CHAPTER 3

Results

Anopheles nigerrimus

3.1 Field Collections and Establishment of Isoline Colonies

Samples of fully engorged females of *An. nigerrimus* were collected from cowbaited traps in 4 provinces of Thailand and 1 location in Cambodia (Table 3.1, Figure 3.1). A total of 13 isolines were established and maintained in an insectary at Chiang Mai University, and they were used for studies on metaphase karyotype, cross-mating experiments and molecular analysis.

ลิปสิทธ์มหาวิทยาลยเชียงไหม Copyright[©] by Chiang Mai University All rights reserved

 Table 3.1 Locations in 5 provinces of Thailand and Cambodia, code of isolines, 4 karyotypic forms (A-D) of An. nigerrimus and their

 GenBank accession numbers

Location	Code of isoline ^a	Karyotypic form	GenBa	ank accession nu	mber	Reference
(Geographical coordinate)		21/2	ITS2	COI	COII	
Thailand	- //	2.7		131		
Lampang (17° 53' N, 99° 20' E)	Lp1A ^a	$A\left(X_{1},Y_{1}\right)$	AB778774	AB778787	AB778800	This study
Ubon Ratchathani (15° 31' N, 105° 35' E)	Ur1A ^a	$A(X_2, Y_1)$	AB778775	AB778788	AB778801	This study
	Ur7A	$A(X_2, Y_1)$	AB778776	AB778789	AB778802	This study
	$Ur20D^{a}$	D (X ₃ , Y ₄)	AB778777	AB778790	AB778803	This study
	Ur26A	$A(X_3, Y_1)$	AB778778	AB778791	AB778804	This study
Nakhon Si Thammarat (08° 29′ N, 100° 0′ E)	Ns1B ^a	B (X ₂ , Y ₂)	AB778779	AB778792	AB778805	This study
	Ns2B	B (X ₃ , Y ₂)	AB778780	AB778793	AB778806	This study
	Ns3A ^a	$A(X_2, Y_1)$	AB778781	AB778794	AB778807	This study
Songkhla (07° 13' N, 100° 37' E)	Sk2A ^a	A (X_2, Y_1)	AB778782	AB778795	AB778808	This study
	Sk3A	$A(X_{1}, Y_{1})$	AB778783	AB778796	AB778809	This study
Cambodia	8.2	กลิ่มหลล	neino	าเรียงไ	?!	
Ratanakiri (13° 44' N, 107° 0' E)	Rt2C ^a	C (X ₁ , Y ₃)	AB778784	AB778797	AB778810	This study
	Rt3C	C (X ₁ , Y ₃)	AB778785	AB778798	AB778811	This study
	$Rt4A^{a}$	$A(X_{1}, Y_{1})$	AB778786	AB778799	AB778812	This study

Location	Code of isoline ^a	Karyotypic form	GenBa	nk accession nu	Reference	
(Geographical coordinate)		1 as T	ITS2	COI	COII	
Kalimantan, Indonesia		151	000	400		
Hyrcanus Group	K13	S. / S	HM488261	13	1 -	Paredes-Esquivel et al. 2011
	K22	a . D	HM488263	212	2/1-	Paredes-Esquivel et al. 2011
	K26	- E	HM488267	-	- II -	Paredes-Esquivel et al. 2011
An. belenrae	- 4	342 - A	EU789794	- 5	12 II -	Park et al. 2008a
An. crawfordi	Sk1B	B (X ₃ , Y ₂)	AB779152	AB779181	AB779210	Saeung et al. 2014
An. kleini	- 11	~ \-	EU789793) -/ -	. // -	Park et al. 2008a
An. lesteri		91-	EU789791	1 -/ 6	5 // -	Park et al. 2008a
	ilG1	181	M-77	AB733028	AB733036	Taai et al. 2013a
An. nitidus	Ur2D	D (X ₃ , Y ₄)	AB777782	AB777803	AB777824	This study
An. paraliae	Sk1B	B (X ₁ , Y ₂)	AB733487	AB733503	AB733519	Taai et al. 2013b
An. peditaeniatus	RbB	B (X ₃ , Y ₂)	AB539061	AB539069	AB539077	Choochote 2011
An. pullus	-	A.Y.A.	EU789792	and -	-	Park et al. 2008a
	-	-	UNI	AY444348	AY444347	Park et al. 2003
An. sinensis	i2ACM	$A(X, Y_1)$	AY130473	-		Min et al. 2002
	8.26	2nd uno	Smara	AY444351	Carl .	Park et al. 2003
	i1BKR	B (X, Y ₂)	วแยาด	เฮเอฮต	AY130464	Min et al. 2002
<i>a</i> : used in cross-mating expe	eriments	right [©] by	Chiang /	Mai Univ	ersity	
	A		* ~ ~		i a d	

Figure 3.1 Map of Thailand and Cambodia showing 5 provinces where samples of *An*. *nigerrimus* were collected and the numbers of isolines of the 4 karyotypic forms (A-D) were detected

