CONTENTS

	Page
Acknowledgement	d
Abstract in Thai	f
Abstract in English	i
List of Tables	1
List of Figures	р
List of Abbreviations	v
Statement of originality in Thai	У
Statement of originality in English	Z
Chapter 1 Introduction	1
Chapter 2 Literature review	3
2.1 Viruses	3
2.1 Viruses 2.2 The structure of virus	3
2.3 Herpes simplex virus	4
2.3.1 Background and biological properties	4
2.3.2 Structure properties of herpes simplex virus	5
2.3.2.1 Viral genome	5
2.3.2.2 An icosahedral capsid	7
2.3.2.3 A tegument	7
2.3.2.4 Envelope	7

2.4 Herpes simplex virus infection	8
2.5 Herpes simplex virus attachment and entry	11
2.6 Replication and expression of herpes simplex viral DNA	
2.7 Virion assembly and release	
2.8 Pathogenesis and immunity	
2.9 Transmission and disease of HSV	26
2.10 Laboratory diagnosis	31
2.10.1 Cytology technique	31
2.10.2 Serological assays	32
2.10.3 Molecular biology method	32
2.11 Prevention and treatment HSV infection	32
2.11.1 Acyclovir	34
2.11.2 Famciclovir	35
2.11.3 Valacyclovir	35
2.11.4 Penciclovir	35
2.11.5 Cidofovir	35
2.11.6 Foscarnet	35
2.12 Algae	36
2.12.1 Spirogyra	37
2.12.2 Usefulness of algal studies	42
2.13 Phytochemicals	43
2.13.1 Flavonoids	44
2.13.2 Alkaloids	44
2.13.3 Tannin	44

2.13.4 Anthraquinones	44
2.13.5 Cardiac glycosides	44
2.13.6 Phenolic compounds	45
2.13.7 Coumarins	45
Chapter 3 Materials and methods	46
3.1 Materials	46
3.1.1 Cells and Viruses	49
3.2 Methods	49
3.2.1 Extraction of Spirogyra spp.	49
3.2.2 Anti-herpes simplex virus assay	49
3.2.2.1 Cultivation of Vero cells	49
3.2.2.2 Propagation of herpes simplex viruses	50
3.2.2.3 Plaque titration assay	50
3.2.2.4 Cell cytotoxicity	50
3.2.2.5 Plaque reduction assay	51
3.2.2.6 Acyclovir	51
3.2.2.7 Mechanism of Spirogyra spp. extracts	51
on HSV inhibition	
3.2.3 Separation and partial purification of Spirogyra spp. extracts	54
3.2.3.1 Separation of Spirogyra spp.	54
extracts by partition technique	
3.2.3.2 Isolation of Spirogyra spp. extracts	54
3.2.3.3 Thin layer chromatography (TLC)	55

3.2.3.4 Determination of phytochemical	56
compounds in Spirogyra spp. extracts	
3.2.4 Effect of Spirogyra spp. extracts on HSV	57
viral DNA	
3.2.5 Sample collection of HSV infected cell for	57
proteomics analysis	
3.2.5.1 HSV protein extraction for proteomics	58
3.2.5.2 Determination of total protein concentration	58
3.2.5.3 Analysis of protein pattern by SDS-PAGE	58
3.2.5.4 Two-dimensional gel electrophoresis (2-DE) analysis	60
3.2.5.5 Image gel analysis	62
3.2.5.6 MS analysis	66
3.2.5.7 Protein identification using peptide mass	67
fingerprint data	
3.2.5.8 Protein interaction and associated identification	67
3.2.6 Development of algal gel product for treatment	67
of HSV infection	
3.2.7 Statistical analysis	68
Chapter 4 Results and discussion	69
All rights reserved	
4.1 Algal extract	69
4.2 Extraction of Spirogyra spp.	69
4.3 Cytotoxicity of algal extract by MTT assay	71
4.4 Plaque titration assay of herpes simplex virus and	72
inhibitory activity of acyclovir	
4.5 Determination of mechanism of Spirogyra spp. extracts	73

