CONTENTS

Page

Acknowledgement		
Abstract in Thai		
Abstract in English		
List of Figures	i	
Chapter 1 Introduction	1	
1.1 Motivation	1	
1.2 Thesis outline	4	
Chapter 2 Theoretical Background	5	
2.1 Magneto-optical trap (MOT)	5	
2.2 Optical dipole trap and optical lattice	8	
2.3 Rydberg atoms	9	
2.4 Rydberg-ground adiabatic interaction	12	
2.5 Multi-level atom in light fields and two-photon transition	24	
2.6 Light-assisted cold collision in blue-detuning regime	26	
Chapter 3 Rydberg State Revisited for Deterministic Single-atom Source		
3.1 Single-atom loading via light-assisted Rydberg-ground collision	28	
3.2 Loading constraints	29	
3.3 Analysis of single-atom loading probability	32	
3.4 Summary	35	
Chapter 4 Investigation of Repulsive Molecular Rydberg State	36	
4.1 Experimental setup	36	
4.2 One-dimensional optical lattice diagnosis	40	
4.3 Trap loss due to blue-detuned two-photon excitation	45	
4.4 Summary and outlook	47	

Refe	rences		51
Appendix		56	
	Appendix A	Basis Wave Functions	56
	Appendix B	JJ-LS Transformation	58
	Appendix C	Quantum Dynamic of four-level system in magneto-optical trap	61

65

Curriculum Vitae

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figure 1.1	Optical lattice potentials (yellow) formed by superposition of orthog-	
	onal standing waves. The lattice can be approximated by array of	
	harmonic oscillator potentials at each lattice site where an atom (red	
	sphere) can be trapped.	2
Figure 2.1	Optical alignment of magneto-optical trap.	8
Figure 2.2	Principle of MOT	9
Figure 2.3	An one-dimensional optical lattice can be formed between two mirrors.	
	Atoms are confined at anti-nodes (yellow pancake-like shape) of the	
	standing wave. Any two adjacent sites are separated by the haft of	
	dipole laser wavelength, here 808 nm laser is used. The picture is not	
	drawn with true scale.	10
Figure 2.4	Lifetime of Rydberg state $nS_{1/2}$ (blue), $nD_{3/2}$ (dashed Red) and $nD_{5/2}$	
	(dotted Green) as function of principle quantum number n .	12
Figure 2.5	Coordinate system used in this work. The position of atom B is chosen	
	to be the origin. The internuclear \vec{R} is a vector directed form neutral	
	atom B to the core C^+ of Rydberg atom. It is the quantization axis. \vec{r}	
	is a position vector pointed from neutral atom B to the valence electron	
	e. r_0 is the radius of the sphere enclosed by surface S_1 dividing space	
/	into two region where the closed sufrace S_2 extends to infinity.	14
Figure 3.1	Rydberg-Ground collision picture	29
Figure 3.2	Escape distance D_{es} is the minimum distance that the Rydberg atom	
	needs to move for escaping the trap.	31
Figure 3.3	Approximated repulsive semi-molecular potential of $5S_{1/2} + 35D_{5/2}$.	33
Figure 3.4	Distribution of inter-particle distance	34

Figure 3.5	Occurrence strength of scattering processes as function of intermediate	
8	detuning The gray shaded area covers the range of the detuning from	
	0 MHz to 80 MHz in order to indicate the safe range from one-body	
	D_{res} avaitation that induces $D(1 1)$	25
	excitation that induces $D(1 1)$.	55
Figure 4.1	Optical schematic of MOT cooling laser. The phase locking technique	
	is used to stabilize output frequency of ECDL1 with respect to ECDL0.	
	The output power was amplified by the tapered amplifier. OI = optical	
	isolator, HWP = haft-wave plate, QWP = quarter-wave plate, APP =	
	anamorphic prism pair, PBS = polarizing beam splitter	37
Figure 4.2	Optical schematic of MOT repumping laser.	37
Figure 4.3	Optical schematic of optical lattice laser.	38
Figure 4.4	Optical schematic of probe laser for Rydberg excitation.	39
Figure 4.5	Optical schematic of coupling laser for Rydberg excitation.	40
Figure 4.6	The configuration of laser beams used in the experiment: The red and	
	blue arrows show propagation direction of 780nm probe beam and 480nm	
	coupling beam respectively. The two double arrows on the right hand	
	side represent linear polarization direction of 808nm dipole beam and	
	the coupling beam respectively. MOT-repump beam propagates in $+y$	
	direction with circular polatization. The downward magnetic field B	
	define quantization axis $+z$.	41
Figure 4.7	Experimental Parameters in Rydberg Experiments	42
Figure 4.8	Measured trap lifetime of rubidium atoms in the optical lattice. Trap	
	lifetime of 588.3 ms was obtained by fitting the data with exponential	
	decay function.	43
Figure 4.9	Temperature measurement by free-space ballistic expansion method.	
	The data (red points) are fitted with Eq.(4.1).	44
Figure 4.10Gaussian fitted profile represents how position of trapped atoms are		
	distributed in the trap. The signal count data were obtained from con-	
	verting the absorption image of atomic cloud Fig.(4.18)(right).	44

j

Figure 4.11The distribution of number of trapped atom along cavity axis.	45
Figure 4.12Experimental time sequence of Rydberg experiment	46
Figure 4.13Excitation Scheme of Rydberg experiment: the energy levels presented	
here are bare states, no AC Stark shift.	47
Figure 4.14Trap loss due to blue-detuning Rydberg excitation to $50^2 S_{1/2}$	48
Figure 4.15Radius as function of detuning to Rydberg state $50^2 S_{1/2}$	49
Figure 4.16Trap loss due to blue-detuning Rydberg excitation to $50^2 S_{1/2}$	49
Figure 4.17Radius as function of detuning to Rydberg state $50^2 S_{1/2}$	50
Figure 4.18In imaging process, the first image (left) is taken while trapped atom	
are released 1.5ms before taking image and expanding ballistically. The	
second image (center) is taken after waiting until there is no atoms in	
the area of imaging. Theses images are subtracted from each other for	
getting the cloud of atom in the lattice (right). The raw images have	
resolution of 2048x2048 pixels. Gaussian resmapling method is used	
to reduce the resolution down to 512x512 pixels. The totoal number of	
trapped atom is 3 million.	50
Figure C.1 The D2 line energy levels of rubidium-85	62
Figure C.2 Dynamic of populations under the presence of the cooling field and the	
repumping field	63
Figure C.3 The real and imaginary parts of coherence term as function of time	64
Copyright [©] by Chiang Mai University	
All rights reserved	
0	