3.2 Metaphase Karyotype of Anopheles nigerrimus

Cytogenetic observation of F₁- and/or F₂- progenies of the 13 isolines which were represented in 5 provinces from Thailand and Cambodia, demonstrated that An. *nigerrimus* has the typical chromosome number of 2n = 6, consisting of two pairs of autosomes (submetacentric and metacentric) and one pair of heteromorphic sex chromosomes (XX in females and XY in males). Based on the additional of extra block(s) of heterochromatin present in the heterochromatic arm of the sex chromosomes, 3 types of X (submetacentric X_1 , large submetacentric X_2 and small metacentric X₃) and 4 types of Y chromosomes (large subtelocentric Y₁, submetacentric Y_2 , small telocentric Y_3 and small subtelocentric Y_4) were obtained in this investigation (Table 3.1 and Figure 3.2). The X₃, Y₃ and Y₄ chromosomes were discovered in the present study. Based on the figures of X₃ and Y₃ chromosomes, they were probably represented the ancestral forms of X and Y chromosomes, respectively (Figure 3.2). There were 4 karyotypic forms on the basis of X and Y chromosome configurations, which were designated as Forms A (X_1, X_2, X_3, Y_1) , B (X_2, X_3, Y_2) , C (X_1, Y_3) and D (X₃, Y₄). Forms C and D were new karyotypic forms discovered in the present investigation. The number of isolines of these karyotypic forms occurring in different locations of Thailand and Cambodia are demonstrated in Table 3.1 and Figure 3.2. Form A appeared to be common in both Thailand and Cambodia. Form B and D were found rather specific in southern and northeastern Thailand, respectively, whereas Form C was confined somewhat to Cambodia.

> ลิขสิทธิมหาวิทยาลัยเชียงไหม Copyright[©] by Chiang Mai University All rights reserved

Figure 3.2 Metaphase karyotypic forms of *An. nigerrimus*. (a) Form A (X₁, Y₁: Lampang); (b) Form A (X₂, Y₁: Ubon Ratchathani); (c) Form A (X₂, Y₁: Songkhla); (d) Form A (X₃, Y₁: Ubon Ratchathani); (e) Form B (X₂, Y₂: Nakhon Si Thammarat); (f) Form B (X₃, Y₂: Nakhon Si Thammarat); (g) Form C (X₁, Y₃: Ratanakiri); (h) Form D (X₃, Y₄: Ubon Ratchathani); (i) Form A (heterozygous X₂, X₃: Ubon Ratchathani); diagrams of representative metaphase karyotype of Form C (j) and Form D (k)

3.3 Cross-mating Experiments

Details of hatchability, pupation, emergence and adult sex ratio of parental, reciprocal and F₁-hybrid crosses among the 8 isolines of *An. nigerrimus* representing Forms A-D were 79.06-94.05%, 91.14-100%, 94.64-100%, and 0.81-1.12; 71.97-92.01%, 85.07-100%, 87.23-100%, and 0.89-1.14; 67.86-92.97%, 87.00-100%, 89.82-98.17%, and 0.71-1.27, respectively (Table 3.2). All yielded gave viable progenies through the F₂-generations. No evidence of genetic incompatibility and/or post-mating reproductive isolation was observed among these crosses. The salivary gland polytene chromosomes of the 4th instar larvae of F₁-hybrids from all crosses showed complete synapsis without inversion loops in all chromosome arms (Figure 3.3).

ลิปสิทธิมหาวิทยาลิยเชียงไหม Copyright[©] by Chiang Mai University All rights reserved