	Page
on inhibition of HSV inhibition	
4.5.1 Effect of Spirogyra spp. extracts on standard HSV	74
and ACV-resistant HSV-1 isolates when treatment with	
the extracts before viral attachment	
4.5.2 Effect of Spirogyra spp. extracts on standard HSV	78
and ACV-resistant HSV-1 isolates when treatment with	
the extracts during viral attachment	
4.5.3 Effect of <i>Spirogyra</i> spp. extracts on standard HSV	82
and ACV-resistant HSV-1 isolates when treatment with	
the extracts after viral attachment	
4.5.4 Inactivation kinetics	85
4.6 Effect of Spirogyra spp. extracts on HSV and	91
ACV-resistant HSV-1 multiplication	
4.7 Effect of Spirogyra spp. extracts on HSV after partition extraction	97
4.7.1 Separation of ethanolic extract of <i>Spirogyra</i> spp.	98
4.7.1.1 Separation of ethanolic extract of	98
Spirogyra spp. by partition technique	
4.7.1.2 Column chromatography of ethanolic extract	98
of <i>Spirogyra</i> spp.	
4.7.1.3 TLC screening of ethanolic extract of <i>Spirogyra</i> spp.	99
after separation by column chromatography	
4.7.1.4 Cytotoxicity of ethanolic extract of <i>Spirogyra</i> spp.	101
fractions isolated from column chromatography	
on Vero cell	

4.7.1.5 Antiviral activity of ethanolic extract of	102
Spirogyra spp. fraction isolated from column	
chromatography	
4.7.2 Separation of aqueous extract of Spirogyra spp. by	109
partition technique	
4.7.2.1 Column chromatography of aqueous extract of	109
Spirogyra spp.	
4.7.2.2 TLC screening of aqueous extract of Spirogyra spp.	110
after separation by column chromatography	
4.7.2.3 Cytotoxicity of aqueous extract of Spirogyra spp.	110
fractions isolated from column chromatography	
on Vero cell	
4.7.2.4 Antiviral activity of ethanolic extract of	111
Spirogyra spp. fraction isolated from column	
chromatography	
4.7.3 Preliminary determination of phytochemical groups of	115
ethanolic extract of Spirogyra spp. fraction isolated from	
column chromatography	
8 Effect of Spirogyra spp. extracts on viral DNA	117
4.8.1 Effect of Spirogyra spp. extracts on viral DNA	119
detection by quantitative real-time Polymerase chain	
reaction (PCR)	
9 Effect of Spirogyra spp. extracts on viral proteins	121
4.9.1 Protein quantification of sample loading	125

4.8

4.9

4.9.2 Protein Analysis by 2-DE technique	128
4.9.3 Protein-protein interaction analysis	149
4.9.3.1 Protein-protein interaction analysis of HSV-1F	150
treatment with ethanolic extract of Spirogyra spp.	
4.9.3.2 Protein-protein interaction analysis of HSV-2G	153
treatment with aqueous extract of Spirogyra spp.	
4.10 Development of gel product for treatment of HSV	155
4.10.1 The algal gel product preparation	155
4.10.2 Cytotoxicity of the algal gel product	156
4.10.3 Stability test of algal gel product	157
4.10.3.1 Short-term determination of algal gel	157
stability after heating-cooling cycle	
4.10.3.2 Long-term determination of algal gel stability test	160
Chapter 5 Conclusion	175
References dans un one action de la company	181
Appendices Change Mail University Appendix A	207
Appendix A	208
Appendix B	211
Appendix C	213
Appendix D	216
Appendix E	221
Curriculum Vitae	229

