CONTENTS

Acknowledgement	d	
Abstract in Thai	f	
Abstract in English	h	
List of Tables	m	
List of Figures	n	
List of Abbreviations and Symbols	S	
Statement of Originality in Thai	t	
Statement of Originality in English		
Chapter 1 Introduction		
1.1 Statement and Significance of the Problem	1	
1.2 Literature Review	2	
1.2.1 Distributions and medical important	2	
1.2.2 Cytological study	4	
1.2.3 Molecular study	6	
1.2.4 Systematic techniques for the recognition of	6	
Anopheles species complexes		
1.3 Purpose of This Study	11	
1.4 Usefulness of the Study	11	
Chapter 2 Materials and Methods	12	
2.1 Materials	12	
2.1.1 Metaphase chromosome preparation	12	
2.1.2 Polytene chromosome preparation	12	
2.1.3 Molecular study	12	

CONTENTS (continued)

2.1.4 Mosquito rearing	13
2.2 Chemical	
2.2.1 Metaphase chromosome preparation	14
2.2.2 Polytene chromosome preparation	14
2.2.3 Molecular study	14
2.3 Methods	15
2.3.1 Field collection of Anopheles nigerrimus and Anopheles nitidus	15
2.3.2 Mosquito identification and processing	15
2.3.3 Mosquito rearing and establishment of isoline colonies	16
2.3.4 Metaphase and polytene chromosome preparation	18
2.3.5 Molecular study	19
1) Amplification and sequencing of the rDNA (ITS2) and	19
mtDNA (COI, COII)	
2) Sequence alignment and phylogenetic analysis	20
2.3.6 Cross-mating experiments	21
Chapter 3 Results	22
Anopheles nigerrimus	
3.1 Field Collections and Establishment of Isoline Colonies	22
3.2 Metaphase Karyotype of Anopheles nigerrimus	26
3.3 Cross-mating Experiments	28
3.4 DNA Sequence and Phylogenetic Analysis	33
Anopheles nitidus	
3.5 Field Collections and Establishment of Isoline Colonies	36
3.6 Metaphase Karyotype of Anopheles nitidus	40
3.7 Cross-mating Experiments	42
3.8 DNA Sequence and Phylogenetic Analysis	46
Chapter 4 Discussion	49

CONTENTS (continued)

LIST OF TABLES

Table 2.1	PCR primers (f = 'forward'; r = 'reverse')	20
Table 3.1	Locations in 5 provinces of Thailand and Cambodia, code of isolines, 4 karyotypic forms (A-D) of <i>An</i> . <i>nigerrimus</i> and their GenBank accession numbers	23
Table 3.2	Crossing experiments among the 8 isolines of An. nigerrimus	29
Table 3.3	Locations in 2 provinces of Thailand, code of isolines, 5 karyotypic forms (A-E) of <i>An. nitidus</i> and their GenBank accession numbers	37
Table 3.4	Cross-mating experiments among the 5 isolines of <i>An</i> . <i>nitidus</i>	43
	nitidus 41 UNIVERSION OF THE OWNER	,

ลิขสิทธิ์มหาวิทยาลัยเชียงไหม Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figure 1.1	Metaphase karyotypes of the Hyrcanus Group. An.	5
	sinensis Form A (a) and B (b). An. nigerrimus Form A	
	(c) and B (d). An. crawfordi Form A (e) and B (f). An.	
	argyropus Form A (g) and B (h). An. paraliae Form A	
	(i), B (j), C (k), D (l) and E (m), An. peditaeniatus	
	Form A (n), B (o), C (p), D (q), E (r) and F (s). An.	
	nitidus: Y and X chromosomes (t) and (u)	
Figure 1.2	Summarized flow chart for rapid systematic procedure	9
Figure 2.1	Summarized experimental design	16
Figure 3.1	Map of Thailand and Cambodia showing 5 provinces	25
	where samples of An. nigerrimus were collected and	
	the numbers of isolines of the 4 karyotypic forms (A-D)	
	were detected	
Figure 3.2	Metaphase karyotypic forms of An. nigerrimus. (a)	27
a co A	Form A (X_1 , Y_1 : Lampang); (b) Form A (X_2 , Y_1 : Ubon	
	Ratchathani); (c) Form A (X ₂ , Y ₁ : Songkhla); (d) Form	
	A (X ₃ , Y ₁ : Ubon Ratchathani); (e) Form B (X ₂ , Y ₂ :	
	Nakhon Si Thammarat); (f) Form B (X ₃ , Y ₂ : Nakhon Si	
	Thammarat); (g) Form C (X1, Y3: Ratanakiri); (h) Form	
	D (X ₃ , Y ₄ : Ubon Ratchathani); (i) Form A	
	(heterozygous X ₂ , X ₃ : Ubon Ratchathani); diagrams of	
	representative metaphase karyotype of Form C (j) and	
	Form D (k)	

Page

32

Figure 3.3 Synapsis in all arms of salivary gland polytene chromosome of F₁-hybrid larvae of *An. nigerrimus*.
(a) Lp1A female x Ur1A male; (b) Lp1A female x Sk2A male; (c) Lp1A female x Ns3A male; (d) Lp1A female x Rt4A male; (e) Lp1A female x Ns1B male, note: small gap of homosequential asynapsis was found on chromosome 3R (small arrow); (f) Lp1A female x Rt2C male; (g) Lp1A female x Ur20D male

Bayesian phylogenetic relationships among the 13 Figure 3.4 isolines of An. nigerrimus from Thailand and Cambodia based on ITS2 sequences compared with 9 species of the Hyrcanus Group and 3 specimens of the Hyrcanus Group from Kalimantan, Indonesia (Paredes-Esquivel et al. 2011). Numbers on branches are bootstrap values (%) of NJ analysis and Bayesian posterior probabilities (%). Only the values higher than 70% both on bootstrap values and posterior probabilities are shown. Branch lengths are proportional to genetic distance (scale bar) l rights reserved 34

Figure 3.5	Bayesian phylogenetic relationships among the 13	35
	isolines of An. nigerrimus from Thailand and	
	Cambodia, based on combined sequences of COI and	
	COII, compared with 7 species of the Hyrcanus Group.	
	Numbers on branches are bootstrap values (%) of NJ	
	analysis and Bayesian posterior probabilities (%).	
	Only the values higher than 70% both on bootstrap	
	values and posterior probabilities are shown. Branch	
	lengths are proportional to genetic distance (scale bar)	
Figure 3.6	Map of Thailand showing two provinces where	39
	specimens of An. nitidus were collected and the	
	number of isolines of the five karyotypic forms (A-E)	
	detected in each location	
Figure 3.7	Metaphase karyotypic forms of An. nitidus. Phang Nga	41
	Province (A-C) (A) Form A (X ₁ , Y ₁), (B) Form B (X ₁ ,	
	Y ₂), (C) Form C (X ₂ , Y ₃); Ubon Ratchathani Province	
	(D-I) (D) Form D (X ₁ , Y ₄), (E) Form D (X ₃ , Y ₄), (F)	
	Form E (X1, Y5), (G) Form E (X2, Y5), (H) Form E	
	(homozygous X ₂ , X ₂), (I) Form E (heterozygous X ₂ , X_3)	
Figure 3.8	Diagrams of representative metaphase karyotypes of	42

Figure 3.8Diagrams of representative metaphase karyotypes of
Forms A, B, C, D and E of An. nitidus

45

Figure 3.9 Synapsis in all arms of salivary gland polytene chromosome of F₁-hybrids 4th larvae of *An. nitidus*.
(A) Pg2A female x Pg5B male; (B) Pg2A female x Pg4C male; (C) Pg2A female x Ur2D male; (D) Pg2A female x Ur5E male. Note: small common gap of homosequential asynapsis (arrow) was found on chromosome 2L, 2R and 3R; 2L and 2R; and 3L from the crosses between Pg2A female x Pg5B male; Pg2A female x Pg4C male; and Pg2A female x Ur5E male, respectively.

Figure 3.10 Phylogenetic relationships of the 5 karyotypic forms of *An. nitidus* using Bayesian analysis based on ITS2 sequences compared with 3 specimens from Trat Province (Paredes-Esquivel et al. 2011) and 8 species of the Hyrcanus Group. Codes for the specimens are shown in Table 3.3. Numbers on branches are bootstrap values (%) of NJ analysis and Bayesian posterior probabilities (%). Only the values higher than 50% are shown. Branch lengths are proportional to genetic distance (scale bar)

47

48

Figure 3.11 Phylogenetic relationships among the 5 karyotypic forms of *An. nitidus* using Bayesian analysis based on combined COI and COII sequences compared with 6 species of the Hyrcanus Group. Codes for the specimens are shown in Table 3.3. Numbers on branches are bootstrap values (%) of NJ analysis and Bayesian posterior probabilities (%). Only the values higher than 50% are shown. Branch lengths are proportional to genetic distance (scale bar)

VG MAI

ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

LIST OF ABBREVIATIONS AND SYMBOLS

%	Percentage
°C	Degree Celsius
μl	Microliter
μΜ	Micromolar
bp	Base pair
С	Centromere
cm	Centimeter
COI	Cytochrome c oxidase subunit I
COII	Cytochrome c oxidase subunit II
DNA	Deoxyribonucleic acid
dNTPs	Deoxynucleotide triphosphates
e.g.	Exempli gratia
et al	And others
etc.	Etcetera
i.e.	Id est
ITS2	Second internal transcribed spacer
L	Left arm
min	Minute
ml ลิฮสิกธิเ	Milliliter
mM Copyright ^C	Millimolar
mtDNA	mitochondrial DNA
PCR	Polymerase chain reaction
pH	Potential of hydrogen
R	Right arms
rDNA	ribosomal DNA
sec	Second
U	Unit

ข้อความแห่งการริเริ่ม

- วิทยานิพนธ์นี้เป็นการศึกษาแรกที่รายงานรูปแบบเมตาเฟสคาริโอไทป์รูปแบบใหม่ของ ยุงกันปล่อง Anopheles nigerrimus และ Anopheles nitidus
- วิทยานิพนธ์นี้เป็นการศึกษาแรกที่ทำให้ทราบอย่างชัดเจนถึงสถานะสปีชีส์ที่แท้จริงของ รูปแบบเมตาเฟสคาริโอไทป์ที่มีความหลากหลายของยุงกันปล่อง An. nigerrimus และ An. nitidus โดยใช้วิธีสหวิทยาการ
- วิทยานิพนธ์นี้ได้แสดงให้เห็นว่าความหลากหลายทางพันธุกรรมในระดับโครโมโซมของ ยุงก้นปล่อง An. nigerrimus และ An. nitidus นั้น ไม่มีผลต่อการเกิดการวิวัฒนาการเป็น ยุงก้นปล่องกลุ่มชนิดซับซ้อน

ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved

STATEMENT OF ORIGINALITY

- 1. This thesis is on the first study to report new metaphase karyotypes of *Anopheles nigerrimus* and *Anopheles nitidus*.
- 2. This thesis is on the first study to clarify the true species status of karyotypic variants of *An. nigerrimus* and *An. nitidus* by using multidisciplinary approaches.
- 3. This thesis demonstrates that genetic diversity at the chromosomal level of *An*. *nigerrimus* and *An. nitidus* does not result in the evolution of species complex.

ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved