
CHAPTER 2

Theoretical Background

This work mainly concerns about the utilization of molecular Rydberg state of Rb2

to improve the single-atom loading efficiency in an optical trap. Since all physical phe-

nomena related to this work happen under low temperature regime, vary from µK to mK,

physics of laser cooling and trapping are important. The thermal atoms must undergo a

series of cooling processes in order to reach the sufficiently low temperature such that it

can be trapped in an optical trap. Section 2.1 and 2.2 give an overview of standard cooling

and trapping techniques used in this thesis. Rydberg atom and its general properties are

introduced in section 2.3. Section 2.4 focuses on the quantum mechanical formulation of

two interacting atoms consisting of a Rydberg atom and a ground-state atom. This sys-

tem plays a crucial role in development of our single-atom loading mechanism. Due to

the excitation of molecular Rydberg state of Rb2 requires two-photon transition driven by

780 nm and 480 nm light, section 2.5 gives a general description of two-photon excitation

and dynamic of multilevel atom in light fields. Section 2.6 presents a theoretical model

of light-assisted cold collision in blue-detuning regime. The model is used to evaluate the

possibility and conditions for achieving deterministic single-atom loading.

2.1 Magneto-optical trap (MOT)

MOT is a standard technique that is widely used to cool thermal atoms from a room

temperature to around hundreds of µK and confining the atoms in a particular region.

The central concept of cooling atoms using MOT is that of the scattering force [19]. The

origin of scattering force arise from atoms absorb photons and then momentum of photon

is transferred to the atoms. For every absorbed photon, the atom receives a momentum

change in the direction of photon propagation. The change of momentum due to spon-

taneous emission will be in random directions, hence its average change becomes zero.
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Assuming an atom is a two-level system, the scattering force exerting on the atom in the

presence of a laser field having wavelength of � is given by [Ref]

Fsp = ~⇡�
�

✓
so

1 + so + (2�/�)2

◆
, (2.1)

where � is natural decay rate, so is the saturation parameter, and � is the detuning from

atomic transition. This force can be used to slow atoms by tuning frequency of laser

below the transition frequency. This can be called the light is red-detuned from atomic

transition. If the atom moves in a direction opposite to the beam propagation, it experience

a Doppler shift that will bring the frequency of laser close to transition frequency, hence�

is reduced and the force Fsp increased. The speed of atom slow down since the direction

of force is opposite to the direction of atom’s motion.

Spatial confinement of MOT is possible using a pair of anti-Helmhotz coils to pro-

duce a radial magnetic field gradient and three pairs of red-detuned circularly polarized,

counter-propagating and counter-polarized beams. The three pairs are intersect at perpen-

dicular angles at the point where the magnetic field is zero. Fig.(2.1) shows the illustrative

optical alignment of MOT. By assuming the two-level atom has angular momentum quan-

tum number J = 0 for ground state and J = 1 for excited state, the tapping scheme of

MOT can be described as follow. Near the origin point where magnetic field is zero,

the radial magnetic field B(r) increases linearly, hence the Zeeman shift of sub-magnetic

levels mJ are position dependent,

�EZ =
µB

~
dB

dr
r, (2.2)

where µB is the Zeeman constant and dB/dr is the magnetic field gradient in radial

direction. The Zeeman shifts are shown in Fig.(2.2). It is clear that an atom moving

along positive position will scatter �+ photons at a faster rate than �� photons because

the Zeeman effect will shift the magnetic sub-level mJ = +1 down and the transition

frequency closer to the light frequency (purple arrow). Consequently the atom experience

imbalanced force that the net force directs to the center of trap. The same description
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can be applied where the atom moves along negative position. Therefore the position

dependent force acts as restoring force exerting on the atom. The total force acting on the

atom is

FMOT = �↵
dr

dt
�Kr, (2.3)

where the first term on RHS is the damping force due to Doppler effect and the second

term is the restoring force due to position-dependent of Zeeman effect. The damping

constant ↵ and the spring constant K are given by

↵ = �4~k2so

✓
2�/�

1 + (2�/�)2

◆
, (2.4)

and

K =
↵

k

µB

~
dB

dr
, (2.5)

where k is the wavenumber of laser.

So far the two-level system is used to describe the operation of MOT. In a real situa-

tion where atom is a multi-level atom, the excitation scheme becomes more complicated.

Theoretically, cooling and trapping of rubidium-87 atoms using MOT can be achieved

only via the cyclic transition F = 2 ! F 0 = 3 of the D2 line. However, the existence of

non-zero line width and multi energy levels causes atom loss from the cyclic transition.

Let a rubidium atom is in the hyperfine ground state F = 2. Although the frequency of

laser may be red-detuned to fall between F 0 = 2 and F 0 = 3 so that the transition rates

for F = 2 ! F 0 = 1 and F = 2 ! F 0 = 2 are small compared to F = 2 ! F 0 = 3,

such small excitation rates can lead to a loss of atoms from the cooling cycle caused by

spontaneous emission to the other ground state, i.e. F 0 = 3 ! F = 2. Since the splitting

between the two ground states (F = 1 and F = 2 for Rubidium 87) is very large, about

6.8GHz, atoms confined in this ground state are no longer cooled and trapped. In order to

survive efficient cooling and trapping, a second laser beam, called repumping beam, was

used to pump atoms from the avoid ground state (F = 1) recaptured back to the cyclic

ground state (F = 2).
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Figure 2.1: Optical alignment of magneto-optical trap.

2.2 Optical dipole trap and optical lattice

An optical dipole trap [20] confines atoms by generating the spatial gradient of

energy light shift induced by a far-detuned laser light field that perturbs electronic could

of an atom. The nature of dipole force is conservative and proportional to the gradient of

the optical intensity. Hence it can be mathematically represented in term of a potential.

The perturbation of a far-detuned laser light on a multilevel atom can be treated as a

second order perturbation. The light shift of a particular state |ii can be written as

�Ei =
X

j 6=i

| hj| ĤI |ii |2

Ei � Ej

(2.6)

where ĤI is the interaction Hamiltonian that has the form as

ĤI = ~µ · ~E (2.7)

where ~µ and ~E are dipole moment of atom and electric field of light respectively.

An illustrative picture of 1D optical lattice is shown in Fig.(2.3). The standing-
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Figure 2.2: Principle of MOT

wave interference pattern creates a periodic potential inside an optical cavity formed by

two cavity mirrors. Assuming TM00 mode where the spatial profile of the standing wave

is Gaussian and letting the wavelength � of dipole laser is very long compared to the

transition wavelengths of atoms, the corresponding trap potential is written in cylindrical

coordinated as,

U(r,�, z) = Uo(z)exp

✓
� 2r2

w(z)2

◆
cos2

✓
2⇡

�
z

◆
(2.8)

where the trap depth Uo(z) is set to be negative value and a function of position along

the cavity axis ẑ. The z-dependence of Uo comes from the fact that the intensity of laser

beam has different values at different position z. Here z = 0 means the center between

the two mirrors. w(z) is the beam radius of the Gaussian beam at a particular z.

2.3 Rydberg atoms

Rydberg states of an atom are defined as the electronic states that have high prin-

ciple quantum number n in which its valence electron is loosely bound at a large dis-

tance from the ion core. Many behaviors and characteristics of Rydberg atoms have been
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Figure 2.3: An one-dimensional optical lattice can be formed between two mirrors.
Atoms are confined at anti-nodes (yellow pancake-like shape) of the standing wave. Any
two adjacent sites are separated by the haft of dipole laser wavelength, here 808 nm laser
is used. The picture is not drawn with true scale.

studied using the quantum defect theory [21]. General properties of Rydberg atom are

very small binding energy, very long radiative lifetime [22] (vary from tens to hundreds

microseconds), large dipole matrix element [23], and very sensitive to external electric

field [24]. Theses atoms also exhibit strong long-range dipole-dipole interaction at dis-

tances and we proposed that it would provide deterministically a single-atom loading in

an optical dipole trap.

2.3.1 Quantum Defect

According to the quantum defect theory, the energy levels of a quantum state |n`ji

of an alkali atom appear as the distortion from energy levels of hydrogen atom in term of

effective principle quantum number ne↵

En`j = � 1

2(n� �`j)2
= � 1

2n2
e↵

, (2.9)
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Table 2.1: The quantum defect constant

Parameter nS1/2 nP1/2 nP3/2 nD3/2 nD5/2

�o 3.1311804 2.6548849 2.6416737 1.3480917 1.34646572
�2 0.1784 0.2900 0.2950 -0.6028 -0.5860

where n is principle quantum number and �n`j is called quantum defect calculated from

the expression

�n`j = �o +
�2

(n� �o)2
, (2.10)

where �o and �2 are parameters obtained from fitting the measured transition energies.

Mathematically, the term quantum defect � is defined as a small defection of principle

quantum number n from hydrogen atom. The origin of the defection arises from the finite

size of the ionic core of the alkali atom, which for rubidium, it consists of the nucleus

and 36 electrons. For low-`, the valence electron penetrates into the ionic core and hence

polarizes the core. The wave functions and eigenenergies of the alkali metals are modified

by the interaction between nucleus and the valence electron. The experimental quantum

defect constants of rubidium atom are listed in table 2.1.

2.3.2 Radiative lifetime of Rydberg states

The zero-Kelvin radiative lifetimes of Rydberg state is normally described by using

a simple analytical expression of the form

⌧o = ⌧Rne↵
✏ (2.11)

where ⌧R and ✏ are constants found by fitting the calculated ⌧o values as a function of the

effective principal quantum number ne↵ . Values for ⌧R and ✏ reported in [22] are given

in table 2.2. Fig.(2.4) shows the plot of zero-Kelvin radiative lifetime of Rydberg states

nS1/2 and nD3/2,5/2 calculated from Eq.(2.11).
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Table 2.2: Values of the parameters ⌧R and ✏ in Eq.(2.11)

Parameter nS1/2 nP1/2 nP3/2 nD3/2 nD5/2 validity range
⌧R 1.368 2.4360 2.5341 1.0761 1.0687 10 < n < 80
✏ 3.0008 2.9989 3.0019 2.9898 2.9897
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Figure 2.4: Lifetime of Rydberg state nS1/2 (blue), nD3/2 (dashed Red) and nD5/2 (dot-
ted Green) as function of principle quantum number n.

2.4 Rydberg-ground adiabatic interaction

Molecular Rydberg states play an important role in our proposed single atom load-

ing mechanism in an optical dipole trap, section 3.1. In an experimental point of view, it

is necessary to know about strength of Rydberg-ground interaction. This section presents

the theoretical study of interaction between a Rydberg atom and a neutral ground-state

atom. The theoretical approach and the concept of calculation method presented here

follow Khuskivadze’s work [25]. The adiabatic picture is exploited by assuming that rel-

ative velocity of colliding atomic pair to be much lower than velocity of Rydberg electron.

This allows the application of Born-Oppenheimer approximation for the potential energy

curves calculation.
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Table 2.3: The fit parameters in atomic unit for the pseudopotential VLS(r) in Eq.(2.64)
and Eq.(2.65) [25].

↵ � State A � rc
319.2 7.4975 1S 4.5642 1.3438 1.8883

3S 68.576 9.9898 2.3813
1P -4.2625 1.0055 1.8869
3P -1.4523 4.8733 1.8160

2.4.1 Formalism

The system consists of a Rydberg ion core C+, a neutral alkali ground-state atom

B, and a Rydberg electron e�, Fig. 2.5. The whole position space is divided into two

hard physics regions: The region I where the e-B interaction (inside the sphere of ra-

dius r0) dominated and the region II dominated by the e-C+ interaction (space enclosed

by surfaces S1 and S2). The interaction in region I is taken into account by utilizing

the Coulomb’s Green function including quantum defect [26, 27]. Due to the nature of

screening effect, the e�-B interaction mainly results from the Rydberg electron interact-

ing with the valence electron of the neutral atom B and it can be represented in term of

short-range pseudopotential [28]. Hence the angular momentum basis set is chosen to

be {L, S, J,MJ} where L, S, and J are two-electron orbital angular momentum, two-

electron spin, and total angular momentum respectively. Since the problem has a cylin-

drical symmetry along the internuclear axis ~R, the projection of total angular momentum

j on the axis is a constant of motion, hence MJ is conserved. In the Born-Oppenheimer

approximation, one can consider the Hamiltonian of the Rydberg electron interacting with

C+ and B, and the Hamiltonian of C+-B separately. For the first case, the corresponding

Schrödinger equation in atomic unit of the single Rydberg electron in the presence of the

neutral atom B and its ion core C+ is

 
�1

2
r2 + V̂I(~r, ~R)� 1

|~r � ~R|
+ Vqd(~r � ~R)

!
�MJ (~r,

~R) = EMJ�MJ (~r,
~R), (2.12)
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Figure 2.5: Coordinate system used in this work. The position of atom B is chosen to be
the origin. The internuclear ~R is a vector directed form neutral atom B to the core C+ of
Rydberg atom. It is the quantization axis. ~r is a position vector pointed from neutral atom
B to the valence electron e. r0 is the radius of the sphere enclosed by surface S1 dividing
space into two region where the closed sufrace S2 extends to infinity.

where the subscript MJ means that it is a good quantum number that can be used to

specify an eigenstate �MJ . The interaction potential V̂I(~r, ~R) is given by

V̂I(~r, ~R) = VeB(~r)�
↵o~r · ~R
r3R3

. (2.13)

The first term of Eq.(2.13) is the combination of the spin-orbit interaction and the short-

range pseudopotential of e-B that reproduces the electron binding energies for negative

ion and the scattering phase shifts given by the Dirac R-matrix calculation [29]. The

second term is the effect of three-body polarization interaction consisting of the neutral

atom B polarized by the ion core C+ interacts with the Rydberg electron e�, and the

atom B polarized by e� interacts with the ion core C+. The polarizability ↵o of a neutral

rubidium atom is given in [30]. The third and the fourth terms of Eq.(2.12) describe

the Coulomb interaction and the quantum defect correction respectively. All interaction

described so far are only about Rydberg electron interacting with the neutral atom and its

ion core. To obtain the total energy of the interacting system C+B, it is needed to add