LIST OF TABLES

Table 3.1	Chemical agents	46
Table 3.2	Instruments	48
Table 3.3	The solution mixture for preparation of 12.5% SDS-PAGE	59
Table 4.1	Percentage yield of aqueous, ethanolic and methanolic extracts	70
	of S. neglecta	
Table 4.2	The 50% Cytotoxicity doses (CD ₅₀) of aqueous extract, ethanolic	72
	extract and methanolic extract of Spirogyra spp. determined by	
	MTT assay.	
Table 4.3	The viral titers and the 50% inhibitory concentration (IC_{50}) of acyclovir.	73
Table 4.4	Inhibition of standard HSV and ACV-resistant HSV-1 infection	77
	by aqueous, ethanolic and methanolic extract of <i>Spirogyra</i> spp.	
	when treatment before viral attachment on Vero cell.	
Table 4.5	Inhibition of standard HSV and ACV-resistant HSV-1 infection	81
	by aqueous, ethanolic and methanolic extract of Spirogyra spp.	
	when treatment during viral attachment on Vero cell.	
Table 4.6	Inhibition of standard HSV and ACV-resistant HSV-1 infection	84
	by aqueous, ethanolic and methanolic extract of Spirogyra spp.	
	when treatment after viral attachment on Vero cell.	
Table 4.7	Direct inactivation of standard HSV and ACV-resistant HSV-1	86
1	isolates by aqueous extract of Spirogyra spp.	
Table 4.8	Direct inactivation of standard HSV and ACV-resistant HSV-1	89
	isolates by ethanolic extract of Spirogyra spp.	
Table 4.9	Direct inactivation of standard HSV and ACV-resistant HSV-1	90
	isolates by methanolic extract of Spirogyra spp.	
Table 4.10	Percentage yield of each fraction isolated from ethanolic extract of	99

LIST OF TABLES (continued)

	Spirogyra spp. by column chromatography using silica gel	
	as a stationary phase	
Table 4.11	The cytotoxicity dose, 50% (CD ₅₀) and non-toxic	102
	concentrations of Spirogyra spp. fractions	
Table 4.12	Antiviral activity of seven fractions of ethanolic extract of	104
	Spirogyra spp. on standard HSV-1F and HSV-2G infection	
Table 4.13	Antiviral activity of seven fractions of ethanolic extract of	106
	Spirogyra spp. on ACV-resistant HSV-1 isolates.	
Table 4.14	Percentage yield of each fraction isolated from aqueous extract of	109
	Spirogyra spp. by column chromatography using silica gel	
	as a stationary phase	
Table 4.15	The cytotoxicity dose, 50% (CD ₅₀) and non-toxic	111
	concentrations of Spirogyra spp. fractions	
Table 4.16	Antiviral activity of three fractions of aqueous extract of	113
	Spirogyra spp. on standard HSV-1F, HSV-2G and	
	five isolates of ACV-resistant HSV-1 infection.	
Table 4.17	Phytochemical groups of Spirogyra spp. ethanolic extract fraction	116
Table 4.18	Percentage of HSV DNA remaining after treatment with	118
	Spirogyra spp. extracts	
Table 4.19	Amount of DNA and cycle threshold (Ct) values of HSV	121
1	DNA polymerase gene after amplification by real-time	
	polymerase chain reaction	
Table 4.20	Total protein of sample; HSV-1F infected cell, ethanolic	126
	extract of Spirogyra spp. treated HSV-1F infected cell and	
	negative control as normal Vero cells	
Table 4.21	Total protein of sample; HSV-2G infected cell, aqueous extract	127
	of Spirogyra spp. treated HSV-2G infected cell	

LIST OF TABLES (continued)

