1 — p|| < ||zn — p|| for each n € N, which shows that the function g is well

defined and it’s clear that g is a continuous convex function on F(T'). Let
do = inf{g(p) : p € F(T)}.
For each € > 0, we define

Fe={y e F(T):g(y) <do+e},
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by definition of infimum and C' is bounded, we have F; is nonempty closed convex bounded

subset of H. Therefore ., Fe # ) by Lemma 2.2.10. Let
Fy ={y € Fiz(T) : g(y) = do},

it is easy to see that Fy = (..o Fe. Moreover, Fj contains exactly one point. Indeed, let

e>0
q0,q1 € Fo such that gg # q1,A € (0,1) and ¢\ = (1 — A\)go + Aqq, that is

(do)* = (9(ar))?

= lim lgr ~ za”
n—o0

= nh_)nolo INg1 + (1 = XN)go — $n||2
= lim |A(q1 — zn) + (1 = A)(go — zn)|1?
n—oo

= Tim (2llgr —@all® + (1= 3)2do — 2nll® + 201 = X) < 41—y = 2 >)
= Tim (g1 — 2all® + (1 = 2)2do = 2nll® + 2X(1 = Vllar = znllla0 — )
+ lim (AL~ X) <1 — Zndo — T > 201~ Va1 — 2l lgo — @)

(Al = zall + (1 = Nllgo — 2nl])?

lim
n—oo

+ lm A1 =) < @1 — @n,q0 — n > —2X(1 — N)|lg1 — zal|l|go — znl|)

n—o0

= (Ado + (1 = N)do)®

+ lim (2A(1 — ) < q1 — Zp, g0 — Tn, > —2M(1 = N |lg1 — zn|l[lg0 — zxl))

n—00

= (do)? + lim (2A(1 = X) < q1 = Tn, g0 — @n > =2M1 = N)la1 — zalllao — zal)).
n—o0

Hence
lim (2A(1 —X) < @1 — @n, g0 — xn, > —2A(1 — N)|lg1 — zn]|l|go — zn]|) = 0,
n—oo
since limy, o0 ||q1 — Zn|| = do = limy, 00 ||go — x4 ||, that is
lim < p1 — 2y, po — Tp >= (dg)Q.
n—oo
Therefore
gt — qol® = lim [[(q1 — zn) + (zn — )
n—oo

lim (||p1 — @al|® + |20 — Pol|* = 2 < P1 — Tp,Po — Tn >)
n—oo

= (d0)2 + (d0)2 — 2(d0)2 =0,

giving a contradiction. Since {z,,} converges weakly to p € F(T'), we have

|20, — qol* = |z, =+ — qol> = ||z, — 2> + P — q0l* =2 < 20, — p,p — g0 >,
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thus
(do)® = lim [|zn, — goll* = (9(»))* + llp — qol* — 0,
’]A)OO

and since (g(p))? > (do)?, then ||p — qo||*> = 0, that is p = go. Therefore {z,,} converges
weakly to a fixed point of T a

Theorem 3.2.7. Let X be a uniformly convex Banach space that satisfies Opials con-
dition, C' be a nonempty closed conver subset of X and T : C — C be a nonerpansive
mapping with F(T) # 0. Let GL, G2 : X x X — X be admissible functions for n € N and
{GL},{G?} are sequentially affine Lipschitzian with {a,} and {B,} respectively. Sup-
pose that limsup,, ., o, < 1 and 0 < liminf, ;o B, < limsup,,_,., B, < 1. Then the

GS-algorithm {x,}2, given by x1 € X and

Yn = G%(mel'n)v

Tpy1 = GL(Tx,, Tyn), n €N,
converges weakly to a fixed point of T'.