C+-B polarization interaction to the electron energy EMJ

UMJ (R) = EMJ � ↵o

2R4
. (2.14)
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In order to find an eigenenergy of the Schrod̈inger equation Eq.(2.12), it is necessary

to compose appropriate boundary conditions of the surface S1 and S2 on the Eq.(2.12) and

then solve the differential equations. Due to the Coulomb interaction dominates in outer

region II and its range is infinite, the wave function �MJ vanishes on the surface S2 that

extends to infinity. The boundary condition on S1 is related to the way of matching wave

functions having different symmetries (spherical and cylindrical) in the two regions of

space. Khuskivadze [25] have done well this matching by using the Kirchhoff-integral

method in term of Coulomb Green function [31]. He matches the inner wave function

with the outer wave function on the surface S1 using the Kirchhoff integral equation.

It allows him to incorporate the boundary conditions at infinity where the wave func-

tion decays exponentially. In this work, the derivation of the Kirchhoff integral equa-

tion is presented in the slightly different way. The quantum Coulomb Green’s function

GR(~r,~r
0, EMJ ) is defined as the solution of the Coulomb Schrod̈inger equation where

there is a point source placed at ~r 0,

 
�1

2
r2 � 1

|~r � ~R|
+ Vqd(~r � ~R)� EMJ

!
GR(~r,~r

0, EMJ ) = ��(~r � ~r 0), (2.15)

where GR(~r,~r
0, EMJ ) ⌘ G(~r � ~R,~r 0 � ~R,EMJ ) is the Green funcstion whoes center is

shifted to be at ~R. By multipying Eq. (2.12) by GR(~r,~r
0, EMJ ), Eq. (2.15) by �MJ (~r,

~R),

then substracting one from another and take volume integration over space inside the

sphere of radius ro, the result is

1

2

Z

V1

�
�MJr2GR �GRr2�MJ

�
d3~r +

Z

V1

V̂IGR�MJd
3~r = �MJ (~r

0, ~R). (2.16)

The equation is valid if 0 < r0 < ro. After using the Green’s second identity to transform

the volume integral to the surface integral for the first term which contains kinetic energy

operator r2,

1

2

I

S1

(�MJrGR �GRr�MJ ) · dS+

Z

V1

V̂IGR�MJd
3~r = �MJ (~r

0, ~R), (2.17)
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where dS is the normal vector on S1 and V1 is the volume inside the sphere of radius

ro enclosed by the surface S1. According to the scattering theory in the framework of

quantum mechanics, the corresponding Lippman-Schwinger equation [32] is

�MJ (~r
0, ~R) = �0(~r

0, ~R) +

Z
V̂I(~r, ~R)GR(~r,~r

0, EMJ )�MJ (~r,
~R)d3~r, (2.18)

where the wave function �0(~r) is an eigenfunction of non-perturbed Rydberg atom. This

eigenfunction is chosen to vanish because the system of perturbed Rydberg atom is been

considering. Notice that the second term of Eq.(2.18) is the integral over all space. How-

ever if the radius r0 is larger than the effective radius of potential V̂I , the infinite integral

can be transformed to be a finite integral over the region inside the sphere of radius r0.

Hence, from Eq. (2.17) and Eq. (2.18),

I

S1

(�MJrGR �GRr�MJ ) · dS = 0 : 0 < r0 < r0. (2.19)

This is the same result presented in [25,31,33] and it is called Kirchhoff-integral equation.

It can be used as a matching condition for wave functions on the surface S1. Hence it is

an equation for determination of the eigenenergies.

In order to utilize the spirit of Eq. (2.19), it is needed to transform the integral

equation into a particular form that the calculation can be performed numerically. The

transformation is done by expanding Eq.(2.12) on the angular momentum basis set |↵i.

The short-range e-B interaction potential can be written in the form of pseudopotential as

V̂eB(~r) =
X

↵

F↵(r) |↵i h↵| , (2.20)

where the summation is taken over angular momentum of two-electron spinor in L-S

coupling scheme, ↵ = {L, S, J,MJ}. F↵(r) is a combination of the effective interaction

of an electron and a neutral atom plus the spin-orbit interaction

FLS(r) = VLS(r) +
1

2c2r

dVLS

dr
(~̀1 · ~s1 ), (2.21)
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where ~̀
1 · ~s1 operator acts only on the Rydberg electron because it is assumed that the

alkali atom B is in the ground state, hence its valence electron is in the S orbital. The

pseudopotential VLS(r) has a spherical symmetry and its explicit form is given in subsec-

tion 2.4.3. Then the wave function �MJ (
~R,~r) inside the inner region I is expanded in the

two-electron angular momentum basis

�MJ (
~R,~r) =

X

↵0

u↵0(r)

r
|↵0i , (2.22)

where u↵0(r) is the radial wave function and the angular momentum basis |↵i is expanded

on the uncouple basis |LMLi and |SMSi

|↵i = |LSJMJi =
X

ML,MS

CJ,MJ
L,ML,S,MS

|LMLi |SMSi , (2.23)

where ~L = ~̀
1 + ~̀

2, and ~S = ~s1 + ~s2 are total orbital angular momentum and total spin

of two electron. The Clebsch-Gordan coefficients CJ,MJ
L,ML,S,MS

are given by,

CJ,MJ
L,ML,S,MS

= (�1)�L+S�MJ
p
2J + 1

0

@ L S J

ML MS �MJ

1

A , (2.24)

where |LMLi are the spherical harmonics, and |SMSi are the total spin states of the

Rydberg electron and the valence electron. After substituting Eq. (2.22) into Eq. (2.12),

neglecting the quantum defect Vqd due to the effect is very small in the inner region,

and then projecting Eq. (2.12) on h↵|, the result is the system of coupled second-order

differential equations

✓
�1

2

d2

dr2
+

L(L+ 1)

2r2
+ VLS(r) + I↵(r)� EMJ

◆
u↵(r, R) =

X

↵0

D↵↵0u↵0(r, R),

(2.25)

where

D↵↵0 = hLSJMJ |
1

|~r � ~R|
+

↵o~r · ~R
r3R3

|L0S 0J 0MJi , (2.26)
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and

I↵(r) =
1

2c2r

dVLS

dr
hLSJMJ | ~̀1 · ~s1 |LSJMJi . (2.27)

Using Eq. (2.23) and the expansion

1

|~r � ~R|
=

1X

`=0

X̀

m=�`

r`<
r`+1
>

✓
4⇡

2`+ 1

◆
Y ⇤
`m(r̂)Y`m(R̂), (2.28)

where z axis is chosen along internuclear axis ~R and due to considering in the inner region

it can be set r < R, hence

1

|~r � ~R|
=

1X

`=0

r`

R`+1

r
4⇡

2`+ 1
Y`0(r̂), (2.29)

and then the matrix element Eq. (2.26) becomes

D↵↵0 = �SS0(�1)�L�L0p
(2J + 1)(2J 0 + 1)(2L+ 1)(2L0 + 1)

⇥
|L+L0|X

`=|L�L0|

✓
r`

R`+1
+

↵d

r2R2
�`1

◆0

@L ` L0

0 0 0

1

AB`
↵↵0

(2.30)

and

B`
↵↵0 =

ML+MS=MJX

ML,MS

(�1)ML

0

@ L S J

ML MS �MJ

1

A

0

@ L ` L0

�ML 0 ML

1

A

0

@ L0 S 0 J 0

ML MS �MJ

1

A

(2.31)

where the symbols in parenthesis denote 3j symbol coefficients. Eq.(2.25) is the coupled

radial Schrödinger equation and it can be solved numerically using a standard method

in electron-atom collision theory. To solve the equations, the set of linearly indepen-

dent solutions needed to be calculated first and then by exploiting the boundary condition

Eq.(2.19), a suitable combination of linearly independent solutions and an eigenenergy

are determined. Mathematically, a general solution of the radial Schrödinger equation

Eq.(2.25) consists of regular and irregular solutions at origin. However, a physical solu-

tion should be only written as a summation of linearly independent solutions regular at
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origin

u↵0(r, R) =
X

j

Aj⌫↵0j(r, R), (2.32)

where j denotes independent solutions, and Aj are constants. The matrix ⌫↵0j is called

fundamental matrix for Eq.(2.25). Note that the number of linearly independent solutions

regular at origin is equal to the number of coupled differential equations. After substitut-

ing Eq.(2.22) and Eq.(2.32) into Eq.(2.19) and then projecting on h↵|,

X

j

AjK↵j(EMJ ) = 0, (2.33)

where

K↵j(EMJ ) =
X

↵0

�SS0 (2.34)

However, near the origin, the spin-orbit interaction has non-physical singularity. the

Dirac equation must be applied near the origin and then calculated Dirac wave function

is transformed into Schrödinger wave function in jj representation and then transform

it into LS representation (Appendix B) before performing numerical integration. This

process, naturally, must be repeated for varying values of the internuclear separation R in

order to map out the internuclear potentials.

2.4.2 Coulomb Green function and quantum defect correction

This section presents the expression and numerical estimation of Coulomb Green’s

function. Consider definition of the Coulomb Green function G(~r1,~r2, E) as,

✓
�1

2
r2

1 �
1

r1
+ Vqd(r1)� E

◆
G(~r1,~r2, E) = ��(~r1 � ~r2) (2.35)

Mathematically, the solution of Eq. (2.35) can be written as in the form of an eigenfunc-

tion expansion.

G(~r1,~r2, E) = �
1X

`=0

X̀

m=�`

Z 1

0

�⇤
`m(k,~r1)�`m(k,~r2)

(k2/2)� E
dk�

1X

n=0

1X

`=0

X̀

m=�`

�⇤
n`m(~r1)�n`m(~r2)

En � E

(2.36)
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The first term is the summation and integration over the continuous spectrum of hydrogen

atom. The second term is summed over the discrete spectrum. In order to include the

quantum defect in calculation, the Green function G(~ra,~rb, ⌫) has two components as

G(~r1,~r2, ⌫) = Go(~r1,~r2, ⌫) +Gqd(~r1,~r2, ⌫) (2.37)

The first term is the particular solution of inhomogeneous equation Eq. (2.35) and the

second term is the solution of homogeneous equation. The effective quantum number v is

defined by

⌫ ⌘ 1p
�2E

(2.38)

The pure Coulomb Green function in closed form is given by

Go(~r1,~r2, ⌫) = � �(1� ⌫)

2⇡|~r1 � ~r2|


W⌫,1/2(↵)

@

@�
M⌫,1/2(�)�M⌫,1/2(�)

@

@↵
W⌫,1/2(↵)

�

(2.39)

where

@

@�
M⌫,1/2(�) =

✓
1

2
� ⌫

�

◆
M⌫,1/2(�) +

✓
1 + ⌫

�

◆
M1+⌫,1/2(�) (2.40)

@

@↵
W⌫,1/2(↵) =

✓
1

2
� ⌫

↵

◆
W⌫,1/2(↵)�

1

↵
W1+⌫,1/2(↵) (2.41)

and the arguments ↵ and � are defined as

↵ ⌘ 1

⌫
(|~r1|+ |~r2|+ |~r1 � ~r2|) (2.42)

� ⌘ 1

⌫
(|~r1|+ |~r2|� |~r1 � ~r2|) (2.43)

Note that Mk,m(z) and Wk,m(z) are Whittaker function of first kind and second kind

respectively. They are defined as

Mk,m(z) = e�z/2zm+1/2
1F1(

1

2
+m� k, 1 + 2m; z) (2.44)

Wk,m(z) = e�z/2zm+1/2U (
1

2
+m� k, 1 + 2m; z) (2.45)
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where 1F1 and U are confluent hypergeometric functions of first kind and second kind.

The quantum defect correction of Green function is given by

Gqd(~r1,~r2, ⌫) = � ⌫

r1r2

1X

`=0

�(1 + `� ⌫)

�(1 + `+ ⌫)

sin[⇡(�` + `)]

sin[⇡(�` + ⌫)]

2`+ 1

4⇡
P`(cos�)

⇥W⌫,`+1/2

✓
2r1
⌫

◆
W⌫,`+1/2

✓
2r2
⌫

◆ (2.46)

where � is the angle between ~r1 and ~r2, and �` is the ` dependent quantum defects. It

should be noted that by combining the Coulomb Green function and the quantum defect

correction the Coulomb poles in the sum Eq. (2.37) cancel out exactly. The remaining

poles are determined by

En` = � 1

2(n� �`)2
(2.47)

Let the coordinate system be defined as following,

~r1 ⌘ ~ra � ~R

~r2 ⌘ ~rb � ~R
(2.48)

where the vector ~R is directed from the neutral atom to the Coulomb ion core. Hence the

cosine of angle between ~ra � ~R and ~rb � ~R is given by

cos� =
(~ra � ~R) · (~rb � ~R)

|~ra � ~R||~rb � ~R|
(2.49)

The matrix element of the Green function hLML|GR |L0MLi is

hLML|GR |L0MLi ⌘ A

Z

Sb

Z

Sa

Y ⇤
L,ML

(⌦̂a)GR(~ra,~rb, ⌫)YL0,ML(⌦̂b)d⌦ad⌦b (2.50)

where the subscript R denotes R-dependence of the matrix element and the constant A is

A =

s
(2L+ 1)

4⇡

(L� |ML|)!
(L+ |ML|)!

⇥

s
(2L0 + 1)

4⇡

(L0 � |ML|)!
(L0 + |ML|)!

(2.51)

21



Due to the cylindrical symmetry, the four dimensional integration can be reduced to three

dimensional integration. Letting rb ⇠ ra = r0, we obtain

hLML|Go |L0MLi = �A�(1� ⌫)

Z 2⇡

0

Z ⇡

0

Z ⇡

0


⌫

✓
1

↵
� 1

�

◆
W⌫,1/2(↵)M⌫,1/2(�)

+

✓
1 + ⌫

�

◆
M1+⌫,1/2(�)W⌫,1/2(↵)

+

✓
1

↵

◆
W1+⌫,1/2(↵)M⌫,1/2(�)

�

⇥ P
|ML|
L0 (cos✓a)P

|ML|
L (cos✓b)

|~ra � ~rb|
eiML�sin✓asin✓bd✓ad✓bd�

(2.52)

where ↵ and � in this coordinate system are given by,

↵(✓a, ✓b,�) =
1

⌫

⇣
|~ra � ~R|+ |~rb � ~R|+ |~ra � ~rb|

⌘
(2.53)

�(✓a, ✓b,�) =
1

⌫

⇣
|~ra � ~R|+ |~rb � ~R|� |~ra � ~rb|

⌘
(2.54)

where

|~ra � ~R| = r(✓a) (2.55)

|~rb � ~R| = r(✓b) (2.56)

|~ra � ~rb| =
p
2r0
p

1� cos� (2.57)

where r(✓) ⌘
p

r20 +R2 � 2r0Rcos✓. The cosine of angle � is given by

cos� = C(✓a, ✓b)cos�+D(✓a, ✓b) (2.58)

where

C(✓a, ✓b) =
r20sin✓asin✓b
r(✓a)r(✓b)

(2.59)

D(✓a, ✓b) =
(r0cos✓a �R)(r0cos✓b �R)

r(✓a)r(✓b)
(2.60)
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For the quantum defect correction,

hLML|Gqd |L0MLi = 2⇡A⌫
5X

`=0

�(1 + `� ⌫)

�(1 + `+ ⌫)

sin[⇡(�` + `)]

sin[⇡(�` + ⌫)]

2`+ 1

4⇡

⇥
Z ⇡

0

Z ⇡

0

W⌫,`+1/2

⇣
2r(✓a)

⌫

⌘
W⌫,`+1/2

⇣
2r(✓b)

⌫

⌘

r(✓a)r(✓b)
F`,ML(✓a, ✓b)

⇥ P
|ML|
L0 (cos✓a)P

|ML|
L (cos✓b)sin✓asin✓bd✓ad✓b

(2.61)

where PM
L (z) is the associated Legendre polynomial (see Introduction to Quantum me-

chanics, Davis J. Griffith, 2rd edition, p136). The summation over ` in quantum defect

correction is limited to the first five terms because the quantum defects for high ` can be

ignored. The functions F`,ML(✓a, ✓b) is given by

F`,ML(✓a, ✓b) =

Z 2⇡

0

P`(cos�)e
iML�ad� (2.62)

where P`(z) is the Legendre polynomial.

In order to remove poles of Green function for zero searching calculation, the matrix

element can be multiplied by
5Y

`=0

sin[⇡(�` + ⌫)]

�(1� ⌫)
(2.63)

2.4.3 Effective interaction for electron-atom scattering

The method used to describe the interaction between an electron and an alkali atom

in low-energy scattering scheme is the model-potential approach [28,34]. Due to scatter-

ing energy is low, it is naturally to ignore the scattering wave with L > 1 hence only s and

p wave scattering are relevant. It should be noted that by separating the interaction po-

tentials with different orbital angular momentum L, the effective interaction can be called

pseudopotential. The model-potential VLS(r) in Eq.(2.21) for s-wave scattering, L = 0,

has an analytic form in atomic unit as

V0S(r) = �A

r
e��r � ↵

2r4

⇣
1� e(r/rc)

6
⌘

(2.64)
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while for the p-wave scattering, L = 1, the potential is written as

V1S(r) = �Zc

r
e��r � Ae��r � ↵

2r4

⇣
1� e(r/rc)

6
⌘

(2.65)

where the constants A, �, ↵, and � are fitted parameters shown in Table.2.3. Zc is the

nuclear charge, for rubidium atom it is 37. Physics of scattering between low-energy

electron and an alkali atom is relevant to a virtual 3S state and a 3P shape resonance

[35, 36]. These features play an important role in formation of long-range molecular

Rydberg states. The classical description of a shape resonance in scattering is presented

[37] by the projectile of incoming electron tunneling through a potential barrier due to

repulsive electron-electron interaction. The electron remains within a pseudo-bound state

for a while and then tunneling out from the barrier. Although there is no a classical

description of a virtual state in scattering, a simple picture of the state is described as

follow. As the depth of an attractive scattering potential is decreased provided there is no

potential barrier, an energy level of a bound state moves through the continuum threshold

to become a pseudo-bound state called virtual state [38].

2.5 Multi-level atom in light fields and two-photon transition

The semi-classical Hamiltonian of a system consisting of an multi-level atom inter-

acting with coherent electromagnetic fields is

Ĥ = Ĥ0 + V̂I(t)

=
X

j

Ej |ji hj|�
X

i 6=j,k

~µij · ~Ek |ii hj|
(2.66)

where the Ĥ0 denotes the field-free time-independent atomic Hamiltonian whose eigen-

values and eigenfunctions are E↵ = ~!↵ and |↵i respectively. The second term, ĤI ,

is the time-dependent interaction with radiation fields of mode k. This interaction plays

the important role in transition between eigenstates of atomic Hamiltonian Ĥ0. The time

evolution of optical transition of multi-level atom in the presence of coherent light fields

is described using the density matrix formulation. The density operator ⇢̂ of a multi-level
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system in a pure state | i is given by

⇢̂(t) = | (t)i h (t)| , (2.67)

where the state | (t)i can be written in the interaction picture [32] as superposition of all

eigenstates of the unperturbed Hamiltonian Ĥ0.

| (t)i =
X

↵

C↵(t) |↵i . (2.68)

The evolution of the density operator ⇢̂ in the representation is then described by a

system of equations known as the optical Bloch equations.

d⇢̂

dt
=

i

~

h
⇢̂, V̂I(t)

i
+ Ĝ(�, ⇢̂), (2.69)

where Ĝ is the operator accounting for the relaxation effect due to decoherence processes.

Applying the standard rotating wave approximation, the matrix element of interaction

potential is

Vij =
X

k

~
⌦k

ij

2
e�i�k

ijt, (2.70)

where ⌦k
ij is the on-resonance Rabi frequency of atomic transition i ! j driven by the

radiation field of mode k. This frequency fundamentally represents how fast atom absorbs

photon and reemit the photon via stimulated absorption and stimulated emission. The

detuning �k
ij = !k � !ij is the frequency difference between the radiation field of mode

k and the transition ij.

The operator Ĝ has both diagonal and off-diagonal (coherence) elements. Assum-

ing that all decoherence arise from the spontaneous emission. Then the diagonal elements

are determined from the conservation of probability and the off-diagonal elements Gij

are proportional to only the spontaneous emission rate �ij of decay channel i ! j. The

rate �ij is determined by considering the interaction of an atom with quantized electro-

magnetic field in free space. This phenomena corresponds with a discrete level system
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coupled to a continuum states of external field. The interaction Hamiltonian is given by

ĤI = i
X

k

X

i 6=j

✓
~!k

2✏oV

◆1/2

µij · ~Ek

h
âke

i(~k·~r�!kt) � â†ke
�i(~k·~r�!kt)

i
|ii hj| (2.71)

where the summations are taken over both all field modes k and atomic transitions of

interest i ! j. When the analytic expression of Ĝ is known, the Eq.(2.69) can be used

to setup the master equations where its solutions describe the dynamic picture of a multi-

level atom in multi-mode radiation fields. Appendix C presents the application of the

formulation in quantum dynamic of magneto-optical trap.

2.5.1 Two-photon transition

Fundamentally a transition frequency from a ground-state to a Rydberg state of an

alkali atom is in an order of hundreds THz. There is no available laser having correspond-

ing wavelength to do single-photon excitation. Hence in many Rydberg experiments the

two-photon excitation is used. Dynamic of two-photon transition can be studied through

a three-level system interacting with two laser fields. In Rydberg case, the system forms

a ladder in which successive energies lie higher than the predecessor. The laser field cou-

pling the ground state to the intermediate state is called probe beam and the other field,

called coupling beam couples the intermediate state and the Rydberg state.

2.6 Light-assisted cold collision in blue-detuning regime

This section presents the general concept of light-assisted collision in blue detuning

scheme. Landau-Zener formula used in calculation probability of inelastic collision and

the physics of two-photon transition.

2.6.1 Landau-Zener model

This section presents semiclassical picture used for describing cold collision in light

field. The The Landau-Zener probability that the collision partner remain on the ground
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state as it passes once through the interaction region is,

Pg = exp

✓
� ⇡~⌦2

2↵|p|/µ

◆
(2.72)

where ⌦ is the Rabi frequency and ↵ is the slope of the difference potential U(R) =

Ue(R)� Ug(R) evaluated at the Condon point Rc,

↵ =

����
d�

dR

����
Rc

=
dU(R)

dR

����
Rc

(2.73)

The parameter µ is the reduced mass of collision partner. The momentum p is given by

the relation to kinetic energy at a particular temperature T .

Ekin =
p2

2µ
⌘ kBT (2.74)

The probability of exiting the collision on the excited state asymptote after traversing the

crossing region twice is

P1
e = Pg(1� Pg) (2.75)
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