		Page
	and normal Vero cells as negative control	
Table 4.22	The total protein spots of HSV-1F and HSV-2G protein	132
	were expressed with Spirogyra spp. extracts treatment (EE treated	
	HSV-1F and AE treated HSV-2G) and without Spirogyra spp.	
	extracts treatment (HSV-1F and HSV-2G), compared with normal	
	Vero cells	
Table 4.23	Number of protein spots of HSV-1F protein at the significant	134
	different level (value P<0.05) that were expressed after treatment	
	with Spirogyra spp. extracts of expression. The expression-different	
	protein spots identified by LC-MS/MS.	
Table 4.24	Number of protein spots of HSV-2G protein at the significant	135
	different level (value P<0.05) that were expressed after treatment	
	with Spirogyra spp. extracts of expression. The expression-different	
	protein spots identified by LC-MS/MS.	
Table 4.25	LC-MS/MS identified protein in differentially regulated protein	137
	spots when comparison of HSV-1F protein and HSV-1F infected	
	protein after treatment with ethanolic extract of Spirogyra spp.	
Table 4.26	LC-MS/MS identified protein in differentially regulated protein	142
	spots when comparison of HSV-2G protein and HSV-2G infected	
	protein after treatment with aqueous extract of Spirogyra spp.	
Table 4.27	Characteristics of algal gel product containing ethanolic extract of	158
	<i>Spirogyra</i> spp.	
Table 4.28	Characteristics of algal gel product containing ethanolic extract of	161
	Spirogyra spp. after storage at 4°C for 7 months	
Table 4.29	Characteristics of algal gel product containing ethanolic extract	166
	of <i>Spirogyra</i> spp. after storage at 25°C for 7 months	

LIST OF TABLES (continued)

Page

Table 4.30 Characteristics of algal gel product containing ethanolic extract170of Spirogyra spp. after storage at 45°C for 7 months

ลิ<mark>ปสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University AII rights reserved

LIST OF FIGURES

Figure 2.1	HSV genome	6
Figure 2.2	HSV genome organizations	6
Figure 2.3	Structure of HSV-1 maturation	7
Figure 2.4	HSV structure composes of viral DNA, icosahedral capsid,	8
	tegument and envelope	
Figure 2.5	Stages of HSV initial infection	9
Figure 2.6	tegument and envelope Stages of HSV initial infection Stages of HSV reactivation Primary and recurrent of HSV infection	10
Figure 2.7	Primary and recurrent of HSV infection	11
Figure 2.8	HSV-1 entries into host cell, interaction binding between	13
	gC and gB with HS on host cell surface, diffusion of cell surface	
	to HveA/HveC receptor, gD binding with HveA/HveC receptor,	
	Fusion viral envelope and cell membrane, capsid protein	
	is released into cytoplasm	
Figure 2.9	Cell surface receptors and viral glycoprotein requirement for	14
	HSV attachment and entry	
Figure 2.10) Herpes simplex virus entry pathway by Fusion at cell membrane,	15
	Endocytosis into acidic or Neutral endosome,	
	Macropinocytosis	
Figure 2.11	Replication of HSV cycle. The cycle of HSV infection composes	16
	of HSV particle binds to receptor on cell surface membrane	
	and fusion, viral nucleocapsid and tegument are released into	
	cytoplasm of host cell and transported their nucleocapsid through	
	nuclear pore, viral DNA is released into nucleus,	
	transcription and translation of immediate early and early genes,	
	viral DNA synthesis, transcription and translation of late genes,	
	encapsidation, release of viral particle	
Figure 2.12	2 HSV gene expressions	18

Figure 2.13	HSV release from infected cell	21
Figure 2.14	Immunology models of HSV-1 latency and reactivation	25
Figure 2.15	Mechanism of ACV inhibitor in HSV treatment	34
Figure 2.16	Mechanism of antiviral against herpes simplex virus infection	36
Figure 2.17	The single cell of Spirogyra; cell contains a helical chloroplast,	40
	a nucleus, cytoplasm and a vacuole enclosed in a cellulose	
	cell wall, The 3D presentation of cell structure	
Figure 2.18	The life cycle and conjugation of Spirogyra	41
Figure 3.1	Sample loading and IPG strip preparation for IEF	61
Figure 3.2	The new project creation	63
Figure 3.3	The spot detection parameter setting	64
Figure 3.4	The spot editing parameter	64
Figure 3.5	The landmark of protein spot setting and vector direction	65
	of the protein spots	
Figure 3.6	The 3D view of the protein spots and protein spots creation	65
Figure 3.7	Setting of pI and MW	66
Figure 4.1	The appearance of crude extracts; aqueous extract, ethanolic	70
(extract and methanolic extract from Spirogyra spp.	
Figure 4.2	Log of HSV-1F titer at 0, 6, 24 30 and 36 hours after treatment	92
	with crude extract of Spirogyra spp.when compared to antiviral	
	agent, ACV 1.93 µg/ ml and viral control	
Figure 4.3	Log of HSV-2G titer at 0, 6, 24 30 and 36 hours after treatment	92
	with crude extract of Spirogyra spp.when compared to antiviral	
	agent, ACV 6.81 µg/ ml and viral control	

