CONTENTS

	Acknowledgement	d
	Abstract in Thai	e
	Abstract in English	g
]	List of Tables	m
]	List of Figures	q
]	List of Abbreviations	v
(Chapter I Introduction	1
	1.1 Historical Background	1
	1.2 Objectives	4
	1.3 Literature Review	4
(Chapter II Materials and Methods	19
	2.1 Chemicals and Reagents	19
	2.2 Leukemia cell line cultures	19
	2.3 Plant material	19
	2.4 Preparation of the M. siamensis flowers crude and fractional extracts	19
	2.5 HPLC for screening of chemical compounds	20
	2.6 Growth curve analysis of leukemic cell lines	20
	2.7 MTT assay	20
	2.8 Effect of <i>M. siamensis</i> flowers crude extract and fractional extracts on	21
	Bcr/Abl, WT1, and FLT3 protein expressions in leukemic cell lines	
	2.9 Protein preparation	21
	2.10 Protein determination by SDS-PAGE and Western blot analysis	24

- 2.11 Anti-proliferative effect of crude EtOH extract and fractional extracts
 25 of Hex and EtOAc from *M. siamensis* flowers on Molt4, K562, and
 EoL-1 cell lines by MTT assay
- 2.12 Effect of crude EtOH extract and fractional extracts of Hex and
 26 EtOAc from *M. siamensis* flowers on Bcr/Abl protein expression in
 K562 cell line
- 2.13 Effect of crude EtOH extract and fractional extracts of Hex and
 26 EtOAc from *M. siamensis* flowers on WT1 protein expression in
 Molt4, K562, and EoL-1 cell lines
- 2.14 Effect of crude EtOH extract and fractional extracts of Hex and27 EtOAc from *M. siamensis* flowers on FLT3 protein expression inEoL-1 cell line
- 2.15 Effect of crude EtOH extract and fractional extracts of Hex and
 27 EtOAc from *M. siamensis* flowers on total cell number in Molt4,
 K562, and EoL-1 cell lines
- 2.16 Effect of time period of crude EtOH extract and fractional extracts
 27 of Hex and EtOAc from *M. siamensis* flowers on Bcr/Abl protein expression in K562 cell line
- 2.17 Effect of time period crude EtOH extract and fractional extracts of28 Hex and EtOAc from *M. siamensis* flowers on WT1 proteinexpression in Molt4, K562, and EoL-1 cell lines
- 2.18 Effect of time period of crude EtOH extract and fractional extracts of
 28 Hex and EtOAc from *M. siamensis* flowers on FLT3 protein
 expression in EoL-1 cell line
- 2.19 Effect of time period of crude EtOH extract and fractional extracts of
 29 Hex and EtOAc from *M. siamensis* flowers on total cell number in
 Molt4, K562, and EoL-1 cell lines
- 2.20 Effect of concentration of Hex fraction from *M. siamensis* flowers on29 Bcr/Abl protein expression in K562 cell line
- 2.21 Effect of concentration of Hex fraction from *M. siamensis* flowers onWT1 protein expression in Molt4, K562, and EoL-1 cell lines

2.22 Effect of concentration of Hex fraction from M. siamensis flowers on	30
FLT3 protein expression in EoL-1 cell line	
2.23 Effect of concentration of Hex fraction from M. siamensis flowers on	30
total cell number in Molt4, K562, and EoL-1 cell lines	
2.24 Effect of Hex fraction from <i>M. siamensis</i> flowers and mammea E/BB	31
on Bcr/Abl in K562 cell line	
2.25 Effect of Hex fraction from <i>M. siamensis</i> flowers and mammea E/BB	31
on WT1 in Molt4 cell line	
2.26 Effect of Hex fraction from M. siamensis flowers and mammea E/BB	31
on FLT3 in EoL-1 cell line	
2.27 Effect of Hex fraction from M. siamensis flowers and mammea E/BB	32
on total cell number in Molt4, K562, and EoL-1 cell lines	
2.28 Statistical analysis	32
Chapter III Results	33
3.1 Yield of crude and fractional M. siamensis flower extracts	33
3.2 High performance liquid chromatography (HPLC) analysis	34
3.3 Growth curve of leukemic cell lines	37
3.4 Cytotoxicity of crude EtOH and fractional extracts of Hex, EtOAc,	39
and MeOH from <i>M. siamensis</i> flowers on Molt4, K562, and EoL-1 cell lines	
3.5 Effect of crude EtOH extract and fractional extracts from M. siamensis	43
flowers on Bcr/Abl, WT1, and FLT3 in Molt4, K562, and EoL-1 cells	
3.6 Effect of crude EtOH extract and fractional extracts of Hex and EtOAc	
from <i>M. siamensis</i> flowers on total cell number in Molt4, K562, and EoL-1 cell lines	54
3.7 Effect of time period of crude EtOH extract and fractional extracts of	
Hex and EtOAc from M. siamensis flowers in Molt4, K562, and	60
EoL-1 cell lines	
3.8 Effect of time period of crude EtOH extract and fractional extracts of	
Hex and EtOAc from M. siamensis flowers on total cell number in	91
Molt4, K562, and EoL-1 cell lines	

