CHAPTER 5

Cosmic Ray Test

Since the SuperKEKB accelerator upgrade was not yet finish, the cosmic ray detection
was used to test the inner chamber with the readout electronic prototype [7]. The detector

setup and the detection result are described in this chapter.

5.1 Detector Setup

First of all, the gas was set to 50% He/ 50%C,Hjg at the relative pressure of 5.8
mmH,O per 1 atm room pressure with the gas flow rate of 30 cc/min and 47 % humidity.
Even through, for in-beam operation, the gas controller system will be keep at an absolute
pressure at 1 atm. To test the chamber, either the gas leak rate check or the cosmic ray
test, the gas pressure is measured as the time dependence of the relative pressure between

the atmosphere and the pressure in the chamber.

On the front end, the sense wire pins of each layer were connected by the cable to
the power supply. A high voltage of 2.1 kV was supplied to the sense wires by care-
fully increase the voltage. The field wire pins are directly inserted to the endplates as the
grounded level. To avoid the discharge on the outside of the chamber due to a very tiny
distance between the sense wire pins and the end plate, plastic insulator tubes were cov-
ered all the sense wire pins for both front end and back end, and also, the high voltage

connector.

After the chamber was connected with the high voltage for one day, the chamber
can handle a stable voltage without any discharges. The leak current is approximately
80 nA or around 0.06 nA per wire. Then, the cabling for detecting the particle signals
were connected on the back end. It can be described in two sections including the setup

for trigger signal and the setup for the cosmic ray data collecting.The overview of the
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detector set up is shown in Figure 5.1.
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Figure 5.1: The overview of the detector setup for the cosmic ray detection.

5.1.1 Setup for trigger signal

In this experiment, only the charged particles from the cosmic ray, which passed
through the central axis of the chamber in vertical direction were measured. A plastic
scintillator counter and the reference wire layer were set for trigger signal generating.

Figure 5.2 indicates a diagram of the chamber setup for the trigger signal generating.

The reference wires consist of 4 drift cells, which were arranged on the upper part
of the chamber in the fourth layer. They were arranged on the vertical line passing the
middle of the detector and on the same line as the plastic scintillator, which was located
under the chamber (Figure 5.1). When a particle pass through the reference layer, the
signal of the particle from the reference wire was shaping and amplifying by 1-chip ASIC
board. The ASIC board sent the output positive signal with the square shape. Because
the read out electronics requires the negative signal, the converter, which took a role to
change the signal to be negative, was used. After that, the four cables of each reference
wire were connected to the module, which merge all signals to be one. Then, the gate
generator module was used to expand the signal width to 10 ps before it was transferred

to the coincident module.
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The particle passed through the chamber and hit the plastic scintillator counter. The
signal from the counter was transferred to the discriminator module to be amplified and
shaped to a negative square shape signal. The signal was delayed for 200 ns in order
to force the signal to arrive the coincident module at almost the same time as the signal
from the reference wires. This coincident signal from the reference wires and the scin-
tillator counter was a trigger signal for the readout electronic. The analog signals from
the reference wire, the scintillator counter and their coincident signal monitored by the
oscilloscope are shown in Figure 5.2. To selected the signal from the chamber, the trigger
signal has to be adjusted with an additional time delay from the chamber signal around

600 ns. The reason of this delay is described in section 5.1.2 .

V Nl = il
Reference [ i Signal 4 Merge all Gate
. — — — ﬁ
signal - converter 4 module generator

A Chl v -270mv

I ill

ter delay

Figure 5.2: The diagram of the detector setup for trigger signal generating. The blue
arrows represent the reference wire signal. the red arrows stand for the signal from the
scintillator counter. An example amplified and shaped chamber signal from the 48 con-
sidered wires in the chamber, in the green area, is represented by the green arrow.

5.1.2 Setup for the cosmic ray data collecting

A readout electronic prototype board has 48 input channels. Therefore, six drift
cells from each layer, which shared their positions near the same vertical path as the ref-
erence signal and the scintillator counter (the green area in figure 5.2), were chosen as the

considered wire and connected to the readout electronics board. The chosen 48 drift cells
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were labeled as the channel numbers 0 to 47 from left to right and from the first layer, the
innermost layer, to the eighth, outermost layer. The readout electronics has a main role to

digitize the event signal and its timing to the data acquisition system (DAQ).