Figure 4.4	Log of ACV-resistant HSV-1 isolate 1A titer at 0, 6, 24 30	95
	and 36 hours after treatment with crude extract of Spirogyra spp.	
	when compared to antiviral agent, ACV 8.89 μ g/ ml and viral control	
Figure 4.5	Log of ACV-resistant HSV-1 isolate 1B titer at 0, 6, 24 30	95
	and 36 hours after treatment with crude extract of Spirogyra spp.	
	when compared to antiviral agent, ACV 7.41 μ g/ ml and viral control	
Figure 4.6	Log of ACV-resistant HSV-1 isolate 11 titer at 0, 6, 24 30	96
	and 36 hours after treatment with crude extract of Spirogyra spp.	
	when compared to antiviral agent, ACV 6.80 μ g/ ml and viral control	
Figure 4.7	Log of ACV-resistant HSV-1 isolate 12 titer at 0, 6, 24 30	96
	and 36 hours after treatment with crude extract of Spirogyra spp.	
	when compared to antiviral agent, ACV 10.85 $\mu g/$ ml and viral control	
Figure 4.8	Log of ACV-resistant HSV-1 isolate 22 titer at 0, 6, 24 30	97
	and 36 hours after treatment with crude extract of Spirogyra spp.	
	when compared to antiviral agent, ACV 11.19 μ g/ ml and viral control	
Figure 4.9	The partial purified fractions of ethanolic extract of Spirogyra spp.	100
	by TLC analysis using hexane: ethyl acetate (90:10) as mobile	
	phase	
Figure 4.10	0 The positive results of active compound of EE01 and EE02	115
	partial fractions by phytochemical analysis	
Figure 4.1	l Fluorescence curve from SYBR Green detection of HSV-1F	120
	DNA, HSV-1F DNA after treatment with ethanolic extract	
Figure 4.12	2 12.5% SDS-PAGE gel of proteins of HSV-1F infected cells	123
	which were extracted by CHAP-Urea-Thiourea buffer ,	
	NP-40 buffer, NP-40-Urea-Thiourea buffer	
Figure 4.13	3 A comparison of HSV-1F infected protein profiles after	124
	extracted by CHAP-Urea-Thiourea buffer, NP-40	

	buffer, NP-40-Urea-Thiourea buffer	
Figure 4.14	A comparison of normal Vero cell protein profiles,	129
	HSV-1F non-treated cells protein, HSV-1F infected	
	protein after treatment with the ethanolic extract of Spirogyra spp.,	
	HSV-2G non-treated cells protein and HSV-2G infected proteins	
	after treatment with the aqueous extract of Spirogyra spp.	
	were identified by 2-DE	
Figure 4.15	Protein network visualization on the STRING website.	152
	The interaction focused on a specific protein network in HSV-1F	
	and host cell proteins after treatment with Spirogyra spp.extract.	
	Upon querying the database from Mascot, the resource consisted	
	of the highest scored of interaction proteins	
Figure 4.16	Protein network visualization on the STRING website.	154
	The interaction focused on a specific protein network in HSV-2G	
	and host cell proteins after treated with Spirogyra spp.extract	
Figure 4.17	The algal gel product and algal gel after 6 cycles of	158
	heating-cooling	
Figure 4.18	Inhibitory effect of algal gel containing ethanolic extract of	159
	Spirogyra spp. against HSV-1F, ACV-resistant HSV-1 isolate 1A,	
	1B, 11, 12 and 22 after heating-cooling for 6 cycles	
Figure 4.19	Inhibitory effect of algal gel containing ethanolic extract of	159
	Spirogyra spp.against HSV-2G after heating-cooling for 6 cycles	
Figure 4.20	Inhibitory effect of algal gel containing ethanolic extract of	162
	Spirogyra spp.against HSV-1F after storage at 4°C for 7 months	
Figure 4.21	Inhibitory effect of algal gel containing ethanolic extract of	162
	Spirogyra spp.against HSV-2G after storage at 4°C for 7 months	
Figure 4.22	Inhibitory effect of algal gel containing ethanolic extract of	163