Proof. Let p € F(T). By using the same proof as in Theorem 3.2.6, we can show that
|y — pll < ||lzn — pl|. Since {GL} is sequentially affine Lipschitzian with {a,} and T is

nonexpansive mapping, we get

|41 —pll = Gh(T2n, Tyn) — Gy (p,p)|

lan(Tzn, —p) + (1 — an)(Tyn — D)l

IN

< anllzn =gl + (1 — an)llyn —pll
< apllzn — gl + (1 — an)llzn — pll
< |lzn —4ql,

therefore, lim,,_,« ||z, — p|| is exist and hence {z,} is bounded. By Theorem 2.2.15, there

is a continuous strictly increasing convex mapping g with ¢g(0) = 0 such that

lyn = pl> = G2 (xn, Tzn) — G2 (p,p)|>
= ”671(3571 —p) + (1 - Bn)(Txn F p)H2
< Ballen =l + (1= Bu)llzn = plI”> = Bu(l — Ba)g(l|lzn — Tmn|)

|Zn _pH2 = Bn(1 = Bu)g(lzn — Tznl]),

A
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and

|zns1 —pI* = G (Tn, Tya) — Gy (p,p)|1?
< Nan(Tan —p) + (1 = an)(Tyn — p)|?
< anllzn —pIP + (1 — an)llyn — plI* = an(1 — an)g(|T2n — Tynl|)
< apllen =l + (1 — o) llyn — plI?
< omllen =l + (1 = on)(|lzn — plI> = Bu(1 = Ba)g(llen — Tznll))
= @ —pl* = Ba(l = an)(1 — Ba)g(|lzn — Taal).
Thus

Br(1 = an)(1 = Br)g(llen — Tanll) < flon = plI* = llznsr = p)I*

This implies by the control conditions on o, and f,, we get
lim g(||zp, — Tx,||) =0
n—oo

Then lim,, o0 ||2n, — Tzp|| = 0. Because {z,} is bounded in X, it follows that {z,} has
a weakly convergent subsequence {x,,}. Suppose {x,,} converges weakly to p € C. By
Theorem 2.2.17, I — T is demiclosed at zero, from lim, o ||x, — Txy,|| = 0, we have
(I —T)p=0,so that p € F(T).

Next, we show that {x,} converges weakly to a fixed point of T. Suppose there
exist another subsequence {z,, } of {z,} that converges weakly to some ¢ € F(T) such

that ¢ # p. Since X satisfies the Opials condition, we have

lim |z, — p|| = lim Hmn] —p| < lim Hxn]. —q|| = lim ||z — ¢l|,
and
lim [z, —q|| = lim [lzn; —ql| < lim [@,; —pl| = lim [z, —p|,
a contradiction, hence p = ¢q. Therefore {x,} converges weakly to p € F(T). O

We next consider common fixed point of two nonexpansive mappings.

Theorem 3.2.8. Let C be a closed conver subset of a uniformly conver Banach space
X. Let S,T : C = C be two nonerpansive mappings such that one of the mappings
T and S satisfies Condition I and F(S) N F(T) # 0. If GL,.G? : H x H — H are
admissible function and {GL},{G2} are sequentially affine Lipschitzian with {a,} and
{Bn} respectively. Suppose that

0< hmlnfan <limsupa, <1 and 0 < hmlnfﬁn < limsup 8, < 1.

n—oo n—oo
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Then the GC-algorithm {z,}72 , given by 1 € X and
Yn = G%(xnaTxn)7
Tn+1 = G711(yn7 Syn)7 nc N7

converges(strongly) to a common fized point of S and T.

Proof. Let p € F(S) N F(T). By using the same proof as in Theorem 3.2.6, we get

llyn — Pl < ||z — p||- Since T' is nonexpansive mapping, we have

lzn41 — Pl = NG (Yn, Syn) — G (o, D)
< lan(yn = p) + (1 — an)(Syn — D)l
< anllyn —pll+ (1= an)llyn — pll
= |lyn — ol
< lzn —pll-

Hence lim,,_, ||z — pl| exist for any p € F(S) N F(T). By Theorem 2.2.15, there exist a

continuous strictly increasing convex mapping g with ¢g(0) = 0 such that

[zns1 = pI* = [1GL(yn, Tyn) — Go(p;p)|
< Jlen(yn —p) + (1 = @) (Tyn — p)|I?
< anllyn — Il + (1= an)llyn = plI* — an(1 — an)g(|Ton — Tynl|)
< lyn —pl?
= |G (2n, Tan) — G (p,p)|
< Ba(@n = p) + (1 = Bu)(Txn — p)||?
< Ballen —pl* + (1 = Bo)llzn — plI* — Ba(L = Bn)g(|lon — Tanl])

l2n, = PI? = Ba(1 = Bu)g(l|zn = Ta)),
which implies
Bu(L = Ba)g(llen — Tanll) < llzn —pl* = ent1 —pl*.

By definition of g and condition of {3,}, we get lim,_,~ ||zn, — Tx,|| = 0. Suppose that
lim,, o0 ||Zn — p|| = ¢ and since ||y, — p|| < ||zn — p||, we have
limsup ||y, — p|| < c.
n—oo

Also from || Sy, — p|| < ||lyn — p||, implies that

limsup || Sy, — pll < c.
n—oo
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Moreover,

|G (Yns Syn) — GL (. D) ||

leen(yn = p) + (1 = ) (Syn — P

[Znt1 = pll

IN

< [lzn —ql.-

That is limy, 00 [|n(yn — p) + (1 — an)(Syn — p)|| = ¢ By Theorem 2.2.16, we have
limy, 00 ||yn — Syn|| = 0. Since

HG%(xanxn) —~ G%(xna )|

1Bn(Tn = 2n) + (1 = Bn)(Txrn — T,

= (1= 8n)lITzn — z4l|,

F=]
3
8

3
I

IN

it implies that lim, oo ||yn — xn|| = 0, and since

|G} (w0, Tan) — G (Tzp, Ty )|
[1Bn(zn — Tzn) + (1 = Bn)(Txn, — Txy)|,

< 571”1311 = Tl'n”a

[Yn — Tn

IN

we have lim,, o0 ||y, — Ty|| = 0. Therefore

N

[0 — Snl| [0 = Tl + | Tzn = ynll + [lyn — Synll + |Syn = Sza|

IA

|20 — Txn| + [ T2n — Yull + [|yn — Syull + lyn — 2alls
and so limy, o0 ||2 — Szy|| = 0. Thus from S, T satisfy condition I, we get

lim f(d(xn, F)) < li_)m |zn = Tzpn]l =0

n—o0
or

lim f(d(zy, F)) < ILm |xn — Szpll =0,

n—oo

where F' = F(S)N F(T). In both the cases, we have

lim f(d(zn, F)) = 0.

n—oo

This implies lim,,_, oo d(x,, F') = 0. By using the same proof as in Theorem 3.2.4, we can

conclude that {z,,} converges(strongly) to a common fixed point of S and 7. O

Theorem 3.2.9. Let C be a closed convex subset of a uniformly conver Banach space X
that satisfies Opials condition and let S, T : C — C' be two nonexpansive mappings with
F(S)NFE(T) # 0. If {zn} be a sequence as in Theorem 3.2.8, then {x,}32, converges

weakly to a common fixed point of S and T.
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Proof. Let p € F(S)N F(T), then lim,,_,~ ||z, — Tzy|| = 0 and lim,,_, ||y, — S| =0
as proved in Theorem 3.2.8. We prove that {z,} has a unique weak subsequential limit
in F(S) N F(T). Let u and v be weak limits of the subsequences {z,,} and {z,,} of
{zn}, respectively. By Theorem 2.2.17, we get I — T and I — S are demiclosed at 0,
therefore we obtain T'u = u and Su = w. Similarly, we have Tv = v and Sv = v. That is
u,v € F(S)NF(T).

Next, we prove the uniqueness. Since X satisfies the Opials condition and suppose

u # v, then

lim ||z, —ul| = lim [|zn; —u| < lim ||z, — ol = lim [z, — o,
n—oo J—00 J—ro0 n—oo

and
lim ||z, —v| = lim |z, —v| < lim |Jz,, —ul| = lim |z, — .
n—00 j—00 Jj—oo n—00

This is a contradiction, hence u = v. Therefore {z,,} converges weakly to a common fixed

point of S and T 0
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