The signal from the chamber is digitized by a 32 MHz flash ADC (FADC) to collect
an analog signal wavefrom. The size of this signal is corresponding to the charge caused
by the ionization in the cell or the energy loss dE/dx, which the detail was described in
Chapter 2. In this experiment, the time interval for collecting a signal, called the “time
window”, was set to 544 ns, including 17 data sampling with 32 ns step time for each
series. Each data series contains the pulse height of each channel as shown in each row of

the raw data format in section 5.2.1.

Time digital converter on the board includes the discriminator, which is used to
digitize the time of the chamber signal with 1 ns resolution [2]. The data acquisition has
to be triggered by the appropriate condition, which is determined by the whole Belle II
detector in actual situation. Generally the trigger signal was delayed and the CDC has to
keep the data during the decision. The trigger delay Figure 5.3 is adjustable in the range
from Op m to 8 um [7]. It was set to be 544 ns for this experiment, which was related to
the delay setting in section 5.1.1. The timing data was measure between the time that the
sense wire can detect the incoming particle signal, called “hit time”, and the trigger time.
The time interval between the hit time and the trigger time is called “TDC time”. The
TDC time was used in drift time calculation. Figure 5.3 presents the time measurement

procedure and the collected signal wavefrom.

After the signal was triggered and the chamber signal sent to the readout board,
both signal information and timing were digitized to the FADC variable data and the TDC
time data, respectively. The data was transferred through an optical fiber to the hub, which
transfer the data through a LAN cable to a computer. In addition, the chamber was covered
by a copper net as a Faraday cage to avoid the electromagnetic noise. All data collections
took various duration depending on number of events and the probability of the incoming

cosmic ray.
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Figure 5.3: The diagram of the time measurement procedure and the collected signal wave-
form

5.2 Raw Data Interpretation

In this section, raw data format were presented. The analysis of the chamber signal
pulse high related to the generated charge as well as the calculation of the drift time from

the TDC time were also described.

5.2.1 Data Format

The data was save as .DAT file format. An example of the data is shown in the
figure 5.4. In each event, it begins with the header, which includes the name of event,
called Triggert#...(run number).. . The data consists of 96 columns divided to 48 columns,
from 0 to 47 related to the labeled drift cell (channel), for the FADC data and the others
for timing data. For this experiment, the FADC data consists of 17 rows as time window
setting. The timing data starts first row with the trigger time, then, the fastest hit time
(1) and the second-fastest hit time ('73), if it has. All variables are written in hexadecimal

number.
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The interpretation of the raw data started by data conversion from hexadecimal num-
ber to decimal number and then its format was charged to more simple arrangement. All
calculation and plot were done by using the ROOT program and all program were written

in C++.

5.2.2 Generation of Charged Distribution

The FADC variable contains information of the signal pulse by collecting the ampli-
tude of the signal in each step time. In this study the step time was set as 32 ns. However,
the FADC variables also include the electric noise and fluctuation with the condition of
the shaper of the readout electronics, which is called the pedestal. As mentioned earlier
that the pedestal was collected before applying the high voltage for the cosmic ray data
collecting. Too many number of events collecting can cause the error from the variation
of the pedestal in time. Hence, in this experiment, the number of events were set in or-
der of thousand, which took about one day to collect the data. For this analysis, totally
37,491 events from eight times collection, were taken in to account. Since the electronic
noise was slightly fluctuate in time, thus, the background was collected every time prior
the cosmic ray data collection. For actual in-beam experiment, the pedestal data is taken
day by day. Figure 5.5 indicates the diagram of the generated charge analysis procedure.
As shown in the figure, the pedestal (yellow area) shifts the signal pulse from zero. The
charge, which is produced by the ionization in the cell, was calculated by subtracting the
mean value of the pedestal from the raw FADC data. Then, the selection non-zero data
process was performed by adding a threshold data. The next step was the summation of
the selected data. The summation were filled in the distribution plot of its channel. The
variable of FADC summation is corresponding to the generated charge analysis and also
to the energy loss dE/dx. Thus, the distribution was generated with the landau shape (see

section 2.2). The peak corresponds to the most probable energy loss.

The distribution plot of FADC summation was required in order to verify that the
readout electronic board and the inner chamber were working well for the generated charge
analysi. Due to the difference in shape of each drift cell layer and probable fluctuation of

electronic condition of the board, the FADC summation distribution have to be checked
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Figure 5.5: The diagram of the procedure of the generated charge analysis

channel by channel. Figure 5.6 - 5.13 show the summation of the FADC distribution from

each channel of the inner chamber.