Crosses	Total eggs	Embryonation	Hatched	Pupation	Emergence	Total emerge	ence n (%)
(Female x Male)	(number) ^a	rate ^b	n (%)	n (%)	n (%)	Female	Male
Parental cross	11	100	0,00	4			
Lp1A x Lp1A	320 (158, 162)	87	253 (79.06)	235 (92.89)	235 (100.00)	106 (45.11)	129 (54.89)
Ur1A x Ur1A	366 (194, 172)	87	304 (83.06)	304 (100.00)	301 (99.01)	158 (52.49)	143 (47.51)
Sk2A x Sk2A	399 (190, 209)	85	331 (82.96)	321 (96.98)	314 (97.82)	165 (52.55)	149 (47.45)
Ns2A x Ns2A	318 (161, 157)	94	296 (93.08)	296 (100.00)	296 (100.00)	145 (48.99)	151 (51.01)
Rt4A x R43A	332 (206, 126)	94	295 (88.86)	280 (94.92)	265 (94.64)	130 (49.06)	135 (50.94)
Ns1B x Ns1B	394 (194, 200)	91	347 (88.07)	333 (95.97)	330 (99.10)	174 (52.73)	156 (47.27)
Rt2C x Rt2C	359 (158, 201)	94	316 (88.02)	288 (91.14)	278 (96.53)	139 (50.00)	139 (50.00)
Ur20D x Ur20D	336 (210, 126)	94	316 (94.05)	316 (100.00)	303 (95.89)	136 (44.88)	167 (55.12)
Reciprocal cross	1.5	1.	1111	/ AM			
Lp1A x Ur1A	353 (194, 159)	96	300 (84.99)	264 (88.00)	255 (96.59)	135 (52.94)	120 (47.06)
Ur1A x Lp1A	349 (158, 191)	90	297 (85.10)	267 (89.90)	261 (97.75)	130 (49.81)	131 (50.19)
Lp1A x Sk2A	364 (197, 167)	88	309 (84.89)	284 (91.91)	262 (92.25)	132 (50.38)	130 (49.62)
Sk2A x Lp1A	381 (194, 187)	92	335 (87.93)	328 (97.91)	318 (96.95)	164 (51.57)	154 (48.43)
Lp1A x Ns3A	350 (150, 200)	89	298 (85.14)	292 (97.99)	283 (96.92)	149 (52.65)	134 (47.35)
Ns3A x Lp1A	329 (157, 172)	92	286 (86.93)	280 (97.90)	260 (92.86)	137 (52.69)	123 (47.31)
Lp1A x Rt4A	311 (150, 161)	94 Y C	274 (88.10)	274 (100.00)	263 (95.99)	134 (50.95)	129 (49.05)
Rt4A x Lp1A	275 (157, 118)	90	228 (82.91)	219 (96.05)	214 (97.72)	114 (53.27)	100 (46.73)
Lp1A x Ns1B	356 (186, 170)	94	317 (89.04)	307 (96.85)	301 (98.05)	142 (47.18)	159 (52.82)
Lp1A x Rt4A Rt4A x Lp1A Lp1A x Ns1B	311 (150, 161) 275 (157, 118) 356 (186, 170)	94 90 94	274 (88.10) 228 (82.91) 317 (89.04)	274 (100.00) 219 (96.05) 307 (96.85)	263 (95.99) 214 (97.72) 301 (98.05)	134 (50.95) 114 (53.27) 142 (47.18)	129 (49.0 100 (46. 159 (52.8

 Table 3.2 Crossing experiments among the 8 isolines of An. nigerrimus

Crosses	Total eggs	Embryonation	Hatched	Pupation	Emergence	Total emerg	ence n (%)
(Female x Male)	(number) ^a	rate ^b	n (%)	n (%)	n (%)	Female	Male
Ns1B x Lp1A	291 (127, 164)	86	221 (75.95)	188 (85.07)	164 (87.23)	87 (53.05)	77 (46.95)
Lp1A x Rt2C	378 (269, 109)	93	333 (88.10)	333 (100.00)	313 (94.00)	147 (46.96)	166 (53.04)
Rt2C x Lp1A	346 (186, 160)	81	249 (71.97)	232 (93.17)	222 (95.69)	105 (47.30)	117 (52.70)
Lp1A x Ur20D	363 (128, 235)	93	334 (92.01)	331 (99.10)	298 (90.03)	156 (52.35)	142 (47.65)
Ur20D x Lp1A	346 (149, 197)	92	311 (89.88)	299 (96.14)	299 (100.00)	147 (49.16)	152 (50.84)
F1-hybrid cross	88	A	199	と 頼	3		
$(Lp1A \ x \ Ur1A)F_1 \ x \ (Lp1A \ x \ Ur1A)F_1$	342 (112, 230)	92	308 (90.06)	308 (100.00)	286 (92.86)	160 (55.94)	126 (44.06)
$(Ur1A x Lp1A)F_1 x (Ur1A x Lp1A)F_1$	287 (177, 110)	92	258 (89.90)	240 (93.02)	226 (94.17)	94 (41.59)	132 (58.41)
(Lp1A x Sk2A)F ₁ x (Lp1A x Sk2A)F ₁	313 (172, 141)	94	291 (92.97)	274 (94.16)	260 (94.89)	115 (44.23)	145 (55.77)
(Sk2A x Lp1A)F ₁ x (Sk2A x Lp1A)F ₁	329 (159, 170)	79	257 (78.12)	226 (87.94)	203 (89.82)	99 (48.77)	104 (51.23)
(Lp1A x Ns3A)F ₁ x (Lp1A x Ns3A)F ₁	346 (186, 160)	81	249 (71.71)	232 (93.17)	222 (95.69)	105 (47.30)	117 (52.70)
(Ns3A x Lp1A)F ₁ x (Ns3A x Lp1A)F ₁	319 (162, 157)	90	271 (84.95)	255 (94.10)	247 (96.86)	130 (52.63)	117 (47.37)
(Lp1A x Rt4A)F ₁ x (Lp1A x Rt4A)F ₁	338 (125, 213)	88	277 (81.95)	241 (87.00)	235 (97.51)	116 (49.36)	119 (50.64)
(Rt4A x Lp1A)F ₁ x (Rt4A x Lp1A)F ₁	345 (189, 156)	87	293 (84.93)	255 (87.03)	243 (95.29)	126 (51.85)	117 (48.15)
(Lp1A x Ns1B)F ₁ x (Lp1A x Ns1B)F ₁	284 (167, 117)	87	233 (82.04)	226 (97.00)	221 (97.79)	112 (50.68)	109 (49.32)