3.9 Effect of concentration of Hex fraction from <i>M. siamensis</i> flowers on	
target protein expression in Molt4, K562, and EoL-1 cell lines	110
3.10 Effect of concentration of Hex fraction from M. siamensis flowers on	
total cell number in Molt4, K562, and EoL-1 cell lines	121
3.11 Effect of Hex fraction from <i>M. siamensis</i> flowers and mammea E/BB	
on Bcr/Abl, WT1, and FLT3 in Molt4, K562, and EoL-1 cell lines	127
3.12 Effect of Hex fraction from <i>M. siamensis</i> flowers and mammea E/BB	
on total cell number in Molt4, K562, and EoL-1 cell lines	129
Chapter IV Discussion	141
Chapter V Conclusion	145
References	146
Appendix	154
Appendix A	155
Appendix B	157
Appendix C	159
Curriculum Vitae	164
AL UNIVERSIT	
UNIT.	
ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่	
Copyright [©] by Chiang Mai University	
All rights reserved	

LIST OF TABLES

Page

Table 1.1	The FAB classification of acute myeloblastic leukemia.	9
Table 1.2	The FAB classification of acute lymphoblastic leukemia.	11
Table 1.3	Characteristics of leukemic cell lines.	14
Table 2.1	Preparation of bovine serum albumin standard solution.	23
Table 3.1	Percent yield of crude EtOH extract and fractional extracts of	33
	Hex, EtOAc, and MeOH from M. siamensis flowers.	
Table 3.2	Cell number of Molt4, K562, and EoL-1 cell lines.	37
Table 3.3	The inhibitory concentration values of crude EtOH extract and	39
	fractional extracts from M. siamensis flowers on Molt4, K562,	
	and EoL-1 cell lines for 48 h.	
Table 3.4	Percentage of Bcr/Abl protein levels after crude EtOH extract	44
	and fractional extracts of Hex and EtOAc treatments for 48 h in	
	K562 cell line.	
Table 3.5	Percentage of WT1 protein levels after crude EtOH extract and	46
	fractional extracts of Hex and EtOAc treatments for 48 h in	
	Molt4 cell line.	
Table 3.6	Percentage of WT1 protein levels after crude EtOH extract and	48
Co	fractional extracts of Hex and EtOAc treatments for 48 h in K562 cell line	
Table 3.7	Percentage of WT1 protein levels after crude EtOH extract and	50
1 4010 5.7	fractional extracts of Hex and $EtOAc$ treatment for 48 h in EoI -	50
	1 cell line	
Table 3.8	Percentage of FLT3 protein levels after crude EtOH extract and	52
1 auto 5.0	fractional extracts of Hex and $EtOA$ a tractments for 48 h in Eq.	52
	1 cell line	
Table 2.0	Total call number ofter and EtOU extract and functional	E A
1 2010 3.9	Total cen number after crude EtOH extract and fractional	54
	extracts of Hex and EtOAc treatments for 48 h in Molt4 cell.	