Although, the overview of the distribution for all layer has the landua shape, the
innermost layer and the outermost layer distributions are large. This is because the drift
cells are close to the inner cylinder and the temporary outer aluminum cylinder cover
which is covered with the ground potential, which the electric field of both layers are dis-
torted. Since the pedestal subtraction and the threshold selection are insufficient, some
small peaks at the front edge of the landau distribution from the pedestal still occurred.
The distribution channel 17 and 22 are invalid in the considered region. In contrast, these
problems are disappeared in the timing data. The analyzed timing results will be described
in section 5.2.3. Therefore, these problems were probably caused by the amplification gain
in the readout electronics or the non-proper adjustment of the time window and the trigger

time delay.

43



35

30

25

20

15

10

50

40

30

20

10

60

50

40

30

20

10

Sum ADC Distribution ch:00

SUM ADC ch00

Entries 2650
Mean  226.3
RMS 109.7

50 100 150 200 250 300 350 400 450

Sum ADC Distribution ch:02

SUM ADC ch02

Entries 4453
Mean 2334
RMS 108.4

50 100 150 200 250 300 350 400 450

Sum ADC Distribution ch:04

SUM ADC ch04

Entries 4507
Mean  224.6
RMS 109.3

50 100 150 200 250 300 350 400 450

Sum ADC Distribution ch:01

SUM ADC ch01

Entries 1165
Mean  215.9
RMS 118.6

100 150 200 250 300 350 400 450

Sum ADC Distribution ch:03

SUM ADC ch03

60

50

40

30

20

Entries 4279
Mean  235.9
RMS 107.2

100 150 200 250 300 350 400 450

Sum ADC Distribution ch:05

SUM ADC ch05

60

50

40

30

20

Entries 4691
Mean  221.9
RMS 107.6

100 150 200 250 300 350 400

Figure 5.6: The FADC summation distribution (ch. 0 - 5).
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Figure 5.7: The FADC summation distribution (ch. 6 - 11).
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Figure 5.8: The FADC summation distribution (ch. 12 - 17).
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Figure 5.9: The FADC summation distribution (ch. 18 - 23).

47

SUM ADC ch23
Entries 4842
Mean 110
RMS 75.5




120

100

80

60

40

20

180

160

140

120

100

80

60

40

20

180

160

140

120

100

80

60

40

20

Sum ADC Distribution ch:24

SUM ADC ch24

Entries 3140
Mean  93.37
RMS 69.19

50 100 150 200 250 300 350 400 450

Sum ADC Distribution ch:26

SUM ADC ch26

Entries 4764
Mean  92.79
RMS 68.86

50 100 150 200 250 300 350 400 450

Sum ADC Distribution ch:28

SUM ADC ch28

Entries 4669
Mean  91.66
RMS 69.46

50 100 150 200 250 300 350 400 450

35

30

25

20

160

140

120

100

80

60

40

20

200

180

160

140

120

100

80

60

40

20

Sum ADC Distribution ch:25

SUM ADC ch25

Entries 1056
Mean  112.3
RMS 95.77

50 100 150 200 250 300 350 400 450

Sum ADC Distribution ch:27

SUM ADC ch27

Entries 4614
Mean  92.98
RMS 69.81

50 100 150 200 250 300 350 400 450

Sum ADC Distribution ch:29

SUM ADC ch29

Entries 4872
Mean  86.89
RMS 66.96

50 100 150 200 250 300 350 400 450

Figure 5.10: The FADC summation distribution (ch. 24 - 29).
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Figure 5.11: The FADC summation distribution (ch. 30 - 36).
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Figure 5.12: The FADC summation distribution (ch. 37 - 42).
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Figure 5.13: The FADC summation distribution (Ch. 43 - 47).