Table 3.2 (continued)

Copyright[©] by Chiang Mai University All rights reserved

Lable 3.2 (continueu)	Tabl	le 3.2	(continued))
------------------------------	------	--------	-------------	---

Crosses	Total eggs	Embryonation	Hatched	Pupation	Emergence	Total emerge	ence n (%)
(Female x Male)	(number) ^a	rate ^b	n (%)	n (%)	n (%)	Female	Male
(Ns1B x Lp1A)F ₁ x (Ns1B x Lp1A)F ₁	336 (177, 159)	82	228 (67.86)	219 (96.05)	215 (98.17)	94 (43.72)	121 (56.28)
(Lp1A x Rt2C)F ₁ x (Lp1A x Rt2C)F ₁	295 (134, 161)	75	215 (72.88)	213 (99.07)	207 (97.18)	100 (48.31)	107 (51.69)
$(Rt2C \ x \ Lp1A)F_1 \ x \ (Rt2C \ x \ Lp1A)F_1$	339 (182, 157)	88	271 (79.94)	255 (94.10)	250 (98.04)	135 (54.00)	115 (46.00)
(Lp1A x Ur20D)F ₁ x	242 (112, 220)	602	208 (00.06)	208 (100.00)	296 (02.96)	160 (55.04)	126 (11 06)
(Lp1A x Ur20D)F ₁	542 (112, 250)	92	508 (90.00)	508 (100.00)	280 (92.80)	100 (33.94)	120 (44.00)
$(Ur20D x Lp1A)F_1x$	297 (177 110)	02	259 (90.00)	240 (02 02)	226 (04 17)	04(41.50)	122 (59 41)
$(Ur20D \times Lp1A)F_1$	287 (177, 110)	92	238 (89.90)	240 (95.02)	220 (94.17)	94 (41.39)	152 (38.41)

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่

Copyright[©] by Chiang Mai University All righ reserved

a: two selective egg-batches of inseminated females from each cross; *b*: dissection from 100 eggs; n = number

STAG MAI

31

Figure 3.3 Synapsis in all arms of salivary gland polytene chromosome of F₁-hybrid larvae of *An. nigerrimus*. (a) Lp1A female x Ur1A male; (b) Lp1A female x Sk2A male; (c) Lp1A female x Ns3A male; (d) Lp1A female x Rt4A male; (e) Lp1A female x Ns1B male, note: small gap of homosequential asynapsis was found on chromosome 3R (small arrow); (f) Lp1A female x Rt2C male; (g) Lp1A female x Ur20D male

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

3.4 DNA Sequence and Phylogenetic Analysis

DNA sequences of the ITS2, COI and COII of the 13 isolines of An. nigerrimus Forms A-D from Thailand and Cambodia were analysed. They all showed the same lengths for ITS2 (508 bp), COI (658 bp) and COII (685 bp) sequences. Comparison of ITS2 sequences of 10 and 3 isolines from Thai and Cambodian An. nigerrimus, respectively, were performed. Among them, 8 were identical and the remaining 5 (Ns1B, Ns2B, Ns3A, Sk2A and Sk3A) from the southern region of Thailand shared the same nucleotide sequences, but they differed from the other 8 by only 2 nucleotide substitutions (A \leftrightarrow G at position 70, and T \leftrightarrow G at position 481). The evolutionary relationships were constructed among the 4 karyotypic forms using neighbor-joining and Bayesian trees. Both phylogenetic methods showed similar tree topologies, thus, only the Bayesian tree was shown for all regions (Figures 3.4 and 3.5). The average genetic distances within and between the 4 karyotypic forms exhibited no significant difference in three DNA regions (0.002-0.007) of both Thai and Cambodian populations. Therefore, the 13 isolines were placed within a single species, namely An. nigerrimus. Additionally, three ITS2 retrieved sequences (428 bp) from GenBank, previously identified as the Hyrcanus Group by Paredes-Esquivel et al. (2011), were grouped together with 4 karyotypic forms of An. nigerrimus (average genetic distances = 0.003). These ITS2 sequences were nearly identical to our sequences, and only 2 nucleotide substitutions were found among them. In support, the phylogenetic trees for ITS2, COI and COII of these isolines, representing Form A-D, were clearly different from other species of the Hyrcanus Group with strongly supported bootstrap values

(Figures 3.4 and 3.5).

Figure 3.4 Bayesian phylogenetic relationships among the 13 isolines of *An. nigerrimus* from Thailand and Cambodia based on ITS2 sequences compared with 9 species of the Hyrcanus Group and 3 specimens of the Hyrcanus Group from Kalimantan, Indonesia (Paredes-Esquivel et al. 2011). Numbers on branches are bootstrap values (%) of NJ analysis and Bayesian posterior probabilities (%). Only the values higher than 70% both on bootstrap values and posterior probabilities are shown. Branch lengths are proportional to genetic distance (scale bar)

Figure 3.5 Bayesian phylogenetic relationships among the 13 isolines of *An. nigerrimus* from Thailand and Cambodia, based on combined sequences of COI and COII, compared with 7 species of the Hyrcanus Group. Numbers on branches are bootstrap values (%) of NJ analysis and Bayesian posterior probabilities (%). Only the values higher than 70% both on bootstrap values and posterior probabilities are shown. Branch lengths are proportional to genetic distance (scale bar)

All rights reserved

Anopheles nitidus

3.5 Field Collections and Establishment of Isoline Colonies

Samples of fully engorged females of *An. nitidus* were collected from cowbaited traps in 2 provinces of Thailand, i.e., Phang Nga and Ubon Ratchathani provinces (Table 3.3, Figure 3.6). A total of 21 isolines were established and maintained in an insectary at Chiang Mai University, and they were used for studies on metaphase karyotype, cross-mating experiments and molecular analysis.

36

Table 3.3 Locations in 2 provinces of Thailand, code of isolines, 5 karyotypic forms (A-E) of An. nitidus and their GenBank accession

numbers

numbers			20918	เนลิ			
Location	Code of	Karyotypic	Region	GenBa	nk accession	number	Reference
(Geographical coordinate)	isoline ^a	form	10 01	ITS2	COI	COII	
An. nitidus		1/ 8	10		1.31		
Ubon Ratchathani	$Ur2D^{a}$	D (X ₃ , Y ₄)	ITS2, COI, COII	AB777782	AB777803	AB777824	This study
(15° 31′ N, 105° 35′ E)	$Ur5E^{a}$	E (X ₂ , Y ₅)	ITS2, COI, COII	AB777783	AB777804	AB777825	This study
	Ur8E	E (X1, Y5)	ITS2, COI, COII	AB777784	AB777805	AB777826	This study
	Ur11D	D (X3, Y4)	ITS2, COI, COII	AB777785	AB777806	AB777827	This study
	Ur12D	$D(X_1, Y_4)$	ITS2, COI, COII	AB777786	AB777807	AB777828	This study
	Ur15D	D (X ₃ , Y ₄)	ITS2, COI, COII	AB777787	AB777808	AB777829	This study
	Ur16E	E (X ₁ , Y ₅)	ITS2, COI, COII	AB777788	AB777809	AB777830	This study
	Ur19D	D (X1, Y4)	ITS2, COI, COII	AB777789	AB777810	AB777831	This study
	Ur22E	E (X ₂ , Y ₅)	ITS2, COI, COII	AB777790	AB777811	AB777832	This study
	Ur23E	E (X ₃ , Y ₅)	ITS2, COI, COII	AB777791	AB777812	AB777833	This study
	Ur24D	D (X ₃ , Y ₄)	ITS2, COI, COII	AB777792	AB777813	AB777834	This study
	Ur25D	$D(X_1, Y_4)$	ITS2, COI, COII	AB777793	AB777814	AB777835	This study
	Ur27D	$D(X_1, Y_4)$	ITS2, COI, COII	AB777794	AB777815	AB777836	This study
	Ur28E	E (X ₃ , Y ₅)	ITS2, COI, COII	AB777795	AB777816	AB777837	This study
	Ur30E	$E(X_1, Y_5)$	ITS2, COI, COII	AB777796	AB777817	AB777838	This study
	Ur31D	D (X ₃ , Y ₄)	ITS2, COI, COII	AB777797	AB777818	AB777839	This study
	Ur33E	E (X ₂ , Y ₅)	ITS2, COI, COII	AB777798	AB777819	AB777840	This study
	Ur34D	D (X ₃ , Y ₄)	ITS2, COI, COII	AB777799	AB777820	AB777841	This study
Phang Nga	$Pg2A^{a}$	$A(X_{1}, Y_{1})$	ITS2, COI, COII	AB777800	AB777821	AB777842	This study
(08° 27' N, 98° 31' E)	Pg4C ^a	C (X ₂ , Y ₃)	ITS2, COI, COII	AB777801	AB777822	AB777843	This study
	$Pg5B^{a}$	B (X ₁ , Y ₂)	ITS2, COI, COII	AB777802	AB777823	AB777844	This study

Location	Code of	Karyotypic	Region	GenBa	nk accession	number	Reference
(Geographical coordinate)	isoline ^a	form	ab	ITS2	COI	COII	
Hyrcanus Group	TR2	-//	ITS2	HM488273	4	-	Paredes-Esquivel et al. 2011
	TR3	-/ &	ITS2	HM488272	1.31		Paredes-Esquivel et al. 2011
	TR6	1- 8-	ITS2	HM488268	1-3	-	Paredes-Esquivel et al. 2011
An. belenrae	-	1-6	ITS2	EU789794	1-5	-	Park et al. 2008a
An. crawfordi	Pg4A	$A(X_{1}, Y_{1})$	ITS2, COI, COII	AB779142	AB779171	AB779200	Saeung et al. 2014
An. kleini	-	11 1	ITS2	EU789793	-	. 11 -	Park et al. 2008a
An. lesteri	-	582	ITS2	EU789791	- 58	211 -	Park et al. 2008a
	ilG1	565	COI, COII	SY - N	AB733028	AB733036	Taai et al. 2013a
An. paraliae	Sk1B	B (X ₁ , Y ₂)	ITS2, COI, COII	AB733487	AB733503	AB733519	Taai et al. 2013b
An. peditaeniatus	RbB	B (X ₃ , Y ₂)	ITS2, COI, COII	AB539061	AB539069	AB539077	Choochote 2011
An. pullus	-	1-5	ITS2	EU789792	1-0	/// -	Park et al. 2008a
		15	COI, COII	14 M °	AY444348	AY444347	Park et al. 2003
An. sinensis	i2ACM	$A(X, Y_1)$	ITS2	AY130473	A-11	· -	Min et al. 2002
	-	-	COI	-	AY444351	-	Park et al. 2003
	i1BKR	B (X, Y ₂)	COII	WIVER	~ //	AY130464	Min et al. 2002

Table 3.3 (continued)

a: used in cross-mating experiments

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่Copyright[©] by Chiang Mai UniversityAll righreserved

Figure 3.6 Map of Thailand showing two provinces where specimens of *An. nitidus* were collected and the number of isolines of the five karyotypic forms (A–E) detected in each location

3.6 Metaphase Karyotype of Anopheles nitidus

Cytogenetic observations of F_1 progenies of the 21 isolines of *An. nitidus* which were represented in 2 provinces in Thailand, i.e., Phang Nga and Ubon Ratchathani provinces revealed different types of sex chromosomes due to the addition of extra block(s) of heterochromatin. There were 3 types of X (small metacentric X_1 , submetacentric X_2 and large submetacentric X_3) and 5 types of Y chromosomes (small telocentric Y₁, small subtelocentric Y₂, large subtelocentric Y₃, submetacentric Y₄ and small metacentric Y_5) (Figures 3.7 and 3.8). The X_1 chromosome has a small metacentric with one arm euchromatic, and the opposite one totally heterochromatic. The X₂ chromosome is different from the X₁ chromosome in having an extra block of heterochromatin in the heterochromatic arm, making it a long arm of submetacentric. The X_3 chromosome has a large submetacentric that was slightly different from the X_2 chromosome in having an extra block of heterochromatin at the distal end of the long heterochromatic arm. A good comparison of the size and morphology between X₂ and X₃ chromosomes could be made easily in heterozygous females (Figure 3.7I). Similar to the situation in the X chromosome, the Y chromosome also exhibited extensive variation in size and morphology, due to differing amounts and distribution of heterochromatic block. Thus, the Y₁ chromosome is an apparently small telocentric, which represents the ancestral form (Figure 3.7A). The Y₂ chromosome has a small subtelocentric or acrocentric that slightly differs from the Y₁ chromosome, which has a very small portion of the short arm present (Figure 3.7B). Chromosome Y_3 has a large subtelocentric that obviously differs from the Y₂ chromosome in having an extra block of heterochromatin at the distal end of the long heterochromatic arm (Figure 3.7C). The Y₄ chromosome is clearly submetacentric, with the short arm approximately 1/3 the length of the long arm (Figure 3.7D and E). It appears to have derived from the Y₃ chromosome by means of adding an extra block of heterochromatin onto the short arm, and transferring it to a submetacentric. Chromosome Y₅ had a small metacentric, which was quite different from chromosomes Y₁, Y₂, Y₃ and Y₄ by having an equal heterochromatic block on each arm (Figure 3.7F and G). Based on uniquely different characteristics of Y chromosome from each isoline colony, they were designated as Form A (X_1, Y_1) , Form B (X_1, Y_2) , Form C (X_2, Y_3) , Form D (X_1, X_3, Y_4) and Form E

(X₁, X₂, X₃, Y₅). Forms A, B and C were found in Phang Nga province, and Forms D and E were obtained in Ubon Ratchathani province.