- Table 3.10 Total cell number after crude EtOH extract and fractional 56 extracts of Hex and EtOAc treatments for 48 h in K562 cell. Table 3.11 Total cell number after crude EtOH extract and fractional 58 extracts of Hex and EtOAc treatments for 48 h in EoL-1 cell. Table 3.12 Percentage of Bcr/Abl protein level after 5.2 µg/ml crude EtOH 61 extract treatment for 12, 24, 48, and 72 h in K562 cell line. Table 3.13 Percentage of Bcr/Abl protein level after 30.6 µg/ml Hex fraction 63 treatments for 12, 24, 48, and 72 h in K562 cell line. Table 3.14 Percentage of Bcr/Abl protein level after 47.2 µg/ml EtOAc 65 fraction treatment for 12, 24, 48, and 72 h in K562 cell line. Table 3.15 Percentage of WT1 protein level after 2.3 µg/ml crude EtOH 67 extract treatment for 12, 24, 48, and 72 h in Molt4 cell line. Table 3.16 Percentage of WT1 protein level after 1.0 µg/ml Hex fraction 69 treatment for 12, 24, 48, and 72 h in Molt4 cell line. Table 3.17 Percentage of WT1 protein level after 36.1 µg/ml EtOAc fraction 71 treatments for 12, 24, 48, and 72 h in Molt4 cell line. Table 3.18 Percentage of WT1 protein level after 5.2 µg/ml crude EtOH 73 extract treatment for 12, 24, 48, and 72 h in K562 cell line. Percentage of WT1 protein level after 30.6 µg/ml Hex fraction Table 3.19 75 treatment for 12, 24, 48, and 72 h in K562 cell line. Table 3.20 Percentage of WT1 protein level after 47.2 µg/ml EtOAc fraction 77 treatments for 12, 24, 48, and 72 h in K562 cell line. Table 3.21 Percentage of WT1 protein level after 0.5 µg/ml crude EtOH 79 extract treatments for 12, 24, 48, and 72 h in EoL-1 cell line. Percentage of WT1 protein level after 1.0 µg/ml Hex fraction Table 3.22 81 treatments for 12, 24, 48, and 72 h in EoL-1 cell line. Percentage of WT1 protein level after 6.3 µg/ml EtOAc fraction 83 Table 3.23 treatments for 12, 24, 48, and 72 h in EoL-1 cell line. Table 3.24 Percentage of FLT3 protein level after 0.5 µg/ml crude EtOH 85
- Table 3.25Percentage of FLT3 protein level after 1.0 μg/ml Hex fraction87treatments for 12, 24, 48, and 72 h in EoL-1 cell line.

extract treatments for 12, 24, 48, and 72 h in EoL-1 cell line.

Table 3.26	Percentage of FLT3 protein level after 6.3 μ g/ml EtOAc fraction	89
	treatments for 12, 24, 48, and 72 h in EoL-1 cell line.	
Table 3.27	Total cell number after 2.3 μ g/ml crude EtOH extract treatment	92
	for 12, 24, 48, and 72 h in Molt4 cell line.	
Table 3.28	Total cell number after $1.0 \ \mu g/ml$ Hex fraction treatment for 12,	94
	24, 48, and 72 h in Molt4 cell line.	
Table 3.29	Total cell number after 36.1 μ g/ml EtOAc fraction treatment for	96
	12, 24, 48, and 72 h in Molt4 cell line.	
Table 3.30	Total cell number after 5.2 μ g/ml crude EtOH extract treatment	98
	for 12, 24, 48, and 72 h in K562 cell line.	
Table 3.31	Total cell number after 30.6 μ g/ml Hex fraction treatment for 12,	100
	24, 48, and 72 h in K562 cell line.	
Table 3.32	Total cell number after 47.2 µg/ml EtOAc fraction treatment for	102
	12, 24, 48, and 72 h in K562 cell line.	
Table 3.33	Total cell number after 0.5 μ g/ml crude EtOH extract treatment	104
	for 12, 24, 48, and 72 h in EoL-1 cell line.	
Table 3.34	Total cell number after 1.0 μ g/ml Hex fraction treatment for 12,	106
	24, 48, and 72 h in EoL-1 cell line.	
Table 3.35	Total cell number after 6.3 μ g/ml EtOAc fraction treatment for	108
	12, 24, 48, and 72 h in EoL-1 cell line.	
Table 3.36	Percentage of Bcr/Abl protein level after Hex fraction treatment	111
0	(25, 30, 35, and 40 μ g/ml) for 48 h in K562 cell line.	
Table 3.37	Percentage of WT1 protein level after Hex fraction treatment	113
C	(0.5, 1.0, 1.5, and 2.0 µg/ml) for 48 h in Molt4 cell line.	
Table 3.38	Percentage of WT1 protein level after Hex fraction treatment	115
1.1	(25, 30, 35, and 40 µg/ml) for 48 h in K562 cell line.	
Table 3.39	Percentage of WT1 protein level after Hex fraction treatment	117
	(0.25, 0.50, 0.75, and 1.00 μ g/ml) for 48 h in EoL-1 cell line.	
Table 3.40	Percentage of FLT3 protein levels after Hex fraction treatment	119
	$(0.25, 0.50, 0.75, and 1.00 \ \mu g/ml)$ for 48 h in EoL-1 cell line.	
Table 3.41	Total cell number after 0.5, 1.0, 1.5, and 2.0 $\mu\text{g/ml}$ of Hex	121
	fraction treatment for 48 h in Molt4 cell line.	

- Table 3.42Total cell number after 25, 30, 35, and 40 µg/ml of Hex fraction123treatment for 48 h in K562 cell line.
- Table 3.43Total cell number after 0.25, 0.50, 0.75, and 1.00 µg/ml of Hex125fraction treatment for 48 h in EoL-1 cell line.
- Table 3.44The inhibitory concentration values of mammea E/BB from M.127siamensis seeds on Molt4, K562, and EoL-1 cell lines for 48 h.
- Table 3.45Percentage of Bcr/Abl protein levels after Hex fraction and129mammea E/BB treatments for 48 h in K562 cell line.
- Table 3.46Percentage of WT1 protein levels after Hex fraction and 131mammea E/BB treatments for 48 h in Molt4 cell line.
- Table 3.47Percentage of FLT3 protein levels after Hex fraction and 133mammea E/BB treatments for 48 h in EoL-1 cell line.
- Table 3.48Total cell number after Hex fraction and mammea E/BB135treatments for 48 h in Molt4 cell line.
- Table 3.49Total cell number after Hex fraction and mammea E/BB137treatments for 48 h in K562 cell line.
- Table 3.50Total cell number after Hex fraction and mammea E/BB139treatments for 48 h in EoL-1 cell line.

GMAI UNI

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figure 1.1	Tree, leaf, flower, air-dried flowers, and flower powders of M.	18
	siamensis.	
Figure 2.1	Standard curve of BSA	23
Figure 3.1	Chromatograms of standard mammea E/BB from M. siamensis	34
	seed extract, M. siamensis flowers crude EtOH extract, fractional	
	extracts of Hex, and EtOAc by high performance liquid	
	chromatography (HPLC).	
Figure 3.2	Chromatograms of standard mammea E/BB from M. siamensis	35
	seed extract and MeOH fraction from M. siamensis flowers by	
	high performance liquid chromatography (HPLC).	
Figure 3.3	Growth curves of leukemic cell lines.	38
Figure 3.4	Cytotoxicity of crude EtOH extract and fractional extracts of	40
	Hex, EtOAc, and MeOH from M. siamensis flowers on Molt4	
	cell line.	
Figure 3.5	Cytotoxicity of crude EtOH extract and fractional extracts of	41
ลิส	Hex, EtOAc, and MeOH from M. siamensis flowers on K562 cell	
GIV.	lines.	
Figure 3.6	Cytotoxicity of crude EtOH extract and fractional extracts of	42
A	Hex, EtOAc, and MeOH from M. siamensis flowers on EoL-1	
	cell line.	
Figure 3.7	Effect of crude EtOH extract and fractional extracts of Hex and	45
	EtOAc from <i>M. siamensis</i> flowers on Bcr/Abl protein expression	
	in K562 cell line at 48 h.	
Figure 3.8	Effect of crude EtOH extract and fractional extracts of Hex and	47
	EtOAc from <i>M. siamensis</i> flowers on WT1 protein expression in	
	Molt4 cell line at 48 h.	

- Figure 3.9 Effect of crude EtOH extract and fractional extracts of Hex and 49 EtOAc from *M. siamensis* flowers on WT1 protein level in K562 cell line at 48 h.
- Figure 3.10 Effect of crude EtOH extract and fractional extracts of Hex and 51 EtOAc from *M. siamensis* flowers on WT1 protein expression in EoL-1 cell line at 48 h.
- Figure 3.11 Effects of crude EtOH extract and fractional extracts of Hex and 53 EtOAc from *M. siamensis* flowers on FLT3 protein expression in EoL-1 cell line at 48 h.
- Figure 3.12 Effect of crude EtOH extract and fractional extracts of Hex and 55 EtOAc from *M. siamensis* flower on total cell number at 48 h in Molt4 cell line.
- Figure 3.13 Effect of crude EtOH extract and fractional extracts of Hex and 57 EtOAc from *M. siamensis* flower on total cell number at 48 h in K562 cell line.
- Figure 3.14 Effect of crude EtOH extract and fractional extracts of Hex and 59 EtOAc from *M. siamensis* flowers on total cell number at 48 h in EoL-1 cell line.
- Figure 3.15 Effect of time period of crude EtOH extract from *M. siamensis* 62 flowers treatments on Bcr/Abl protein expression in K562 cell line.
- Figure 3.16 Effect of time period of Hex fraction from *M. siamensis* flowers 64 treatments on Bcr/Abl protein expression in K562 cell line.
- Figure 3.17 Effect of time period of EtOAc fraction from *M. siamensis* 66 flowers treatments on Bcr/Abl protein expression in K562 cell line.
- Figure 3.18Effect of time period of crude EtOH extract from *M. siamensis*68flowers treatments on WT1 protein expression in Molt4 cell line.68Effect of time period of Hex fraction from *M. siamensis* flowers
- Figure 3.19 treatments on WT1 protein expression in Molt4 cell line. 70