51




5.2.3 Drift Time Measurement

In order to analyze the timing data, the event data were filtered out from the elec-
tronics noise and some incomplete data. According to the trigger time setting, the hit time,
which comes faster than the delayed trigger time (less than 750 ns) was cut off. This ex-
periment considered only the event that provided only one fastest hit time (7'1) to study
the drift time. Figure 5.14 presents the distribution of the hit times in one channel. There is

about 79% of the drift cells, which provide the one hit time, and the others were neglected.

w

%10 #dc hit
- Entries 217493
o0
140
120f—
100?—
sof—
60;
40;
20?—

Figure 5.14: The distribution of the amount of hit times per channel

Then, the TDC time was calculated by
(TDC time) = (Recieved Trigger Time) — (The 1% Hit Time). (5.1)

The actual experiment of the CDC took two delay times into account for the measurement
of the drift time. The incoming particle takes time to arrive the drift cell and to travel
in the CDC in nanosecond time scale. For example, even if a particle move at the speed
of light, the outer radius of the drift chamber is at 1130 mm, the particle needs at least
approximately 4 ns to leave the detector. Moreover, the propagation time of the current
pulse in the wire is not entirely neglectable. The longest wires are approximately 2400
mm, which can lead a maximum an in—wire signal delay of about 8 ns [15]. However, the

inner chamber radius is only 240 mm and the longest wire is about 125 cm, thus the delay
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times were neglected for the test with the cosmic ray.
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Figure 5.15: An example of TDC distribution for one channel with an approximate value
of the maximum TDC time (7).

Figure 5.15 indicates an example of the TDC distribution for one channel with an
approximate value of the maximum TDC time (7). The time 7; can be typically approx-
imated by fitting the right edge of the distribution with linear equation and choosing the
point that provides the maximum slope. Since the trigger time was delayed to arrive after
the hit time, thus, 7; is the timing when a charged particle arrives the closest position of the
wire. The time 7 is almost corresponding to the zero-distance from the wire. To calculate

the drift time, the time 7; has to be subtracted from TDC time.

The drift time (ns) distribution of the inner chamber obtained from the cosmic ray
test is presented in Figure 5.16 - 5.16 for each channel of the first to the eighth layer,
respectively. The distributions, typically, have two edges corresponding to the drift time
of the incoming particle trajectory, that close to the wire and passed the edge of the drift
cell. However, the analyzed distributions still contain high frequency of noise at the right

edge, such as at the channel 1, 7, 13, 19, 25, 31 and 37.

53



Drift Time Distribution ch:00

60

50

40

30

20

10

100~

TDC ch00
- Entries 6603
B Mean 47.42
r RMS 41.63

400
Drift Time Distribution ch:02

TDC ch02
Entries 10559
L Mean 46.75
L RMS 4022

Drift Time Distribution ch:04

100~

TDC ch04
| Entries 10846
Mean 50.22
B RMS 4234

30

25

20

100

80

60

40

20

Drift Time Distribution ch:01

TDC ch01

Drift Time Distribution ch:03

Entries 3422
Mean  62.63
RMS 48.6

400

Drift Time Distribution ch:05

TDC ch03

Entries 9996
Mean 46.21
RMS 39.16

400

Figure 5.16: The drift time distribution (ch. 0 - 5).
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Figure 5.17: The drift time distribution (ch. 6 - 11).
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Figure 5.18: The drift time distribution (ch. 12 - 17).

56



40

35

30

25

20

15

10

100

80

60

40

20

40

Drift Time Distribution ch:18

TDC ch18
- Entries 5429
C Mean  60.12
- RMS 42.2
Drift Time Distribution ch:20
TDC ch20
- Entries 12110
— Mean 54.53
i RMS 41.1
400
Drift Time Distribution ch:22
TDC ch22
Entries 12413
Mean 56.28
RMS 42.66
400

Drift Time Distribution ch:19

TDC ch19

Entries 3685
Mean  66.67
RMS 46.75

30

25

20

400

Drift Time Distribution ch:21

TDC ch21
Entries 10579
Mean 51.99
RMS 39.21

400
Drift Time Distribution ch:23

TDC ch23
100 Enties 12617
- Mean 55.66
r RMS 42.81

Figure 5.19: The drift time distribution (ch. 18 - 23).
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Figure 5.20: The drift time distribution (ch. 24 - 29).
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Figure 5.21: The drift time distribution (ch. 30 - 36).
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Figure 5.22: The drift time distribution (ch. 37 - 42).
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Figure 5.23: The drift time distribution (Ch. 43 - 47).
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5.3 Spatial Resolution Approximation

This research focuses on the simplify method to approximate spatial resolution for
the measurement with the inner chamber. There were two conditions that were used to
select the data. Firstly, the events that contained two timing data consisting of trigger time
and one hit time (7'1) in each channel, called *“ good time ”, were took into account. Figure
5.24 shows the distribution of the amount of good timing drift cell per event.Secondly,
the events that contain not only the good time channel but also has only one channel in
each layer were considered. Hence, the events that have eight good time channels in the
distribution, which are about 11 % from all good time channels, were filtered out by the

second condition to get the utilized events.