Figure 3.7 Metaphase karyotypic forms of *An. nitidus*. Phang Nga province (A-C) (A) Form A (X₁, Y₁), (B) Form B (X₁, Y₂), (C) Form C (X₂, Y₃); Ubon Ratchathani province (D-I) (D) Form D (X₁, Y₄), (E) Form D (X₃, Y₄), (F) Form E (X₁, Y₅), (G) Form E (X₂, Y₅), (H) Form E (homozygous X₂, X₂), (I) Form E (heterozygous X₂, X₃)

Figure 3.8 Diagrams of representative metaphase karyotypes of Forms A, B, C, D and E of *An. nitidus*

หม

3.7 Cross-mating Experiments

Details of hatchability, pupation, emergence and adult sex-ratio of parental, reciprocal and F_1 -hybrid crosses among the 5 isolines of *An. nitidus* Forms A, B, C, D and E from Thailand are shown in Table 3.4. All crosses yielded viable progenies through F_2 generations. No evidence of genetic incompatibility and/or post-mating reproductive isolation was observed among these crosses. The salivary gland polytene chromosomes of the 4th stage larvae from all crosses showed synapsis without any inversion loops along the whole length of all autosomes and the X chromosome (Figure 3.9).

Crosses	Total eggs	Embryonation	Hatched	Pupation	Emergence	Total emerg	gence n (%)
(Female x Male)	(number) ^a	rate ^b	n (%)	n (%)	n (%)	Female	Male
Parental cross							
Pg2A x Pg2A	244 (125, 119)	88	210 (86.06)	195 (92.86)	195 (100.00)	103 (52.82)	92 (47.18)
Pg5B x Pg5B	277 (130, 147)	91	238 (85.92)	226 (94.96)	221 (97.79)	107 (48.42)	114 (51.58)
Pg4C x Pg4C	283 (118, 165)	84	218 (77.03)	218 (100.00)	211 (96.79)	106 (50.24)	105 (49.76)
Ur2D x Ur2D	292 (109, 183)	92	263 (90.07)	258 (98.10)	247 (95.74)	131 (53.04)	116 (46.96)
Ur5E x Ur5E	301 (148, 153)	88	256 (85.05)	251 (98.05)	221 (88.05)	111 (50.23)	110 (49.77)
Reciprocal cross							
Pg2A x Pg5B	289 (147, 142)	94	260 (89.97)	257 (98.85)	239 (93.00)	117 (48.95)	122 (51.05)
Pg5B x Pg2A	298 (158, 140)	90	220 (73.83)	202 (91.82)	198 (98.02)	97 (48.99)	101 (51.01)
Pg2A x Pg4C	299 (131, 168)	92	260 (86.96)	231 (88.85)	226 (97.84)	112 (49.56)	114 (50.44)
Pg4C x Pg2A	313 (162, 151)	80	225 (71.88)	218 (96.89)	209 (95.87)	112 (53.59)	97 (46.41)
Pg2A x Ur2D	211 (103, 108)	86	175 (82.94)	159 (90.86)	159 (100.00)	64 (40.25)	95 (59.75)
Ur2D x Pg2A	224 (111, 113)	91	202 (90.18)	196 (97.03)	171 (87.24)	81 (47.37)	90 (52.63)
Pg2A x Ur5E	243 (118, 125)	87	207 (85.19)	207 (100.00)	197 (95.17)	100 (50.76)	97 (49.24)
Ur5E x Pg2A	264 (139, 125)	91	235 (89.02)	235 (100.00)	204 (86.81)	108 (52.94)	96 (47.06)

Table 3.4 Cross-mating experiments among the 5 isolines of An. nitidus

vioutio bit totto teto toto ovitib

Copyright[©] by Chiang Mai University All rights reserved

Crosses	Total eggs	Embryonation	Hatched	Pupation	Emergence	Total emerg	gence n (%)
(Female x Male)	(number) ^a	rate ^b	n (%)	n (%)	n (%)	Female	Male
F1- hybrid cross							
(Pg2A x Pg5B)F ₁ x	209(119,100)	95	246 (70.87)	224 (05.12)	220 (07.86)	111 (48 47)	119 (51 52)
(Pg2A x Pg5B)F ₁	508 (118, 190)	65	240 (79.87)	234 (93.12)	229 (97.80)	111 (48.47)	116 (31.33)
$(Pg5B x Pg2A)F_1 x$	212 (196, 126)	07	250 (90 12)	225 (04.00)	225(05.74)	110 (48 90)	115 (51 11)
(Pg5B x Pg2A)F ₁	512 (180, 120)	87	230 (80.13)	255 (94.00)	223 (93.14)	110 (48.89)	115 (51.11)
(Pg2A x Pg4C)F ₁ x	209 (147 161)	02	271(97.00)	269 (09 90)	257 (05.00)	125 (52 52)	122 (47 47)
(Pg2A x Pg4C)F ₁	508 (147, 101)	92	271 (87.99)	208 (98.89)	237 (93.90)	155 (52.55)	122 (47.47)
(Pg4C x Pg2A)F ₁ x	220 (104 125)	80	250(75,00)	220 (02.00)	225 (07.82)	115 (51 11)	110 (48 80)
(Pg4C x Pg2A)F ₁	529 (194, 155)	80	230 (73.99)	230 (92.00)	223 (97.83)	115 (31.11)	110 (48.89)
(Pg2A x Ur2D)F ₁ x	247 (157, 100)	00	205(95.01)	280 (07.07)	265(01.70)	141 (52.01)	124 (46 70)
(Pg2A x Ur2D)F ₁	547 (157, 190)	90	295 (85.01)	289 (97.97)	203 (91.70)	141 (33.21)	124 (40.79)
(Ur2D x Pg2A)F ₁ x	287(125, 1(2))	00	250(97.11)	222 (88 80)	220 (00 10)	112 (50.01)	108 (40.00)
(Ur2D x Pg2A)F1	287 (123, 102)	90	230 (87.11)	222 (88.80)	220 (99.10)	112 (30.91)	108 (49.09)
(Pg2A x Ur5E)F ₁ x	250 (167, 192)	00	290 (90 00)	272 (07.14)	266 (07.70)	126 (47 27)	140 (52 (2)
(Pg2A x Ur5E)F ₁	550 (107, 185)	88	280 (80.00)	272 (97.14)	200 (97.79)	120 (47.57)	140 (52.03)
(Ur5E x Pg2A)F ₁ x	220 (104 145)	94	268(70.00)	262 (09.12)	242 (02.02)	124 (51 24)	110 (10 76)
(Ur5E x Pg2A)F ₁	339 (194, 145)	84	208 (79.00)	203 (98.13)	242 (92.02)	124 (31.24)	118 (48.70)

Table 3.4 (continued)

a: two selective egg-batches of inseminated females from each cross; *b*: dissection from 100 eggs; n = number

Figure 3.9 Synapsis in all arms of salivary gland polytene chromosome of F₁-hybrids 4th larvae of *An. nitidus*. (A) Pg2A female x Pg5B male; (B) Pg2A female x Pg4C male; (C) Pg2A female x Ur2D male; (D) Pg2A female x Ur5E male. Note: small common gap of homosequential asynapsis (arrow) was found on chromosome 2L, 2R and 3R; 2L and 2R; and 3L from the crosses between Pg2A female x Pg5B male; Pg2A female x Pg4C male; and Pg2A female x Ur5E male, respectively

Copyright[©] by Chiang Mai University All rights reserved

3.8 DNA Sequence and Phylogenetic Analysis

DNA sequences were determined and analyzed for the ITS2, COI and COII of the 21 isolines of An. nitidus Forms A, B, C, D and E. They showed various lengths of ITS2, at 480 bp in 18 isolines from Ubon Ratchathani province and 481 bp in 3 isolines from Phang Nga province. The An. nitidus from Ubon Ratchathani province differed from that in Phang Nga province by a deletion of T at position 421. They all showed the same length in COI (658 bp) and COII (685 bp). Neighbor-joining (NJ) and Bayesian trees were constructed to reveal the evolutionary relationship of the five karyotypic forms. Both phylogenetic methods showed similar tree topologies, thus, only the Bayesian tree is shown in Figures 3.10 and 3.11 The results showed that all sequences of An. nitidus Forms A, B, C, D and E were monophyletic in both trees, with high support (NJ = 99-100%, BPP = 100%). The average genetic distances within the five karyotypic forms (21 isolines) of An. nitidus were 0.002, 0.008 and 0.006 for ITS2, COI and COII sequences, respectively. Furthermore, all karyotypic forms of An. nitidus were well separated from other species members (An. belenrae, An. crawfordi, An. kleini, An. lesteri, An. paraliae, An. peditaeniatus, An. pullus and An. sinensis) of the Hyrcanus Group (Figures 3.10 and 3.11). The three published ITS2 sequences (GenBank accession numbers HM488268, HM488272 and HM488273, Table 3.3), which were identified previously as the Hyrcanus Group, also were placed within the same clade of An. nitidus (Figure 3.10).

> ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

Figure 3.10 Phylogenetic relationships of the 5 karyotypic forms of *An. nitidus* using Bayesian analysis based on ITS2 sequences compared with 3 specimens from Trat Province (Paredes-Esquivel et al. 2011) and 8 species of the Hyrcanus Group. Codes for the specimens are shown in Table 3.3. Numbers on branches are bootstrap values (%) of NJ analysis and Bayesian posterior probabilities (%). Only the values higher than 50% are shown. Branch lengths are proportional to genetic distance (scale bar)

Figure 3.11 Phylogenetic relationships among the 5 karyotypic forms of *An. nitidus* using Bayesian analysis based on combined COI and COII sequences compared with 6 species of the Hyrcanus Group. Codes for the specimens are shown in Table 3.3. Numbers on branches are bootstrap values (%) of NJ analysis and Bayesian posterior probabilities (%). Only the values higher than 50% are shown. Branch lengths are proportional to genetic distance (scale bar)