Figure 3.20	Effect of time period of EtOAc fraction from M. siamensis	72
	flowers treatments on WT1 protein expression in Molt4 cell line.	
	Effect of time period of crude EtOH extract from M. siamensis	
Figure 3.21	flowers treatments on WT1 protein expression in K562 cell line.	74
	Effect of time period of Hex fraction from M. siamensis flowers	
	treatments on WT1 protein expression in K562 cell line.	
Figure 3.22	Effect of time period of EtOAc fraction from M. siamensis	76
	flowers treatments on WT1 protein expression in K562 cell line.	
Figure 3.23	Effect of time period of crude EtOH extract from M. siamensis	78
	flowers treatments on WT1 protein expression in EoL-1 cell line.	
	Effect of time period of Hex fraction from M. siamensis flowers	
Figure 3.24	treatments on WT1 protein expression in EoL-1 cell line.	80
	Effect of time period of EtOAc fraction from M. siamensis	
	flowers treatments on WT1 protein expression in EoL-1 cell line.	
Figure 3.25	Effect of time period of crude EtOH extract from M. siamensis	82
	flowers treatments on FLT3 protein expression in EoL-1 cell	
Figure 3.26	line.	84
	Effect of time period of Hex fraction from M. siamensis flowers	
	treatments on FLT3 protein expression in EoL-1 cell line.	
Figure 3.27	Effect of time period of EtOAc fraction from M. siamensis	86
	flowers treatments on FLT3 protein expression in EoL-1 cell	
	line.	
Figure 3.28	Effect of crude EtOH extract from M. siamensis flowers on total	88
C	cell number at 12, 24, 48, and 72 h in Molt4 cell line.	
Figure 3.29	Effect of Hex fraction from <i>M. siamensis</i> flowers on total cell	90
~	number at 12, 24, 48, and 72 h in Molt4 cell line.	
Figure 3.30	Effect of EtOAc fraction from <i>M. siamensis</i> flowers on total cell	93
	number at 12, 24, 48, and 72 h in Molt4 cell line.	
Figure 3.31	Effect of crude EtOH extract from M. siamensis flowers on total	95
	cell number at 12, 24, 48, and 72 h in K562 cell line.	

97 Figure 3.32 Effect of Hex fraction from *M. siamensis* flowers on total cell number at 12, 24, 48, and 72 h in K652 cell line. Figure 3.33 Effect of EtOAc fraction from *M. siamensis* flowers on total cell 99 number at 12, 24, 48, and 72 h in K562 cell line. Figure 3.34 Effect of crude EtOH extract from M. siamensis flowers on total 101 cell number at 12, 24, 48, and 72 h in EoL-1 cell line. Figure 3.35 Effect of Hex fraction from *M. siamensis* flowers on total cell 103 number at 12, 24, 48, and 72 h in EoL-1 cell line. Figure 3.36 Effect of EtOAc fraction from *M. siamensis* flowers on total cell 105 number at 12, 24, 48, and 72 h in EoL-1 cell line. Figure 3.37 Effect of concentration of Hex fraction from M. siamensis 107 flowers on Bcr/Abl protein expression for 48 h in K562 cell line. Figure 3.38 Effect of concentration of Hex fraction from M. siamensis 109 flowers on WT1 protein expression for 48 h in Molt4 cell line. Figure 3.39 Effect of concentration of Hex fraction from M. siamensis 112 flowers on WT1 protein expression for 48 h in K562 cell line. Effect of concentration of Hex fraction from M. siamensis Figure 3.40 flowers on WT1 protein expression for 48 h in EoL-1 cell line. 114 Effect of concentration of Hex fraction from M. siamensis Figure 3.41 flowers on FLT3 protein expression for 48 h in EoL-1 cell line. 116 Effect of concentration of Hex fraction from M. siamensis Figure 3.42 flowers on total cell number for 48 h in Molt4 cell line. 118 Effect of concentration of Hex fraction from M. siamensis flowers on total cell number for 48 h in K562 cell line. 120 Figure 3.43 Effect of concentration of Hex fraction from M. siamensis Figure 3.44 flowers on total cell number for 48 h in EoL-1 cell line. 122 Figure 3.45 Cytotoxicity of mammea E/BB from M. siamensis seeds on 124 Molt4, K562, and EoL-1 cell lines. Figure 3.46 Effect of Hex fraction from M. siamensis flowers and mammea 126 E/BB on Bcr/Abl protein level in K562 cell line at 48 h.