#good timing cell
Entries 22546
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Figure 5.24: The distribution of the amount of good timing drift cell per event.

To convert the drift time to the position, that the incoming particle is generated the
first ionization, the relation function between the drift time and the drift distance, X-T
function, has to be calculated. In the beginning, the constant drift velocity, vy, was as-
sumed by approximating the minimum drift time, 7, and maximum drift time, 7},,,, from
the drift time distribution. These are almost corresponding to the sense wire position and

the drift cell edge or the field wire position, respectively (see figure 5.25).
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Figure 5.25: An example of drift time distribution with its, minimum drift time, 7}, and
maximum drift time, 7,,,,..

The distance from the sense wire position to the nearest field wire is obviously equal

to the half azimuth cell size. Thus, the vy was calculated by

__half cell size(mm)

= 52
v |Tmax - TO| ( )

The initial drift distance is

To = Vot (53)

where x is the initial drift distance(mm),and ¢ is the drift time (ns).

In consequence, the functions of the distance to the time relation (XT relation) were
obtained. The relation of the drift time, ¢, and the drift distance, x(, of each channel were

plotted for layer by layer. Then, the plots were fitted by the fifth order polynomial

5
T = Z aiti, (5.4)
i=0

where z is the drift distance(mm), and a; is the fitting parameter; i = 0,1,2,...,5.
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The calculated drift distance, x, was used to reconstruct the particle trajectory. The
position of the sense wire, which received the event signal, was used to draw a temporary
trajectory. The trajectory was a straight line, hence, the linear equation was used to fit the
position. When the sense wire fitted position was taken into account, which side that the
particle trajectory was passed the sense wire can be checked. Thus, with the calculated =,
the position that the particle collided the gas atom can be estimated. Next step, the particle
trajectory was reconstructed from the linear equation fitting with the position. Then, the
drift distance x was replaced by the new distance between the sense wire and the particle

track.

Furthermore, the relation of the drift time and the new drift distance, z, were plotted
the fifth order polynomial fitting was repeated. Therefore, the track was reconstructed
again and again (self-consistent fitting). As the results, all parameters, a;, were diverted
to some constant values. The fitting parameters of each layer from the final loop of self-
consistent fitting were used to estimate the spatial resolution. Figures 5.26 and 5.27 present
the X-T relation plot with the final fitting line and the fitting parameters of layer 1 to 4
and 5 to 8, respectively. Figure 5.28 indicates an example of the cosmic ray reconstructed
track. The red crosses represent the sense wire position and the blue circles and the radius

of the calculated drift distance.

Finally, the residuals between the circumference and the track of the whole selected
channel were calculated. The average spatial resolution was determined by using the
Gaussian fit to each residual distribution in Figure 5.29. With 10 um step size of the resid-
ual distribution, the spatial resolution of the inner chamber from the cosmic ray detection

approximations were summarized in table 5.1.

In 2012, the spatial resolution of a test chamber with this readout electronics was
estimated by the beam test . The 15 mm x 15 mm cell size test chamber was tested in
the electron beam with a momentum of 1 GeV/c. The typical value of spatial resolution
as small as 120 pm was obtained [14]. According to the beam test result, the cosmic ray

test in this study provided the lower overall spatial resolution due to the smaller drift cell
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Figure 5.28: An example of the cosmic ray reconstructed track. The red crosses repre-
sent the sense wire position with the blue circles which its’ radius is the calculated drift
distance.

Table 5.1: The spatial resolution approximation results.
Layer | Spatial Resolution (pum)
1 86

81

77

76

90

104

108

98

0| | N In| K| W

size of the inner chamber. However, the resolution from this cosmic ray detection was
approximated from too small amount of data of only 259 events following the selection
conditions. Moreover, the X-T function fitting method was also different to the typical
method, which is obtain by using the fitting with the fifth order polynomial and the linear

function depending on the time region.
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Figure 5.29: An example of the residual distribution of the layer number 6 with the Gaus-
sian fit. The spatial resolution was approximately to be 104 pm.
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