		Page
	Spirogyra spp.against HSV-1 (No.1A) after storage at 4°C	
	for 7 months	
Figure 4.23		163
	Spirogyra spp. against HSV-1 (No.1B) after storage at 4°C	
	for 7 months	
Figure 4.24	Inhibitory effect of algal gel containing ethanolic extract of	164
	Spirogyra spp. against HSV-1 (No.11) after storage at 4°C	
	for 7 months	
Figure 4.25	Inhibitory effect of algal gel containing ethanolic extract of	164
	Spirogyra spp. against HSV-1 (No.12) after storage at 4°C	
	for 7 months	
Figure 4.26	Inhibitory effect of algal gel containing ethanolic extract of	165
	Spirogyra spp. against HSV-1 (No.22) after storage at 4°C	
	for 7 months	
Figure 4.27	Inhibitory effect of algal gel containing ethanolic extract of	166
	Spirogyra spp. against HSV-1F after storage at 25°C for 7 months	
Figure 4.28	Inhibitory effect of algal gel containing ethanolic extract of	167
8	Spirogyra spp. against HSV-2G after storage at 25°C for 7 months	
Figure 4.29	Inhibitory effect of algal gel containing ethanolic extract of	167
0	Spirogyra spp. against HSV-1 (No.1A) after storage at 25°C	
A	for 7 months	
Figure 4.30	Inhibitory effect of algal gel containing ethanolic extract of	168
	Spirogyra spp. against HSV-1 (No.1B) after storage at 25°C	
	for 7 months	
Figure 4.31	Inhibitory effect of algal gel containing ethanolic extract of	168
	Spirogyra spp. against HSV-1 (No.11) after storage at 25°C	

		Page
	for 7 months	
Figure 4.32	Inhibitory effect of algal gel containing ethanolic extract of	169
	Spirogyra spp. against HSV-1 (No.12) after storage at 25°C	
	for 7 months	
Figure 4.33	Inhibitory effect of algal gel containing ethanolic extract of	169
	Spirogyra spp. against HSV-1 (No.22) after storage at 25°C	
	for 7 months	
Figure 4.34	Inhibitory effect of algal gel containing ethanolic extract of	171
	Spirogyra spp. against HSV-1F after storage at 45°C for 7 months	
Figure 4.35	Inhibitory effect of algal gel containing ethanolic extract of	171
	Spirogyra spp. against HSV-2G after storage at 45°C for 7 months	
Figure 4.36	Inhibitory effect of algal gel containing ethanolic extract of	172
	Spirogyra spp. against HSV-1 (No.1A) after storage at 45°C	
	for 7 months	
Figure 4.37	Inhibitory effect of algal gel containing ethanolic extract of	172
	Spirogyra spp. against HSV-1 (No.1B) after storage at 45°C	
	for 7 months	
Figure 4.38	Inhibitory effect of algal gel containing ethanolic extract of	173
	Spirogyra spp. against HSV-1 (No.11) after storage at 45°C	
1	for 7 months	
Figure 4.39	Inhibitory effect of algal gel containing ethanolic extract of	173
	Spirogyra spp. against HSV-1 (No.12) after storage at 45°C	
	for 7 months	
Figure 4.40	Inhibitory effect of algal gel containing ethanolic extract of	174
	Spirogyra spp. against HSV-1 (No.22) after storage at 45°C	
	for 7 months	

LIST OF ABBREVIATIONS

%	Percentage
°C	Degree Celsius
μg	Microgram
μl	Microliter
ACV	Acyclovir
ANOVA	Analysis of variance
bp	Base pair
BSA	Bovine serum albumin
CD50	Cytotoxic dose, 50%
cm	Centimeter
CMC	Carboxymethyl cellulose
CO ₂	Carbon dioxide
CPE	Cytopathic effect
DE	Dimensional electrophoresis
DMSO	Dimethyl sulfoxide
DNA	Deoxyribonucleic acid
dsDNA	Double strand deoxyribonucleic acid
ED_{50}	Effective dose, 50%
EDTA	Ethylenediamine tetra-acetic acid
EtOH	Ethanol
g Copyright b	Gramhiang Mai University
GC	Gas chromatography
h	Hour
HPLC	High performance liquid chromatography
HS	Heparan sulfate
HSV	Herpes simplex virus
HSV-1	Herpes simplex virus type 1

LIST OF ABBREVIATIONS (continued)

HSV-2	Herpes simplex virus type 2
kDa	Kilodalton
kg	Kilogram
L	Liter
LAT	Latency-associated transcripts
MEM	Minimum essential medium
mg	Milligram
Min	Minute
ml S	Milliliter
MOI	Multiplicity of infection
mRNA	Messenger ribonucleic acid
MS	Mass spectrometry
MW	Molecular weight
nm	Nanometer
No.	Number
PBS	Phosphate buffered saline
PFU/ml	Plaque forming unit per milliliter
RCB	Randomized complete blocks
Rf	Retardation factor
RNA	Ribonucleic acid
rpm_ODVHght	Revolution per minute
SD	Standard deviation
SDS-PAGE	Sodium dodecyl sulfate
	polyacrylamide gel electrophoresis
TI	Therapeutic index
TLC	Thin layer chromatography
TNF	Tumor necrosis factor

LIST OF ABBREVIATIONS (continued)

ULUnique longUsUnique shortUVUltra violet radiationVVoltage

vhs

Virion host shutoff

ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University AII rights reserved

ข้อความแห่งการริเริ่ม

- วิทยานิพนธ์นี้ได้นำเสนอประสิทธิภาพของสารสกัดสาหร่ายเตาในการขับยั้งไวรัสก่อโรคเริ่ม ชนิดที่ 1 และ 2 โดยสารสกัดสาหร่ายเตาสามารถขับยั้งอนุภาคไวรัสโดยตรง กระบวนการเข้า สู่เซลล์ การเพิ่มจำนวน กระบวนการสร้างดีเอ็นเอ และโปรตีนของไวรัส
- การพัฒนาผลิตภัณฑ์เจลสาหร่ายเตาที่มีประสิทธิภาพในการยับยั้งไวรัสก่อโรกเริ่มชนิดที่ 1 ไวรัสก่อโรกเริ่มชนิดที่ 2 และไวรัสก่อโรกเริ่มชนิดที่ 1 ที่ดื้อต่อยาอะไซโกลเวียร์ ดังนั้นจึง สามารถนำผลิตภัณฑ์เจลสาหร่ายเตามาใช้เพื่อการยับยั้งเชื้อไวรัสก่อโรกเริ่ม

ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University AII rights reserved

STATEMENTS OF ORIGINALITY

- 1) In this thesis, the inhibitory efficiency of crude extract of *Spirogyra* spp. against herpes simplex virus type 1 and 2 were presented. *Spirogyra* spp. extract could inhibit viral particle, viral enty to the cell, viral DNA replication and viral protein synthesis.
- 2) Development of *Spirogyra* spp. gel product that has efficacy to inhibit herpes simplex virus type 1 and type 2, and acyclovir-resistant HSV-1 isolates. Therefore, the *Spirogyra* spp. gel product can be used for inhibition of herpes simplex virus.

ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University AII rights reserved