- Figure 3.47 Effect of Hex fraction from *M. siamensis* flowers and mammea 128 E/BB on WT1 protein expression in Molt4 cell line at 48 h.
- Figure 3.48 Effects of Hex fraction from *M. siamensis* flowers and mammea 130 E/BB on FLT3 protein level in EoL-1 cell line at 48 h.
- Figure 3.49 Effect of Hex fraction from *M. siamensis* flowers and mammea 132 E/BB on total cell number at 48 h in Molt4 cell line.
- Figure 3.50 Effect of Hex fraction from *M. siamensis* flowers and mammea 134 E/BB on total cell number at 48 h in K562 cell line.
- Figure 3.51 Effect of Hex fraction from *M. siamensis* flowers and mammea 136 E/BB on total cell number at 48 h in EoL-1 cell line.

Chemical structure of mammea E/BB.

WG MA

Figure 3.53

Figure 3.52

Figure 4.1

歌る

138

140

144

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF ABBREVIATIONS

%	Percentage
°C	Degree Celsius
μg	Microgram
μl	Microliter
μΜ	Micromolar
ALL	Acute lymphocytic leukemia
AML	Acute myelogenous leukemia
Bcr/Abl	Breakpoint Cluster Region/Abelson
Bcl2	B-cell lymphoma 2
bp	Base pair
BSA	Bovine serum albumin
CLL	Chronic lymphocytic leukemia
cm	Centimeter
CML	Chronic myelogenous leukemia
CO ₂	Carbon dioxide
dl	Deciliter
DMSO	Dimethyl sulfoxide
DNAJANSUM	Deoxyribonucleic acid
ECL Convright [©] h	Enhanced chemiluminescence
EGR-1	Early growth response 1
e.g.	Example gratia (for example)
et. al.	et alibi (and other)
EtOAc	Ethyl acetate
EtOH	Ethanol
FAB	French-American-British
FBS	Fetal bovine serum
FLT3	Fms-like tyrosine kinase 3
g	Gram

GAPDH	Glyceraldehyde-3-phosphate dehydrogenase
h	Hour
HEPES	N-2-hydroxyethylpiperazine-N-2-ethane-
	sulfonic acid
Hex	Hexane
HCl	Hydrochloric acid
IC ₂₀	Inhibitory concentration at 20% growth
IC50	Inhibitory concentration at 50% growth
i.e.	id est (that is)
JNK	c-Jun N-terminal kinases
kb	Kilobase
kDa	Kilodalton
kg	Kilogram
KTS	Lysine-threonine-serine
1 影影 5	Liter
m	Meter
MAPK	Mitogen-activated protein kinase
MeOH	Methanol
mg	Milligram
min M	Minute
ml	Milliliter
MTT	3-(4,5dimethylthiazole-2yl)-2,5 diphenyltetra-
ลขสทรมห	zolium bromide
MDRCopyright [©] b	Minimal residual disease
NADH	Nicotinamide adenine dinucleotide
nm	Nanometer
OD	Optical density
PBS	Phosphate buffer saline
PI3K	Phosphatidylinositol 3 – kinase
RNA	Ribonucleic acid
rpm	Revolution per minute
RPMI 1640	Roswell Park Memorial Institute 1640

Standard deviation
Sodium dodecyl sulfate-polyacrylamide gel
electrophoresis
Second
Signal transducer and activator of transcript-
tion
Terminal deoxynucleotidyl transferase N,N,
N, N,-tetramethylethylenediamine
Vehicle control
World Health Organization
Wilms' tumor 1

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved